HYBRID-FUZZY TECHNIQUES WITH FLEXIBILITY AND ATTITUDINAL PARAMETERS FOR SUPPORTING EARLY PRODUCT DESIGN AND RELIABILITY MANAGEMENT

DANIEL OSEZUA AIKHUELE

DOCTOR OF PHILOSOPHY
(MANUFACTURING ENGINEERING)

UNIVERSITI MALAYSIA PAHANG
I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Manufacturing Engineering.

(Supervisor’s Signature)

Full Name: Ir. Dr. Faiz Mohd Turan
Position: Senior Lecturer
Date:
STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)
Full Name : DANIEL OSEZUA AIKHUELE
ID Number : PMF14005
Date : 24 May 2017
HYBRID-FUZZY TECHNIQUES WITH FLEXIBILITY AND ATTITUDINAL PARAMETERS FOR SUPPORTING EARLY PRODUCT DESIGN AND RELIABILITY MANAGEMENT

DANIEL OSEZUA AIKUELE

Thesis submitted in fulfillment of the requirements for the award of the degree of
Doctor of Philosophy

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

MAY 2017
ACKNOWLEDGEMENT

First and foremost I would want to thank the Almighty God for his Grace and Guidance throughout my PhD program. Special thanks also to my Supervisor Dr. Faiz Mohd Turan for his patient guidance and tireless support. Without your help and encouragement, I would not have come this far.

I am indebted to my progress report examiners for their support, encouragement, and immense knowledge. Their guidance and critics helped me throughout the process of researching and writing this thesis. I shall never forget the help, inspiration, and motivation they offered when my steps faltered. They taught me not only the meaning of conducting research and gaining academic knowledge but also many lessons learned from life.

I am most grateful to my immediate family for their support and love. Also special thanks to my childhood friends and PhD colleagues may the Good Lord bless you all.
TABLE OF CONTENT

DECLARATION
TITLE PAGE
ACKNOWLEDGEMENT
ABSTRAK
ABSTRACT
TABLE OF CONTENT
LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS
LIST OF ABBREVIATION
DEFINITION OF SOME KEY WORDS

CHAPTER 1 INTRODUCTION
1.1 Background and problem statement 1
1.2 Product Reliability Concerns 3
1.3 Product design 4
1.4 Motivation and Research Gaps 6
1.5 Research Question 11
1.6 Research Objective 11
1.7 Structure of the thesis 12

CHAPTER 2 LITERATURE REVIEW
2.1 Product Development Engineering Evolution 15
2.2 Source of reliability and design information for new product development 17
2.3 Reliability at the early phase of product design 19
2.3.1 Assessment of Root Cause of Failure (RCF) 20
2.4 Fuzzy TOPSIS method 22
2.5 Product design concept 23
2.5.1 Review of product design concept numerical method 26
2.6 Intuitionistic fuzzy set (IFS) 29
2.6.1 Concept and definition of the Intuitionistic Fuzzy Set (IFS) 31
2.6.2 Comparison of preference information expressed in IFS for MADM 33
2.6.3. Definitions and concepts of the matrix methods 34
2.7 The Basic Concept of Triangular Intuitionistic Fuzzy Number (TIFN) 34
2.7.1. Aggregation operators 37
2.7.2. Some weighted geometric aggregation operators on TIFNs 38
2.8 Summary 39

CHAPTER 3 METHODOLOGY 42
3.1 Introduction 42
3.2 Building of the IF-TOPSIS\textsubscript{EF} model 45
3.2.1. The Exponential Related Function (ER) 45
3.3 Fuzzy TOPSIS Methodology and the Proposed IF-TOPSIS\textsubscript{EF} Algorithm 50
3.3.1. The proposed IF-TOPSIS\textsubscript{EF} model 51
3.4 Application of the IF-TOPSIS\textsubscript{EF} model for solving the dependent attributes issue normally associated with traditional TOPSIS model. 56
3.4.1. Remarks on solving the dependent and independent Attributes issue 58
3.4.2. Theoretical comparison of proposed method with the traditional fuzzy TOPSIS method 59
3.5 Development of the Generalized ordered weighted geometric operator of TIFNs 60
3.5.1. Mathematical properties of the GTIFOWGA operator 64
3.6 MAGDM with the generalized geometric operators for TIFN 70
3.6.1. Algorithm of the proposed approach for solving the MAGDM problems 71
3.7 Data collection and analysis 73
3.8 Case study methodology 74
3.9 Expert’s (DMs) Opinion approach 76
3.10 Reliability and Validity 77
3.11 Summary 78

