RESPONSE SURFACE AND NEURO FUZZY METHODOLOGY FOR ROTATING MAGNETIC FIELD AND GMR ARRAY SENSOR FOR CRACK DETECTION IN FERROMAGNETIC PIPE

DAMHUJI BIN RIFAI

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Electrical Engineering.

(Supervisor’s Signature)

Full Name : Dr Hadi Bin Manap
Position : Senior Lecturer
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name: Damhuji Bin Rifai
ID Number: PEE 14005
Date:

(Student’s Signature)

Full Name: Damhuji Bin Rifai
ID Number: PEE 14005
Date:
RESPONSE SURFACE AND NEURO FUZZY METHODOLOGY FOR ROTATING MAGNETIC FIELD AND GMR ARRAY SENSOR FOR CRACK DETECTION IN FERROMAGNETIC PIPE

DAMHUJI BIN RIFAI

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Engineering Technology
UNIVERSITI MALAYSIA PAHANG

JULY 2017
ACKNOWLEDGEMENTS

All praise to Allah for giving me the inner strength in completing the thesis. I am grateful and would like to express my sincere gratitude and appreciation to my supervisor, Associate Professor Dr. Ahmed N. Abdalla and Dr. Hadi Bin Manap for their support, invaluable guidance and continuous encouragement throughout this research. Besides, he has offered me invaluable helps in writing and publishing the research works.

My sincere thanks to my entire member staff at the Faculty of Electrical and Automation Engineering Technology at TATIUC for their help and support especially to Kharudin Ali, Mohd Tarmizi Ibrahim and Ruzlaini Ghoni.

I am obliged to all my family, especially my wife, Nurul Izzah Mohd Shah, my son, Muhammad Aqil and Muhammad Hakim my mother for their sacrifice, patience and understanding that were inevitable to make this research possible.

I also acknowledge TATIUC for supporting this work by short grant No. 9001-150 and for the lab equipment supported through Sensor Technology Lab.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS

