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Abstract. Solvent debinding is one of a crucial stage in Metal Injection Moulding (MIM) 

process. This process begins with the removal of the soluble binder components by using 

solvents such as heptane or hexane. In solvent debinding process, unsuccessful to achieve 

maximum binder removal will cause a defect to the compact such as crack and swelling. So to 

have an optimum solvent debinding parameters are very important to improve the quality of 

the compact. Optimisation of solvent debinding process parameters for MIM of Stainless Steel 

316L has been testified in this study. Gas atomised stainless steel 316L powder was mixed 

with a multicomponent binder in a twin blade mixer at a temperature of 150 °C for 90 minutes. 

The feedstock was successfully injected at the temperature of 150 °C. The green compacts 

were kept in n-heptane for eight different debinding times ranging between 30 to 240 minutes 

at temperatures of 40, 50, 60 and 70 °C to remove the primary binder components. From the 

result, the optimum temperature and time for solvent debinding were recorded at 60 °C and 

240 minutes. Solvent debinding temperature and time give a significant effect on the rate of 

paraffin wax removal. 

1. Introduction 

The fabrication of biocompatible metals as implant devices is restricted because of the rather high 

costs of raw materials, complex design geometry, and limitations of the current fabrication process. 

Metal injection moulding (MIM) could serve as an alternative means to overcome these problems. 

One of the reasons is that MIM process could reduce production costs due to its net-shape fabrication 

advantages, befitting for manufacturing of small parts, and combine high part complexity with large 

production quantities [1-4]. This technique was procured and adapted from the plastic injection 

moulding process, of which small metal particles replaced a significant volume fraction of plastic [5-

8]. 

In MIM technology, there are four processing stages which are, mixing of powders and binders to 

produce feedstock, injection moulding, debinding, and sintering.The third step was the debinding 

process where all the binders will be extracted from the compacts. This process is crucial as it can 

influence MIM processes and the ultimate quality of the products. Long debinding times combined 

with relatively high tendency of compact distortion are the main challenge for MIM process [9-12]. To 

increase the rate of binder removal while preventing the compacts from defects, debinding is typically 

conducted in multiple stages, namely solvent and thermal debinding. For solvent debinding process, it 

http://creativecommons.org/licenses/by/3.0
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has been studied first to perforate the binder structure before proceeded to thermal debinding stage 

[13-15]. The solvent debinding process was popularised to the metal injection moulding industries 

during the 1980s. In this process, it began with the removal of the soluble binder components by using 

solvents such as heptane or hexane [16, 17]. 

In this study, an experiment was conducted to optimise the solvent debinding parameters of 316L 

stainless steel. 62 vol.% powder loading of 316L stainless steel were mixed with the multi-component 

binders by using twin blade mixer. The green compacts were kept in vaporised n-heptane solvent at 

various time and temperatures. The microstructure of green and debound compacts were observed 

using SEM. It is expected that higher solvent debinding temperature and time will increase the 

removal rate of the primary binders, particularly paraffin wax. 

 

2. Experimental Method 

 

2.1 Material 

The gas atomized 316L Stainless Steel (SS) alloy powder provided by Osprey Co, the UK with the 

mean particle size of 11.4 μm was utilised in this study. Chemical composition and particle 

morphology of the powder are shown in Table 1 and figure 1 respectively.  

 

Table 1. Chemical composition of gas atomized 316L SS. 

Element Wt.% 

Cr 16.7  

Ni 10.3  

Mo 2.2  

Mn 0.99  

Si 0.69  

P 0.02  

C 0.01  

S 0.05  

 

 
Figure 1. Particle morphology of 316L SS powder. 

 

2.2 Feedstock Preparation 

A formulation 62 vol % powder loading of stainless steel powders was prepared. 62 vol % powder 

loading was obtained from the preliminary investigations performed to estimate the optimum powder 

loading. A multicomponent binder system used to formulate the feedstock consists of Paraffin Wax 

(PW), Polypropylene (PP), and Stearic Acid (SA). Table 2 shows the composition of the 
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multicomponent binder used in this work. Twin blade type mixer at a rotational speed of 70 rpm at 

150 °C for 90 min has been utilised to mix the feedstock.  

 

Table 2. Binder system for SS 316L. 

Binder Components Composition (%) 

Paraffin wax (PW) 

Polypropylene (PP) 

Stearic acid (SA) 

70 

25 

5 

 

2.3 Thermal analysis of the feedstock 

To identify the melting temperature for each binder component, Differential Scanning Calorimetry 

(DSC) has been used. The suitable temperature for mixing, injection moulding and solvent debinding 

also can be determined from this analysis. DSC analysis has been performed on an NETZSCH DSC 

214 Polyma DSC21400A-01717-L equipment. The heating rate was set at 10°C/min and conducted 

under nitrogen atmosphere.   