CHAPTER 4 APPLICATION OF THE MODELS FOR PRODUCT RELIABILITY AND DESIGN CONCEPT ASSESSMENT 80
4.1 Introduction product reliability assessment 80
4.2 Pilot case study for reliability assessment 81
4.2.1. Comparisons and discussion of pilot case example 1 83
4.2.2. Comparisons and discussion of pilot case example 2 87
4.2.3. Comparisons and discussion of pilot case example 3 90
4.3 Application of the IF-TOPSIS_{EF} model for Root Cause of Failure in a Crawler Crane Machine 91
4.3.1 The computation of the IF-TOPSIS_{EF} for the Crawler Crane 93
4.4 Application of the IF-TOPSIS_{EF} model for Troubleshooting Forklift Truck 97
4.4.1 The computation of the IF-TOPSIS_{EF} model for the Forklift 99
4.5 Discussion of the results of the real-life case studies 102
4.6 General discussion and analysis of IF-TOPSIS_{EF} model for reliability assessment 103
4.7 Introduction to product design concept assessment using the MAGDM method which is based on a GTIFGA operator 104
4.8 Pilot case study for product design concept assessment 105
4.8.1 Comparison analysis and discussion for pilot example 1 107
4.8.2 Comparison analysis and discussion for pilot example 2 115
4.9 Application of the proposed method for the assessment of a new concept design for a Forklift truck 117
4.9.1 Computation of the model for concept design selection of Forklift truck 118
4.9.2 Discussion of result for the concept design assessment 121
4.10 General discussion and analysis of model for design concept assessment 122
4.10.1 Key observation on its future application 123

CHAPTER 5 CONCLUSION 124
5.1 Introduction 124
5.2 The main contributions of the study 125
5.3 Suggestions for future work 129

REFERENCES 128
APPENDIX 1: PUBLICATIONS DERIVED FROM THIS THESIS 146
APPENDIX 2: THE COMPUTATION OF THE IF-TOPSIS_{EF} FOR THE CRAWLER CRANE 148
LIST OF TABLES

Table 2.1: Sources of product reliability and design information 18
Table 2.2: Review of product design concept evaluation methods (artificial intelligence based techniques) 27
Table 3.1: Assessment of alternatives with different values for the attitudinal parameter 49
Table 3.2: The main implementation steps 50
Table 3.3: Fuzzy numbers for approximating the linguistic variable 51
Table 3.4: Decision matrix for Example 2 56
Table 3.5: Traditional TOPSIS model with various normalization modes 58
Table 3.6: The proposed model with various normalization modes 58
Table 3.7: Theoretical comparison of the methods 59
Table 3.8: Linguistic and TIFNs scale 70
Table 3.9: Background of Expert Panel 77
Table 4.1: The expert’s individual preference judgments 82
Table 4.2: Comprehensive group assessment matrix 82
Table 4.3: The overall computations including the ranking order for each of the alternatives 83
Table 4.4: Comparison of ranking results for the case 1 84
Table 4.5: The Linguistic evaluations on failure modes by the DMs 85
Table 4.6: The comprehensive group assessment matrix 85
Table 4.7: Normalized comprehensive group assessment matrix 86
Table 4.8: The overall computations including the ranking order for each of the alternatives in example 2 87
Table 4.9: The overall computations including the ranking order for each of the alternatives compared with existing methods 88
Table 4.10: Comprehensive group assessment matrix for example 3 89
Table 4.11: The overall computations including the ranking order for each of the alternatives for example 3 90
Table 4.12: Comparison of ranking results for the case example 3 90
Table 4.13: The machine’s components of the operational parts 92
Table 4.14: Failure modes of each of the components 93
Table 4.15: The comprehensive group assessment matrix for the Crawler Crane Machine 94
Table 4.16: The relative closeness coefficients for the failure modes ranking for the Crawler Crane Machine 96
Table 4.17: The different ranking order for the alternatives under the different attitudinal scenario