ABSTRAK

ABSTRACT

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Research Background

1.2.1 NDT Needs for Pipeline Inspection

1.2.2 Factors Causing Degradation of a Pipeline

1.3 Problem Statement

1.4 Research Objectives

1.5 Research Scopes

1.6 Thesis Organization

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Non-Destructive Testing</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Non-Destructive Eddy Current Testing Principles</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Eddy Current Testing Equivalent Circuit</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Factors Affecting the Eddy Current Testing Inspection</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1 Exciting Coil Frequency and skin Depth Effect</td>
<td>21</td>
</tr>
<tr>
<td>2.5.2 Material Magnetic Permeability</td>
<td>23</td>
</tr>
<tr>
<td>2.5.3 Lift-off</td>
<td>23</td>
</tr>
<tr>
<td>2.5.4 Conductivity of Material</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Limitations of Coil Sensor in Eddy Current Probe</td>
<td>25</td>
</tr>
<tr>
<td>2.7 Types of Eddy Current Testing Probe for Pipe Assessment</td>
<td>26</td>
</tr>
<tr>
<td>2.7.1 Bobbin Probe</td>
<td>27</td>
</tr>
<tr>
<td>2.7.2 Full Saturation Probe</td>
<td>27</td>
</tr>
<tr>
<td>2.7.3 Rotating Bobbin Probe</td>
<td>28</td>
</tr>
<tr>
<td>2.7.4 Array Probe</td>
<td>29</td>
</tr>
<tr>
<td>2.7.5 C-Probe</td>
<td>30</td>
</tr>
<tr>
<td>2.7.6 X-Probe</td>
<td>31</td>
</tr>
<tr>
<td>2.7.7 Smart Array Probe</td>
<td>33</td>
</tr>
<tr>
<td>2.7.8 Rotational Magnetic Flux Sensor</td>
<td>34</td>
</tr>
<tr>
<td>2.7.9 Rotating Magnetic Field Probe</td>
<td>35</td>
</tr>
<tr>
<td>2.8 Overview of Giant Magnetoresistance (GMR) Sensors</td>
<td>37</td>
</tr>
<tr>
<td>2.9 Giant Magnetoresistance (GMR) Spin Valve Sensor</td>
<td>40</td>
</tr>
<tr>
<td>2.10 Giant Magnetoresistance Multilayer Sensor</td>
<td>43</td>
</tr>
<tr>
<td>2.11 The Influence of Various Parameters on the GMR Measurement</td>
<td>45</td>
</tr>
<tr>
<td>2.11.1 Structural Quality of Giant Magnetoresistance Sensor</td>
<td>45</td>
</tr>
<tr>
<td>2.11.2 Thickness Structure Layers of Giant Magnetoresistance Sensor</td>
<td>45</td>
</tr>
<tr>
<td>2.11.3 Temperature</td>
<td>47</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>2.12</td>
<td>Compensation Techniques in Eddy Current Testing Probes</td>
</tr>
<tr>
<td>2.13</td>
<td>Application of GMR Sensors in Hybrid Eddy Current Testing Probes</td>
</tr>
<tr>
<td>2.14</td>
<td>Optimization of Eddy Current Testing Probes Design</td>
</tr>
<tr>
<td>2.15</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>2.16</td>
<td>Multiple Response Surface Optimization Methods</td>
</tr>
<tr>
<td>2.16.1</td>
<td>Experimental Design Techniques</td>
</tr>
<tr>
<td>2.16.2</td>
<td>Search Methods</td>
</tr>
<tr>
<td>2.16.3</td>
<td>Contour Plots</td>
</tr>
<tr>
<td>2.16.4</td>
<td>Robust Parameter Design</td>
</tr>
<tr>
<td>2.16.5</td>
<td>Dual Response</td>
</tr>
<tr>
<td>2.16.6</td>
<td>Desirability Functions</td>
</tr>
<tr>
<td>2.16.7</td>
<td>Generalized Distance Measure</td>
</tr>
<tr>
<td>2.16.8</td>
<td>Loss Functions</td>
</tr>
<tr>
<td>2.16.9</td>
<td>Minimal Satisfaction</td>
</tr>
<tr>
<td>2.17</td>
<td>Neuro-Fuzzy Systems</td>
</tr>
<tr>
<td>2.17.1</td>
<td>Types of Neuro-Fuzzy Systems</td>
</tr>
<tr>
<td>2.17.2</td>
<td>Adaptive Neuro-Fuzzy Inference Systems Structure</td>
</tr>
<tr>
<td>2.18</td>
<td>Summary</td>
</tr>
</tbody>
</table>

CHAPTER 3 METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Architecture of the Distributed System for Eddy Current Testing (DSECT) inspection</td>
<td>78</td>
</tr>
<tr>
<td>3.3</td>
<td>Design and operational principles of the DSECT probe</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Simulation Model of Axial and Circumference Defect</td>
<td>84</td>
</tr>
<tr>
<td>3.5</td>
<td>Proposed Rotating Magnetic Field</td>
<td>90</td>
</tr>
</tbody>
</table>
CHAPTER 4 RESULTS AND DISCUSSION 109

4.1 Introduction 109
4.2 Distributed System for Eddy Current Testing (DSECT) 109
4.3 Simulation of the Axial and Circumference Defect for Carbon Steel Pipe 110
 4.3.1 Effect of Defect Depth 114
 4.3.2 Effect of Defect Length 116
4.4 Analysis of Response Surface Methodology Models for ECT Probe Designed 118
 4.4.1 Axial defect 119
 4.4.2 Circumference Defect 123
4.5 Optimization of the Probe Design 127
4.6 ANFIS Simulation Results 132
4.7 Experimental Results for Axial and Circumference Defect 137
4.8 Comparison the Accuracy of Axial and Circumference Defect Inspection 143