 

2.4 Injection Moulding of Feedstock 

Injection process for feedstock was performed on a Nissei NS20-2A injection moulding machine to 

fabricate tensile shape compacts. The green compacts were produced by injection moulding at 150 °C. 

There is no defects were observed on the green compact after it have been checked physically. 

 

2.5 Solvent Debinding 

For solvent debinding process, wicking debinding technique was applied by using fine Al2O3 powders 

[13].  At this stage, the primary binder which is paraffin wax will be extracted from the green 

compacts. Compacts were kept in a solvent bath of the vaporised heptane at 40, 50, 60 and 70 °C for 

30 to 240 minutes. The schematic diagram for solvent debinding process is shown in figure 2. 

 

 
Figure 2. Schematic diagram for solvent debinding process. 

 

2.6 SEM Analysis 

The micrograph for green and solvent debound compacts was analysed using Scanning Electron 

Microscopy (SEM). This analysis also used to verify the complete leaching and homogenous 

distribution of primary binder from the solvent debound compacts correspondingly. 
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3. Results and Discussion 

The green compacts were well moulded via Nissei NS20-2A injection moulding machine. Figure 3 

shows a defect-free green compacts. The mould and injection temperatures were 40°C and 150°C 

respectively. 

 

 
Figure 3. Defect-free 316L SS green compacts. 

 

3.1 Solvent Debinding 

To extract the soluble binders, solvent debinding was carried out by keeping the green compacts in the 

solvent bath of vaporised n-heptane solution at different temperatures and times. This technique has 

been chosed because paraffin wax can be dissolved in vaporised n-heptane. During solvent debinding 

process, open pore channels will be produced on the debound compacts, which allow the diffusion 

process of the remaining binder in the second debinding process.  The schematic diagram for the 

solvent debinding process is shown in figure 4. This schematic diagram suggests how the binders was 

extracted from the green compacts due to the capillary forces that happened when these compacts start 

to dissolved by the vaporised solvent [18].  

The indicator to determine the suitable temperature during solvent debinding which is the melting 

point of the binders was verified by using DSC analysis. Figure 5 depicts the DSC analysis result for 

the feedstock .From Figure 5, there was three peak melting temperature of the multicomponent binders 

have been observed which are 58 and 168 °C. Each peak shows an endothermic reaction. It is 

envisaged that peaks at lower temperature (58°C) correspond to the the melting point of Paraffin Wax 

and Stearic Acid whereas the peak at a higher temperature correspond to the melting point of 

Polypropylene. The solvent debinding temperature directly affected the diffusivity and solubility of 

the binders in the solvent. Thus, the selection of solvent debinding temperature should be guided by 

the melting temperatures of the binders. The melting temperature of Paraffin wax and Stearic acid 

were used as a reference at this stage.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4. The schematic of solvent debinding stage. 
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Figure 5. Differential Scanning Calorimetry analysis. 

 

In this work, wicking debinding technique was applied by using Al2O3 powder. From the observation, 

at the end of the solvent debinding process, removed paraffin wax changed the Al2O3 powder from 

white to yellowish colour as shown in figure 6. It was suggested by [19] that this observation is due to 

the capillary suction that causes the soluble binder move toward the wicking powder as it is in contact 

with the powder. 

 

                                
 

 

Figure 6. Solvent debinding a) before solvent debind, b) After solvent debind. 

 

To identify the optimum solvent extracted condition, four (4) debinding temperatures were chosen 

which were 40, 50, 60 and 70°C. The debinding time was varied between 30 to 240 minutes to observe 

the optimum extraction time. Figure 7 presents the influence of solvent debinding temperature and 

time on the rate of Paraffin Wax removal. Mass loss of the binder (Mloss), which is the paraffin wax, 

was calculated based on the following equation:  

 

                                                                     Mloss =
𝑀𝑖−𝑀𝑓

𝑀𝑖
 x 100                                                            (1) 

 

Where Mi is the mass of green compact and Mf is the mass of debound compact. It can be determined 

that the percent of paraffin wax loss from the green compacts is increased with the increases in 
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debinding temperature, particularly in the first 30 minutes of the process. At this period, the rate of 

binder loss is extremely fast as the vaporised heptane were directly in contact with the binder on the 

surface of the compacts. Then, before the vaporised n-heptane dissolved the binder, it firstly diffused 

deeply into the green compacts. Thus, the rate of binders’ loss significantly slowed till it achieved a 

plateau region after 210 to 240 minutes. This phenomenon occurred when a dynamic equilibrium has 

been reached between the solvent and binders as the percentage of paraffin wax removal maintained 

unchanged. This phenomenon also has been explained by the previous researcher [20].  

