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ABSTRAK 

Perkembangan teknologi di dalam bidang visi komputer menyebabkan permintaan yang 

tinggi terhadap sistem pengawasan automatik bagi menggantikan pengawasan visual 

secara tradisional. Sistem pengawasan automatik merupakan salah satu sistem yang 

digunakan untuk memantau tingkah laku dan aktiviti orang awam sama ada normal 

ataupun tidak. Pengesanan tingkah laku yang tidak normal di khalayak ramai secara 

automatik adalah satu topik penyelidikan yang perlu diberikan perhatian, terutamanya 

di tempat-tempat awam. Sistem ini sangat penting untuk mengesan aktiviti yang tidak 

normal secepat mungkin dan mengambil tindakan yang sewajarnya bagi memastikan 

keselamatan orang awam dan seterusnya dapat mengurangkan kerugian yang dialami. 

Tujuan utama penyelidikan ini dijalankan adalah untuk mencari daya interaksi yang 

sangat penting dalam mengesan ketidaknormalan di khalayak ramai dengan 

menggunakan kaedah ‘Self-Adaptive Social Force Model’. Untuk menjayakan kerja 

penyelidikan ini, kaedah aliran optik ‘Horn-Schunck’ diguna untuk mendapatkan vektor 

bagi aliran optik tersebut bagi setiap piksel di dalam imej. Untuk mengelakkan masalah 

dalam menjejaki setiap individu, alir zarah secara lintang dilakukan untuk menjejaki 

kesinambungan aliran orang ramai dan trajektori itu. Zarah-zarah ini kemudiannya 

digerakkan ke lokasi baru berpandukan vektor aliran optik bagi setiap zarah tersebut di 

kedudukan terkini. Dengan menggunakan vektor aliran yang diperolehi pada peringkat 

ini, daya interaksi dianggarkan berdasarkan teori ‘Social Force Model (SFM)’. 

Eksperimen ini dijalankan dengan hipotesis bahawa daya interaksi yang bermagnitud 

tinggi menggambarkan tingkah laku yang tidak normal di khalayak ramai. Walau 

bagaimanapun, terdapat satu masalah dengan kaedah ‘SFM’ yang dijalankan oleh 

pengkaji terdahulu, iaitu masalah persamaaan antara halaju sebenar dan halaju yang 

dikehendaki yang disebabkan oleh pengesanan yang tidak tepat. Anggaran daya 

interaksi yang berkualiti adalah sangat penting di dalam kes ini dan masih belum 

diterokai lagi. ‘Self-Adaptive Social Force Model’ dibangunkan untuk mencari daya 

interaksi yang terbaik kerana ia adalah penting untuk mengesan ketidaknormalan 

dengan lebih tepat menggambarkan tingkah laku orang ramai. Daripada eksperimen 

yang dijalankan, lokasi berlakunya ketidaknormalan di dalam imej boleh dikenalpasti 

berdasarkan magnitud daya interaksi yang tinggi bagi zarah tersebut. Algoritma yang 

diusulkan diuji dengan tiga set data yang mencabar dan mengandungi video yang tidak 

normal termasuk video jenayah yang berlaku di Malaysia. Algoritma ini juga diuji 

dengan dua persekitaran yang berbeza, iaitu dalaman dan luaran. Prestasi algoritma ini 

adalah tertinggi berbanding dengan kaedah lain, iaitu dengan peratus 97 dan 100. Selain 

itu, set data penanda aras juga digunakan untuk menilai prestasi algoritma yang diusul. 

Untuk set data yang pertama iaitu UMN, nilai di bawah graf, ‘AUC’ dikira dan 

keputusan menunjukkan nilai untuk ‘Self-Adaptive Social Force Model’ agak setanding 

dengan kerja penyelidikan yang sebelumnya dengan skor 0.9916.Untuk set data 

PETS2009, skor ‘AUC’ adalah 0.9026 dan 0.9940 untuk set data jenayah Malaysia. 

Kesimpulannya, daya interaksi yang tinggi menggambarkan ketidaknormalan di suatu 

tempat kejadian dan algoritma ‘Self-Adaptive Social Force Model’ adalah sesuai untuk 

diimplementasikan di tempat yang mempunyai kebarangkalian yang tinggi untuk 

berlakunya jenayah agresif.                          
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ABSTRACT 

With the growth of technology in computer vision, there is a great demand for an 

automated surveillance system in replaced to the traditional visual surveillance. The 

automated surveillance system is a system that monitors the behavior and activities of 

the crowd whether it is normal or not. The abnormal detection in a crowd is a 

noteworthy research topic in automated surveillance system in public places. It is 

emergent to detect the abnormal events as quickly as possible and take appropriate 

actions to minimize the loss and ensure the public safety. In this work, we aim to find 

the significant interaction forces and detect the abnormality in the crowd by using Self-

Adaptive Social Force Model. For this point, Horn-Schunck optical flow is used to get 

the flow vector for each pixel in the image frames. Instead of tracking individuals, 

particle advection is performed to capture continuity of crowd flow and its trajectories. 

These particles are then advected to a new location according to its underlying optical 

flow vector at the current location. Using the attained flow vectors from this stage, 

interaction force estimation is done based on SFM theory. This experiment is done with 

the hypothesis that high magnitude of interaction force portrayed the abnormal behavior 

in a crowd. However, there is a problem with the earlier SFM, which is the similarity of 

actual velocity and desired velocity caused the abnormal detection inaccurate. The 

estimation of the good quality of interaction forces is critical in this case and has not 

been explored yet. So, Self-Adaptive SFM is developed in order to estimate a good 

quality of interaction forces since it is crucial to achieve better abnormal detection, 

which represents the behavior of the crowd. From the experiment, the highest and least 

magnitude of interaction force can be localized in the image frame. The proposed 

algorithm is validated with three challenging datasets contain abnormal videos, 

including the videos of crime in Malaysia. For both indoor and outdoor scene, the 

proposed algorithm outperforms the other methods with accuracy 97% and 100%. For 

the benchmarking datasets, the AUC (Area under Curve) score of the proposed 

algorithm is quite comparable with previous works with the score of 0.9916. The AUC 

score provided by the proposed algorithm on PETS2009 datasets is about 0.9026 and 

0.9940 for Malaysia Crime dataset. Based on these results, it can conclude that the high 

magnitudes of interaction forces portray the abnormality in the scene and Self-Adaptive 

SFM is well-performed on crime scene with the rapid motion characteristic.  
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