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Example of pipe dimension standard</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Major NDT Methods- A Comprehensive Overview</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Typical Depths of penetration</td>
<td>23</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Conductivity and resistivity of conductive materials</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Compensation techniques used in eddy current testing</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Summary of previous studies on application of GMR sensor in eddy current testing</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Simulation parameters with COMSOL Multiphysics</td>
<td>84</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>DSECT probe design parameter and its level for central composite design</td>
<td>94</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Target value and limit for optimization of DSCET probe design</td>
<td>95</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Defect simulation dimension</td>
<td>110</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Experimental design and results (Uncoded factors)</td>
<td>117</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>ANOVA table for axial defect detection response surface quadratic model</td>
<td>118</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>ANOVA for the circumference defect detection response surface quadratic model</td>
<td>123</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Goals and limits for optimization of axial and circumference defect detection in 3 inc pipe inspection</td>
<td>127</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Training and testing data</td>
<td>132</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Comparison between the numerical result and ANFIS models for testing data</td>
<td>134</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Comparison of the predicted and experimental results</td>
<td>142</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1	Principle diagram for eddy current testing	17
Figure 2.2	Equivalent Circuit for eddy current testing	18
Figure 2.3	Skin depth effect in eddy current testing for copper	21
Figure 2.4	A peak amplitude as a function of lift-off distance between probe and specimen surface	22
Figure 2.5	Hybrid probe: ECT coil with magnetic field sensor	24
Figure 2.6	Axial and circumferential channels of array probe	28
Figure 2.7	General setting for a C-3 probe	29
Figure 2.8	Axial and circumferential channels of array probes	30
Figure 2.9	Smart array probe	32
Figure 2.10	Rotating magnetic flux sensor for pipe and tube inspection	33
Figure 2.11	Two phase rotating field eddy current probe described by Birring	34
Figure 2.12	Inner rotating field eddy current transducer	35
Figure 2.13	Hysteresis loops for several Fe/Cr for different thickness of Cr and with the presence of magnetic field.	37
Figure 2.14	Magnetoresistance of three Fe/Cr super lattices at 4.2 K with different thickness	38
Figure 2.15	Schematic diagram of the spin valve configuration of FM/AFM	40
Figure 2.16	Schematic of a spin valve sensor element.	40
Figure 2.17	Schematic representation of the basic mechanism of the GMR	42
Figure 2.18	Magnetoresistance versus Cu spacer thickness for Co/Cu GMR multilayers at room temperature	44
Figure 2.19	Variation of the MR ratio as a function of the Cu thickness	44
Figure 2.20	GMR sensitivity in as-deposited (ASD) and annealed (ANN) states as a function of the NiFeCo layer thickness.	45
Figure 2.21	The annealed GMR multilayer in a vacuum at 300°C, 325°C and 350°C.	46
Figure 2.22	Annealed GMR multilayer in flowing argon	46
Figure 2.23	Cooperative neuro-fuzzy systems	65
Figure 2.24	Concurrent neuro-fuzzy systems	66
Figure 2.25	Tagaki-Sugeno hybrid neuro-fuzzy system	67
Figure 2.26	The architecture of ANFIS with 2 inputs and a single output	70
Figure 3.1	Architecture of the realized Distributed System for Eddy current Testing (DSECT)	78
Figure 3.2	Principle of the rotating field	80
Figure 3.3	Rotating field windings and bobbin pickup coil	82
Figure 3.4	ECT probe for DSECT system	83
Figure 3.5	Carbon steel pipe model with axial and circumference defect	85
Figure 3.6	Meshing using COMSOL Multipysics	86
Figure 3.7	Pipe defect simulation steps using COMSOL	89
Figure 3.8	Magnetic flux density decay along diameter direction	90
Figure 3.9	Amplitude contour of magnetic field component on the xy plane	90
Figure 3.10	Array of GMR sensor	91
Figure 3.11	Array GMR sensor located at the ECT probe for pipe inspection	92
Figure 3.12	Prototype of ECT probe design for pipe inspection	94
Figure 3.13	ANFIS model	96
Figure 3.14	Design of Distributed System for Eddy current Testing (DSECT)	98
Figure 3.15	DSECT Pusher system	99
Figure 3.16	Phase lag shift circuit: a) Circuit b) Simulation result	101
Figure 3.17	Phase lead shift circuit: a) Circuit b) Simulation result	102
Figure 3.18	Circuit diagram for phase shift circuits	104
Figure 3.19	High-speed DAQ card (DT 9844) for DSECT system	105
Figure 3.20	Schematic diagram of the whole pneumatic system	106
Figure 3.21	Ladder diagram for the pneumatic pusher system	107
Figure 4.1	Distributed system for eddy current testing	109
Figure 4.2	Axial magnetic flux density due to different defect with 100% depth measure by GMR sensors for axial defect (a) 2D, (b) 3D	111
Figure 4.3	Axial magnetic flux density due to different defect with 100% depth measure by GMR sensors	112
Figure 4.4	Simulation result of circumferential defect (13.5 mm X 1.5 mm) with different depth	113
Figure 4.5	Simulation results of circumferential defect with different depths: Amplitude of ECT probe signal vs. circular distance along the circumferential direction	114
Figure 4.6	Simulation results circumferential defect with different depths: Lissajous Pattern seen of real and imaginary component along the circumferential direction	115
Figure 4.7	Simulation result of 50% pipe wall circumferential defect with length (a) 10.5 mm, (b) 11.5mm, (c) 12.5mm.	116
Figure 4.8	Simulation results of 50% pipe wall circumferential defect with width 1.5 mm and different length. Amplitude of ECT probe signal vs. circular distance along the circumferential direction.	117
Figure 4.9	Simulation results of 50% pipe wall circumferential defect with width 1.5 mm and different length. Lissajous Pattern seen of real and imaginary component along the circumferential direction.	118
Figure 4.10	Normal probability plot for axial defect detection	119
Figure 4.11	Axial defect detection Box-Cox Plot for power transforms	120
Figure 4.12	Interaction of probe design factors between probe diameter and the number of GMR sensor	121
Figure 4.13	Influence of number GMR sensor and ECT probe diameter in axial defect detection.	122
Figure 4.14	Normal probability plot for circumferential defect detection	123
Figure 4.15	Interaction of probe design factors	125
Figure 4.16	Influence of number GMR sensor and ECT probe diameter in circumferential defect detection.	126
Figure 4.17	Optimization solution for ECT probe design	128
Figure 4.18	Contour graph prediction of defect detection under optimum ECT probe design.	129
Figure 4.19	3-D graph prediction of defect detection under optimum ECT probe design.	
Figure 4.20	ECT probe design for DSECT system based on optimum parameter design	
Figure 4.21	ANFIS training	
Figure 4.22	The percentage error of ANFIS models for training data	
Figure 4.23	The comparison among the experimental and predicted values of average AD and CD using ANFIS models	
Figure 4.24	Geometry dimension of circumference defect on carbon steel pipe	
Figure 4.25	Geometry dimension of axial defect on carbon steel pipe	
Figure 4.26	GMR sensor output for circumference defect inspection	
Figure 4.27	GMR sensor output for axial defect inspection	
LIST OF SYMBOLS