Table 4.18: Failure criteria weight

Table 4.19: The relative closeness coefficients for the Forklift systems

Table 4.20: The different ranking order for the alternatives under the different attitudinal scenario

Table 4.21: Aggregation of all the Experts assessment

Table 4.22: Comprehensive evaluations for four alternatives

Table 4.23: The ranking of all design alternatives

Table 4.24: The ranking of all design alternatives

Table 4.25: The comprehensive evaluations of the four alternatives

Table 4.26: The ranking of all the four design alternatives

Table 4.27: TIFN decision matrix by E1

Table 4.28: TIFN decision matrix by E2

Table 4.29: TIFN decision matrix by E3

Table 4.30: TIFN decision matrix by E4

Table 4.31: Comprehensive aggregated expert’s decision matrix

Table 4.32: Comprehensive evaluations for four alternatives

Table 4.33: The score function and accuracy function with the different parameter λ_c

Table 4.34: The ranking of all design alternatives

Table 4.35: The DMs preference information with the alternating the parameter

Table 4.36: The ranking of all design alternatives

Table 4.37: Aggregation of all the Experts assessment

Table 4.38: Comprehensive evaluation of the four design alternatives

Table 4.39: The ranking of the four design concept alternatives
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A Generative Model of Design</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Product development evolution stages</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The difference between numerical and non-numerical methods</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Triangular intuitionistic fuzzy number</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Framework for the Research study</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Risk-aversion (dark blue) contrasted to risk-neutrality (light blue) and risk loving (red)</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>The schematic flow diagram of the proposed model</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>The schematic framework of the GTIFOWGA operator considered for MAGDM</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>The schematic diagram of the Crawler Crane machine</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>The schematic diagram of the forklift machine</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>The considered operational parts of the crawler cranes machine</td>
<td>92</td>
</tr>
<tr>
<td>4.2</td>
<td>Concept designs for a Forklift Truck</td>
<td>118</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>Attribute weight</td>
</tr>
<tr>
<td>μ_A</td>
<td>Membership function of the fuzzy set A</td>
</tr>
<tr>
<td>ν_A</td>
<td>Non-membership function of the fuzzy set A</td>
</tr>
<tr>
<td>$S(\hat{a})$</td>
<td>Score function</td>
</tr>
<tr>
<td>$H(\hat{a})$</td>
<td>Accuracy function</td>
</tr>
<tr>
<td>$S_e(A)$</td>
<td>Exponential score function</td>
</tr>
<tr>
<td>$ER(A)$</td>
<td>Exponential related function</td>
</tr>
<tr>
<td>λ</td>
<td>Attitudinal parameter</td>
</tr>
<tr>
<td>λ_c</td>
<td>Flexibility and adjustability feature</td>
</tr>
<tr>
<td>γ</td>
<td>Experts (DMs) associated weights vector</td>
</tr>
<tr>
<td>$R_{m\times n}(a_{ij})$</td>
<td>Intuitionistic fuzzy decision matrix</td>
</tr>
<tr>
<td>$ERM_{m\times n}$</td>
<td>Exponential related matrix</td>
</tr>
<tr>
<td>Ω^n</td>
<td>The set of real numbers</td>
</tr>
<tr>
<td>\otimes</td>
<td>Circled time operator (multiplication sign)</td>
</tr>
<tr>
<td>$\forall i$</td>
<td>For all</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>CC</td>
<td>Closeness Coefficient</td>
</tr>
<tr>
<td>DEMATEL</td>
<td>Decision-making Trial and Evaluation Laboratory</td>
</tr>
<tr>
<td>DMs</td>
<td>Decision Makers</td>
</tr>
<tr>
<td>ER</td>
<td>Exponential Related function</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure mode and effect analysis</td>
</tr>
<tr>
<td>GTIFOWGA</td>
<td>Generalized Triangular Intuitionistic Fuzzy Ordered Weighted Geometric Averaging operator</td>
</tr>
<tr>
<td>GTIFGA</td>
<td>Generalized Triangular Intuitionistic Fuzzy Geometric Averaging operator</td>
</tr>
<tr>
<td>IFE</td>
<td>Intuitionistic Fuzzy Entropy</td>
</tr>
<tr>
<td>IFS</td>
<td>Intuitionistic Fuzzy Set</td>
</tr>
<tr>
<td>IFN</td>
<td>Intuitionistic Fuzzy Number</td>
</tr>
<tr>
<td>IFWG</td>
<td>Intuitionistic Fuzzy Weighted Geometric operator</td>
</tr>
<tr>
<td>IF-TOPSIS<sub>ER</sub></td>
<td>Intuitionistic Fuzzy TOPSIS model based on Exponential Related function</td>
</tr>
<tr>
<td>IFPIS</td>
<td>Intuitionistic Fuzzy Positive Ideal Solutions</td>
</tr>
<tr>
<td>IFNIS</td>
<td>Intuitionistic Fuzzy Negative Ideal Solutions</td>
</tr>
<tr>
<td>MADM</td>
<td>Multi-Attribute Decision Making</td>
</tr>
<tr>
<td>MAGDM</td>
<td>Multi-Attribute Group Decision Making</td>
</tr>
<tr>
<td>NIFIGOWA</td>
<td>Normal Intuitionistic Fuzzy Induced Generalized Ordered Weighted Averaging operator</td>
</tr>
<tr>
<td>TOPSIS</td>
<td>Technique for Order Preference by Similarity to the Ideal Solution</td>
</tr>
<tr>
<td>TIFN</td>
<td>Triangular Intuitionistic Fuzzy Number</td>
</tr>
<tr>
<td>TIFWGA</td>
<td>Triangular Intuitionistic Fuzzy Weighted Geometric Averaging operator</td>
</tr>
<tr>
<td>TIFOWGA</td>
<td>Triangular Intuitionistic Fuzzy ordered weighted geometric averaging operator</td>
</tr>
<tr>
<td>TIFHWGA</td>
<td>Triangular Intuitionistic Fuzzy Hybrid Weighted Geometric Averaging operator</td>
</tr>
<tr>
<td>RPN</td>
<td>Risk Priority Number</td>
</tr>
<tr>
<td>RCF</td>
<td>Root Cause of Failure</td>
</tr>
<tr>
<td>VIKOR</td>
<td>VlseKriterijumska Optimizacija I Kompromisno Resenje</td>
</tr>
</tbody>
</table>
DEFINITION OF SOME KEY WORDS

