

The Influence of Hot Forming Process on the Microstructure and Corrosion Performance of Recycled Magnesium Alloys

CORSYM 2017 Presentation Presenter : Juliawati Binti Alias University : Universiti Malaysia Pahang Date: 3rd May 2017

OUTLINE

- 1. Introduction
- 2. Experimental
- 3. Results
 - Microstructure evolution
 - Corrosion behaviour
- 4. Conclusions

PRESENTATION BACKGROUND

Introduction

- Usage & Recyclability for Magnesium Alloy Challenges
- Deformation mechanism of magnesium and its alloys
- Casting and Hot Forming-Quenching (HFQ) process
- Corrosion of magnesium alloy

Experimental

- Specimen preparation
- Microstructure characterization
- Corrosion morphology observation and measurement

Result

- Microstructure evolution
- Corrosion behaviour

USAGE & RECYCLABILITY FOR MAGNESIUM ALLOYS

- Energy saving and cost effective magnesium sheet vehicle lightweighting
- Limitation in deformation due to very few slip system.
- Anisotropy properties (crystallography orientation)
- Unsatisfactory corrosion performance in most environment.

DEFORMATION MECHANISM OF MAGNESIUM

CASTING & HOT FORMING QUENCHING (HFQ)

HFQ SCHEMATIC DIAGRAM

CORROSION OF MAGNESIUM

Magnesium alloy

Standard electrode potential = -2.37 V, in aqueous solution = -1.67 V vs SCE

'Rapid corroding metal'

Chemical reaction :

 \checkmark

Mg \longrightarrow Mg²⁺ + 2e (Anodic reaction)

 $2H_2O + 2e \longrightarrow 2OH^2 + H_2$ (Cathodic reaction)

 $Mg^{2+} + 2OH^{-} \longrightarrow Mg(OH)_2$ (product formation)

Hydrogen evolution and corrosion rate increases, with increasing potential

'Negative difference effect (NDE)'

EXPERIMENTAL WORK

MICROSTRUCTURE EVOLUTION

THROUGH THICKNESS MICROSTRUCTURE

CORROSION MORPHOLOGY

 ✓ Propagation following grinding direction
✓ Corrosion features, resembling the grain structure attack

CORROSION ATTACK IN 5 HRS

THROUGH-THICKNESS CHARACTERIZATION

HYDROGEN EVOLUTION EXPERIMENT

- Experiment to quantify degradation rate (corrosion rate) of magnesium alloy
- One mole of H₂ evolved = one mole of Mg dissolved

ELECTROCHEMICAL MEASUREMENT

CORROSION MECHANISM (SCHEMATIC DIAGRAM)

CONCLUSION

Microstructure evolution after HFQ

- HFQ TRC AZ31 = Recrystallised bimodal grains with coarse dendrite morphology, discontinuous distribution of β -Mg₁₇Al₁₂ phase.
- Corrosion behaviour of as-cast and HFQ AZ31 Magnesium alloys
 - Corrosion feature = Filiform-like corrosion depending on the grain structure (Shallow pit and filament track)
 - As-cast TRC AZ31 alloy = interdendritic attack, HFQ TRC alloy = filament propagation resembling interdendritic and grain boundary attack
 - 2nd Corrosion propagation = Thick corrosion product (pit growth and propagation)
 - Discontinuous β-Mg₁₇Al₁₂ phase = Cathodic reaction = increase hydrogen evolution rate
 - HFQ process = Ruling the corrosion propagation appearance according to the grains structure, influenced by second phase distribution