AN APPLICATION OF ADVANCED OXIDATION PROCESS TO PHOTOPOLISH PALM OIL MILL EFFLUENT OVER TiO₂ AND ZnO PHOTOCATALYSTS

NG KIM HOONG

DOCTOR OF PHILOSOPHY
(CHEMICAL ENGINEERING)

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Chemical Engineering

(Supervisor’s Signature)
Full Name : Assoc. Prof. Dr. Cheng Chin Kui
Position : Associate Professor
Date : 01/07/17

(Co-supervisor’s Signature)
Full Name : Assoc. Prof. Dr. Md. Maksudur Rahman Khan
Position : Associate Professor
Date : 01/07/17
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : NG KIM HOONG
ID Number : MKC14028
Date : 01/07/17
AN APPLICATION OF ADVANCED OXIDATION PROCESS TO PHOTOPOLISH PALM OIL MILL EFFLUENT OVER TiO₂ AND ZnO PHOTOCATALYSTS

NG KIM HOONG

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy of Chemical Engineering

Faculty of Chemical and Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

JULY 2017
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Cheng Chin Kui and myself in completing this thesis. Besides, I would also like to thank Malaysia Toray Science Fund (RDU 151501) for funding current project, Ministry of Higher Education Malaysia (MOHE) for ERGS (RDU120613), Universiti Malaysia Pahang for Doctoral Scholarship Scheme and PRGS (RDU150330). Last but not least, I would like to thank Mybrain for sponsoring the fees and allowance throughout the study.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iii

TABLE OF CONTENT v

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS xvi

LIST OF ABBREVIATIONS xvii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Objective 4

1.4 Scopes of Study 5

1.5 Rational and Significance 6

1.6 Outline of the Thesis 7

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Palm Oil Mill Effluent (POME) 8

2.3 Laws and Legislations 9
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Conventional POME Treatment</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Tertiary Treatment for POME Polishing</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Fundamentals and Concept of Advanced Oxidation Processes (AOPs)</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Heterogeneous Photocatalysis</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.7.1 Basic Principles</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.7.2 Band Structure and Band Gap of Semiconductors</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.7.3 Charge Separation</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.7.4 Key Species in Organic Destruction</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>Past Works on Photodegradation of Organic Compounds</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.8.1 Photocatalysis with Different Photocatalysts</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.8.2 Past Research Works on TiO₂-based Photocatalysis</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.8.3 Past Research Works on ZnO-based Photocatalyst</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Optimization Using Central Composite Design (CCD) in Response Surface Methodology (RSM)</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Photocatalysts Characterization Techniques</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.10.1 X-Ray Diffraction (XRD)</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.10.2 N₂ Physisorption Analysis</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.10.3 UV-Vis Diffuse Reflectance Spectroscopy</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>2.10.4 Field Emission Scanning Electron Microscopy (FESEM)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2.10.5 Fourier Transform Infrared Spectroscopy (FTIR)</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2.10.6 Scanning Electron Microscopy with X-Ray Microanalysis (SEM-EDX)</td>
<td>49</td>
</tr>
<tr>
<td>2.11</td>
<td>Conclusion Remarks</td>
<td>50</td>
</tr>
</tbody>
</table>

CHAPTER 3 MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Overview of Methodology</td>
<td>52</td>
</tr>
</tbody>
</table>
3.3 Chemicals and Gases 53
3.4 POME Wastewater 54
 3.4.1 POME Sampling and Preservation 54
 3.4.2 Pre-reaction POME Characterization 54
 3.4.3 Post-reaction POME analysis 58
3.5 Photocatalysts Preparation and Characterizations 59
 3.5.1 Photocatalysts Preparation 59
 3.5.2 Photocatalysts Characterization 60
 3.5.3 Post-reaction Photocatalysts Analysis 61
3.6 Photocatalytic Degradation of POME 62
 3.6.1 Photoreaction 62
 3.6.2 Sample Analysis 63
3.7 Optimization of the Process 65