C_i
Centre of the Gaussian Membership Functions

σ_i
Width of the Gaussian Membership Functions

$^\circ C$
Degree Celsius

μ
Conducting Material Permeability

\AA
Angstrom

a
Tuning Parameter

B
Vector of Tuning Parameters

I
Current

K
Kelvin

L
Inductance

R
Resistance

V
Voltage

X
Value of Design Variable

x_i
Design Parameter

Y
Vector of Observations

θ
Angle

σ
Conducting Material Conductivity

ω
Angular Frequency

B_θ
Azimuth Magnetic Field

B_r
Radial Magnetic Field
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>Visual testing</td>
</tr>
<tr>
<td>AE</td>
<td>Acoustic emission</td>
</tr>
<tr>
<td>ANFIS</td>
<td>Adaptive neuro-fuzzy inference system</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer numerical control</td>
</tr>
<tr>
<td>Cr</td>
<td>Cuprum</td>
</tr>
<tr>
<td>CTS</td>
<td>Copper tubing size</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data acquisition</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DSECT</td>
<td>Distributed System for Eddy Current Testing</td>
</tr>
<tr>
<td>ECT</td>
<td>Eddy current testing</td>
</tr>
<tr>
<td>Fe</td>
<td>Ferum</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element model</td>
</tr>
<tr>
<td>GMR</td>
<td>Giant magneto resistance</td>
</tr>
<tr>
<td>MBE</td>
<td>Minimum bias estimator</td>
</tr>
<tr>
<td>MFL</td>
<td>Magnetic flux leakage</td>
</tr>
<tr>
<td>MRPC</td>
<td>Motorized rotating probe coil</td>
</tr>
<tr>
<td>MRPC</td>
<td>Motorized rotating probe coil</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean squared error</td>
</tr>
<tr>
<td>MT</td>
<td>Magnetic particle testing</td>
</tr>
<tr>
<td>NDT</td>
<td>Destructive testing</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-destructive testing</td>
</tr>
<tr>
<td>PT</td>
<td>Penetrant testing</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly vinyl chloride</td>
</tr>
<tr>
<td>RPC</td>
<td>Rotating pancake coil</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>RT</td>
<td>Radiographic testing</td>
</tr>
<tr>
<td>USB</td>
<td>Universal serial bus</td>
</tr>
<tr>
<td>UT</td>
<td>Ultrasonic testing</td>
</tr>
</tbody>
</table>