Intuitionistic Fuzzy Sets: are sets whose elements have degrees of membership and non-membership. Intuitionistic fuzzy sets have been introduced by Krassimir Atanassov in 1986 as an extension of Lotfi Zadeh’s notion of fuzzy set, which itself extends the classical notion of a set. See details of the fuzzy set theory in APPENDIX 5.

Reliability: can be described as the probability that an item will continue to perform its intended function without failure for a specified period of time under stated conditions.

Product Reliability or Design for Reliability: describes the entire set of tools that support product and process design (typically from early in the concept stage all the way through to product obsolescence) to ensure that customer expectations for reliability are fully met throughout the life of the product with low overall life-cycle costs.

Multiple attribute decision making (MADM): MADM which is a sub-discipline of operation research, is concerns with problems of prioritizing, screening, ranking or selecting alternative(s) from among a finite set of candidates with multiple attributes, usually conflicting, by considering them simultaneously to select the best candidate (Braglia1 et al., 2003). Many of our everyday decision-making problems involve the consideration of multiple criteria or attributes. See details of the MADM in APPENDIX

Group decision-making (GDM): GDM is a situation where individuals are tasked to collectively make a choice from a list of alternatives with respect to some attributes. The GDM, for the purpose of this thesis, will be regarded as Multi-Attribute Group Decision Making (MAGDM).

TOPSIS: TOPSIS is a multi-attribute technique which is based on obtaining the alternative that approaches an ideal alternative, by considering the positive ideal alternative and the negative ideal alternative.

Reliability and validity in Research: Reliability and validity in research are two concepts that are important for defining and measuring bias and distortion, where Reliability refers to the extent to which research assessments are consistent, Validity refers to the accuracy of the research assessment.

Attitudinal Parameter: Attitudinal Parameter is the mathematic symbol used in this research study, to describe the emotional disposition of design stakeholders (decision-makers) when making decisions.

Product design: Product design is the translation of intellectual wisdom, requirements of the entrepreneurs, or needs of the consumers, into a specific product.