CHAPTER 4 PHOTOCATALYTIC TREATMENT OF POME WASTEWATER OVER UV/TiO$_2$ SYSTEM 67
4.1 Introduction 67
4.2 Characterization of POME Wastewater 68
4.3 Characterization of TiO$_2$ Photocatalyst 70
4.4 Preliminary Works 74
 4.4.1 Effects of Stirring Speed 74
 4.4.2 Effects of O$_2$ Flowrate 76
 4.4.3 Control Reactions 78
4.5 Photocatalytic Degradation of POME 79
 4.5.1 Effects of TiO$_2$ Loadings 79
 4.5.2 Langmuir-Hinshelwood (LH) Rate Law Modeling 81
CHAPTER 5 PHOTOCATALYTIC TREATMENT OF POME WASTEWATER
OVER UV/ZNO SYSTEM 121

5.1 Introduction 121
5.2 Characterization of ZnO Photocatalyst 122
5.3 Photocatalytic Degradation of POME 124
 5.3.1 Effects of ZnO Loadings 125
 5.3.2 Langmuir-Hinshelwood (LH) Rate Law Modeling 128
 5.3.3 Gaseous Products from the POME Degradation 130
 5.3.4 Scavenging Study and Mechanisms of Degradation 133
 5.3.5 Recyclability and Longevity Studies 137
5.4 Post-reaction Analysis for ZnO Photocatalyst 141
5.5 Optimization of the Process 146
 5.5.1 Significance Analysis of Main Factors 146
 5.5.2 Optimization of the Factors 153
5.6 Correlation between BOD and COD of POME Treated by UV/ZnO System 161
LIST OF TABLES

Table 2.1 Characteristic of POME 9
Table 2.2 POME discharge standards according to periods of discharge 10
Table 2.3 Summary of new proposed polishing technologies in POME tertiary treatment 15
Table 2.4 The summary of past researches on photocatalysis process 28
Table 2.5 Recent research works on decontaminat organic substrate over TiO$_2$ photocatalyst 33
Table 2.6 Past research works using ZnO as the photocatalyst 37
Table 2.7 The examples of CCD optimization in analytical chemistry 40
Table 3.1 List of chemicals and gases 53
Table 3.2 Retention time A_{standard} and $X_i,\text{standard}$ for each speices 64
Table 4.1 Characteristics of ponding-treated POME 69
Table 4.2 k-values obtained from the photoreactions on POME with different TiO$_2$ loadings 83
Table 4.3 Total gas products collected from photoreactions 88
Table 4.4 Comparisons of the parameters before and after photocatalytic treatment process 93
Table 4.5 The experimental conditions of photoreactions and the degradations obtained 101
Table 4.6 ANOVA analysis obtained from the response 104
Table 4.7 CCD for optimization of POME degradation 108
Table 4.7 ANOVA for response surface quadratic model 110
Table 4.9 The suggested experimental conditions and the actual experiment condition 118
Table 5.1 k-values obtained from the photodegradation of POME over different ZnO loadings 129
Table 5.2 Total gas products collected from photoreactions 132
Table 5.3 Comparisons of the parameters before and after photocatalytic treatment process 141
Table 5.4 Significance analysis of main factors 147
Table 5.5 Contribution of each factor towards degradation efficiency 150
Table 5.6 ANOVA analysis obtained from the response 150
Table 5.7 The design of experiment and degradation achieved for each run 154
Table 5.8 R-values of each model 155
Table 5.9 ANOVA for the quadratic model 156
Table 5.10 Results of experimental validation 161
Table 6.1 Characterization of TiO$_2$ and ZnO 165
LIST OF FIGURES