 

 
Figure 7. Effect of solvent debinding temperature and time on the rate of paraffin wax removal. 

 

3.2 Defects 

From Figure 7, 74 % and 76 % wax was removed at temperature 60 °C and 70 °C after 240 minutes. 

Both temperatures can be considered as the optimum temperature for solvent debinding process as 

they recorded the highest percent of paraffin wax loss from the green compacts. The amount of 

Paraffin Wax loss for both temperature also was acceptable because too much binder loss will cause 

the compact to become fragile and difficult to handle. However, for the first 30 minutes, 53 % of 

Paraffin Wax has been removed at temperature 70 °C, and it is higher compared to temperature 60 °C 

which recorded 39 % of Paraffin Was loss. The maximum amount of binder loss for 70 °C at the early 

stage of the debinding process  inappropriate for the green compacts as some of the compacts were 

found to be broken as shown in figure 8.  

 

 
Figure 8. Damaged compacts. 
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 Too high extracting temperature was not appropriate for solvent debinding process as it will affect 

the quality and can cause defects on the debound compacts. This result also align with previous work 

by [21] and [18] where they found that, after the debinding temperature had been increased higher 

than 60 °C, swelling and crack were generated on the surface of the compacts. They also explained 

that more binders are diffused and melted speedily out from the compacts when the debinding 

temperature was higher than the melting temperature of a binder hence leading to the initiation of 

defects on the debound compacts. The defects that experienced by the compacts also might be because 

of the thermal expansion of the binders because of the reaction at higher temperature among the 

binders and solvent. In this work, most of the compacts were cracked at 70 °C. Therefore, 60°C has 

been set as the optimum solvent debinding temperature where high percent rate of paraffin wax 

removal was recorded. After 240 minutes, 74 % of paraffin wax loss was achieved, which 

demonstrated in the creation of defect-free compacts. 

 

3.3 SEM Analysis 

SEM micrograph in figure 9 shows a cross-sectional view of the green and debound compact. The 

SEM micrograph for the debound compact was taken from the green compact that was debound in the 

optimum condition which is at 60°C for 240 minutes. It is observed that binders were uniformly 

distributed within the 316L stainless steel powders to prevent it from oxidation and maintain the shape 

of the compacts as shown in Figure 9(a). Uniform binders’ distribution also can be observed in the 

green compact. Figure 9(b) presents the open pores channels that were produced after the removal of 

paraffin wax. Some were inter-particle pores, and several were in the interior of the binder, indicating 

that paraffin wax, polypropylene and stearic acid were interacted and mixed to a degree and that a few 

soluble binders were removed. This result has proved the effectiveness and success of n-heptane as a 

solvent in extracting the paraffin wax from the green compacts. After 240 minutes of solvent 

debinding process, a significant amount of paraffin wax has been extracted, leaving the remaining 

polypropylene either in the contact areas or as whiskers holding particles together. From the SEM 

observation, the open pore channels also have been developed at the centre of the compact. This shows 

that the penetration of vaporised was reached at the core of the compact. With these open pore 

channels, the remaining binders especially polypropylene can be removed easily without affecting the 

compacts in the thermal debinding stage. If there are no open pores were produced in this stage, the 

backbone binders especially polymer cannot be removed easily in the thermal debinding stage. The 

binders will keep pushing the compact surface outward and cause the surface of the compacts become 

rough and also have a potential to produce a crack on the compact [22]. Therefore, this process can 

help in shortening the thermal debinding process and maintained the integrity of the compact [17].  

 

 

 

 
 

Binders 

(a) 

316L SS powder  
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Figure 9. SEM micrograph (a) green compact (b) solvent debound compact. 

4. Conclusions 

This work concludes the following: 

1)    To attain the optimum parameters for solvent debinding process, the green compacts were solvent 

debound at different temperature and times. From the experiment, temperature and time proved to 

have a significant effect on the mass loss of paraffin wax as the removal rate increased with the 

increase of temperature and times particularly in the first 30 minutes.  

2)    The optimum solvent debinding parameters have been verified. Solvent debinding at 60°C for 

240 minutes were considered as the optimum parameters for solvent debinding process because of 

the adequate quantity of paraffin wax loss. The total percentage of paraffin wax removal for this 

condition was recorded at 74 %. 

3)    Solvent debinding temperature at 70°C showed a rapid removal of paraffin wax and generated a 

defect which is crack on the compact. This might be due to thermal expansion of the binders as a 

result of the reaction at higher temperature among the binders and solvent. 

4)    From SEM analysis for green compact, the binders were very well mixed with the 316L stainless 

steel powder. For a debound compact, a lot of open pore channels were produced where they can 

help on removing the remaining binders in the thermal debinding stage easily. 
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