Figure 2.1 Illustration of photocatalysis mechanisms 19
Figure 2.2 Band structure of a semiconductor 20
Figure 2.3 Different crystalline structure of TiO₂ 21
Figure 2.4 Kinetics curves of conversion of phenol with Mn oxide as photocatalyst 24
Figure 2.5 The graph of removal (%) of organic substances versus photocatalyst concentration 24
Figure 2.6 Concentration of 2,4,6-TCP vs irradiation time under visible-light irradiation (λ > 400 nm) with the presence of LDH film catalysts with different thickness 25
Figure 2.7 Photoactivities of four metal oxides in deionized water at various concentration 26
Figure 2.8 Azobenzene formation in ethanol on Fe₂O₃ at different aniline concentration under irradiation of UV-light and Solar(visible) light 27
Figure 2.9 Comparison of the decolorization efficiency of Procion red MX-5B by different %wt of Ag/TiO₂ 30
Figure 2.10 The graph of (C/C₀) of congo red versus UV irradiation time with various catalyst composition 31
Figure 2.11 Crystalline structures for ZnO 35
Figure 2.12 The CCD for optimization process of two (left) and three (right) variables 39
Figure 2.13 A schematic diagram of XRD (A) Collimation (B) Sample (C) Slit (D) Exit Beam Monochromator (E) Detector (X) Source of X-Rays 43
Figure 2.14 The Jasco V-550 optical system schematic diagram 48
Figure 2.15 A Schematic diagram of FESEM 49
Figure 3.1 A Schematic diagram of FESEM 53
Figure 3.2 Set up for evaporation of n-hexane solvent 57
Figure 3.3 The schematic diagram of photoreaction set up 62
Figure 3.4 Gas chromatogram obtained for standard gas 65
Figure 4.1 FTIR spectrum of ponding-treated POME 70
Figure 4.2 XRD diffractogram of TiO₂ 71
Figure 4.3 FESEM images of TiO₂ photocatalyst (a)10 kx (b) 35 kx (c) 55 kx (d) 100 kx 72
Figure 4.4 Isotherm of TiO₂ obtained from N₂ physisorption 73
Figure 4.5 Diffuse reflectance UV-Vis spectra of the TiO₂ 73
Figure 4.31 The normal plot of the residuals
Figure 4.32 Predicted versus actual response
Figure 4.33 Residuals versus predicted response
Figure 4.34 Residuals versus experiment run
Figure 4.35 Effect of (a) O₂ flowrate (b) TiO₂ loading (c) initial concentration of POME towards degradation
Figure 4.36 Contour plots and the 3D surface response plots between (a) AB (250 ppm POME) (b) AC (1.10 g/L TiO₂) (c) BC (70 mL/min O₂)
Figure 4.37 The predicted 3D respond surface with optimized conditions (239.53 ppm of POME)
Figure 4.38 Correlation of BOD and COD after phototreatment using UV/TiO₂ system
Figure 5.1 XRD results of ZnO photocatalyst
Figure 5.2 FESEM images of ZnO photocatalyst employing magnifications of 10kx, top left; 30kx, top right and 50kx, bottom
Figure 5.3 N₂ adsorption and desorption isotherms for fresh ZnO photocatalyst
Figure 5.37 (a) Diffuse reflectance UV-Vis spectra of the photo-catalysts. (b) Plot of Kubelka-Munk function versus light energy for ZnO
Figure 5.5 Results obtained from photoreaction at 70 ml/min of O₂ employing different ZnO loadings
Figure 5.6 Illustration showing good adherence to the 1st-order kinetics modeling
Figure 5.7 pH and decolourization profiles for all the photoreactions
Figure 5.8 Production rate for (a) CO₂ (b) CH₄
Figure 5.9 The relationship between gaseous products collected and photocatalytic degradation efficiency
Figure 5.10 Results obtained from scavenging study employing 1.0 g/L of ZnO
Figure 5.11 Mechanisms proposed for the photocatalytic degradation of organic pollutants in POME over ZnO photocatalyst under UV irradiation
Figure 5.12 Results obtained from recyclability test with reaction conditions of 1.0 g/L ZnO and 70 ml/min of O₂-bubbling rate
Figure 5.13 Results obtained from longevity test with reaction condition of 1.0 g/L of ZnO and 70 ml/min of O₂-bubbling
Figure 5.14 ¹³CNMR spectrums of POME (a) 0 h (b) 2 h (c) 4 h (d) 22 h
Figure 5.15 FESEM images of spent ZnO photocatalyst (a) 10kx (b) 30kx (c) 55kx (d) 100kx
Figure 5.16 N₂ adsorption and desorption isotherms for recycled ZnO photocatalyst

Figure 5.17 FTIR spectra of fresh and recycled ZnO

Figure 5.18 EDX mapping for (a) combined (b) Carbon (c) Zn (d) Oxygen

Figure 5.19 EDX spectrum of used ZnO

Figure 5.20 Half-normal plot of the factors for degradation efficiency (A= O₂ flowrate; B=ZnO loading; C=initial concentration of POME)

Figure 5.21 Pareto chart of the factors efficiency (A=O₂ flowrate; B=ZnO loading; C=initial concentration of POME)

Figure 5.22 The effects of main factors and interactive factor

Figure 5.23 (a) Normal probability plot of residuals (b) Predicted vs actual response plot (c) Residuals vs predicted response plot (d) Residuals vs run number plot

Figure 5.24 The effects of (a) O₂ flowrate (b) ZnO loading (c) initial concentration on the response

Figure 5.25 The interaction effects between (a) AB (b) AC (c) BC.

Figure 5.26 3D response surface for optimized condition

Figure 5.27 Correlation of BOD and COD after phototreatment using UV/ZnO system

Figure 6.1 Scavenging studies for TiO₂ and ZnO (O₂-bubbling rate: 70 mL/min; photocatalyst loading: 1.0 g/L)

Figure 6.2 Effects of photocatalysts loading for both systems (initial concentration = 155-170 ppm; Oxygen bubbling = 70 mL/min)

Figure 6.3 Schematic diagram of organic pollutants degradation in TiO₂ system

Figure 6.4 Recyclability study for both TiO₂ and ZnO system

Figure 6.5 Longevity study for both TiO₂ and ZnO system
LIST OF SYMBOLS

θ angle of incidence, Bragg’s angle
γ the surface tension of N\textsubscript{2} at its boiling point
λ wavelength of X-ray beam (nm)
A Absorbance
Ads\textsubscript{t} Absorption at time \textit{t}
Ads\textsubscript{i} Absorption at time \textit{i}
β\textsubscript{d} true line width at half maximum intensity
β\textsubscript{obs} observed width at half maximum intensity
β\textsubscript{inst} instrumental line width by standard
β\textsubscript{a} angular width at half maximum intensity
C a characteristic constant of the adsorbate
d inter plane distance of crystal
D crystalline size
D\textsubscript{1}, D\textsubscript{2} DO values of POME
E\textsubscript{bg} band gap energy
\textit{hν} photon energy
k\textsubscript{Sch} Scherrer constant
n order of reflection
P decimal volumetric fraction of sample used
P gas pressure
P\textsubscript{s} saturation pressure of the adsorbate gas
P\textsubscript{a} ambient pressure
P/P\textsubscript{o} relative pressure of N\textsubscript{2}
r\textsubscript{k} the Kelvin radius of the pore
R\textsubscript{0}, R apparent absorbance
R gas constant
S\textsubscript{BET} BET specific surface area
t thickness of the adsorbed layer
T ambient temperature
V volume of gas adsorbed
V\textsubscript{m} volume of gas adsorbed corresponding to monolayer coverage
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>AMX</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td>AOP</td>
<td>Advanced oxidation process</td>
</tr>
<tr>
<td>ASGSC</td>
<td>attached growth system where granular activated carbon was seeded with activated sludge</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>CLX</td>
<td>Cloxacillin</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>catalytic ozonation</td>
</tr>
<tr>
<td>CWPO</td>
<td>catalytic wet peroxide oxidation</td>
</tr>
<tr>
<td>DRS</td>
<td>diffuse reflectance spectroscopy</td>
</tr>
<tr>
<td>EDX</td>
<td>X-ray microanalysis</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Microscopy Analysis</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HRT</td>
<td>hydraulic retention time</td>
</tr>
<tr>
<td>LDH</td>
<td>layered double hydroxide</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diodes</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MBR</td>
<td>membrane bioreactor</td>
</tr>
<tr>
<td>MO</td>
<td>Methyl Orange</td>
</tr>
<tr>
<td>O&G</td>
<td>Oil and grease</td>
</tr>
<tr>
<td>OA</td>
<td>Oxolinic acid</td>
</tr>
<tr>
<td>OFAT</td>
<td>one variable at a time</td>
</tr>
<tr>
<td>POME</td>
<td>Palm oil mill effluent</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and development</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SAS</td>
<td>suspended activated sludge</td>
</tr>
<tr>
<td>SBR</td>
<td>sequencing batch reactor</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SKM</td>
<td>Schuster-Kubleka-Munk</td>
</tr>
<tr>
<td>SS</td>
<td>Suspended solid</td>
</tr>
<tr>
<td>TC</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>TS</td>
<td>Total solid</td>
</tr>
<tr>
<td>UF</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>VB</td>
<td>valence band</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>