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Abstract. In this paper, a numerical study on thermal postbuckling behavior of orthotropic 
circular plates is presented. The numerical solutions developed in this study are based on von 
Kàrmàn nonlinear strain - displacement relations. The governing nonlinear differential 
equations are transformed into linear differential equations. Both simply supported and 
clamped boundary conditions are considered. The radial edge load of circular plates is 
evaluated by assuming suitable admissible function for the lateral displacement. The 
postbuckling loads of orthotropic circular plates are evaluated using the determined linear 
buckling load and radial edge load. The numerical results obtained from the present 
investigation are compared with the known results reported in the literature and found in good 
agreement. The error percentage of the results has been predicted and a maximum error is 
found out to be 1.37 % for simply supported and 3.08 % for clamped boundary conditions 
respectively.  

1.  Introduction 
Orthotropic circular plates are commonly used to idealize most of the aerospace, ocean/marine, 

mechanical and civil structures. Investigations on the thermo mechanical behaviour of the same are 
gaining important attentions due to their applications and method of evaluation. Vibration behaviour 
and buckling analysis of the circular plates has been addressed by many researchers using work energy 
method [1], Rayleigh- Ritz method [2], versatile finite element method [3] and more. The structures 
are capable of taking additional compressive loads with high deformations.  But, if these deformations 
are tolerable and do not affect the functional requirements, the additional load carrying capacity of 
these structure, called as the postbuckling load, can be advantageously used in the design process.  The 
amount of deflection can be determined by solving the differential equations of an appropriate plate 
theory. The stresses in the plate can be calculated from these deflections. Once the stresses are known, 
failure theories can be applied to determine the capability of plate under a given load [4]. For first time 
Woinowski [5] introduced numeric results by using Bessel function for the problem of elastic stability 
of orthotropic circular plates. The thermo elastic buckling behaviour of orthotropic circular plates with 
composite material properties was also studied [6]. The critical buckling temperatures were evaluated 
by solving differential equations based on Love Kirchhoff hypothesis and Sander’s nonlinear strain 
displacement relations. The axisymmetric vibration problem of thermally loaded polar orthotropic 
circular plates with immovable edges was presented using von Kàrmàn plate theory and Hamilton 
principle [7]. The postbuckling behaviour of moderately thick circular plates with cylindrically 
orthotropic material properties has been discussed in [8] by using finite element formulation approach. 
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In all mentioned studies, these methods need to undergo a complex computational procedure in order 
to obtain the approximate solutions because of the nonlinear nature of the problem.  

The present study makes an attempt to acquire an exact solution for the thermal postbuckling 
behavior of orthotropic circular plates by proposing a proper approximation. In the succeeding section, 
the radial edge load and the thermal postbuckling load are calculated by supposing appropriate 
function for the lateral displacement ‘w’. The foremost benefit of present derivation is it needs only 
the values of linear buckling load and uniform radial edge load developed due to the lateral 
displacement ‘w’. Both simply supported and clamped boundary conditions of the circular plate are 
considered here. The value of Poisson’s ratio ν is taken as 0.3. Besides, the results obtained from the 
present research are compared with the previously published results evaluated using finite element 
analysis. 

2.  Mathematical Formulation 
A circular plate of radius ‘a’ and of uniform thickness ‘t’ under a uniform compressive radial load 
‘Nr’ per unit length at the boundary is considered. The plate exhibits an orthotropy in radial and 
circumferential directions.  

The strain – displacement relations of the circular plate for large lateral axisymmetric 
displacements based on von Kàrmàn nonlinearities are expressed as 

21
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where r, θ, , θε εr  , , θχ χr  are the radial and circumferential coordinates, strains and the curvatures 
respectively. 

By considering the above mentioned strain – displacement relations, strain energy U of the plate 
with orthotropic material properties [9] can be represented as 
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After substituting the values of  1 2 1 2 12 12, , , , , , and θε εrC C D D C D  in (5), the improved equation can be 
written as  
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where β = θ

r

E
E be the orthotropic parameter and θ ≠ rE E . 

The numerical expression for work done W by the external load Nr per unit length at the boundary 

of the element [9] is 
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By applying the numerical expression of rN , equation (7) can be marked as 
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The total potential energy of the plate can be simply expressed as  
Π = U − W         (9) 

Following the same procedure described in [10], numerical values of linear buckling load can be 
determined by solving equation (9) for both boundary conditions. The tension parameters can be 
measured based on the nonlinear strain – displacement relations suggested in equations (1), (2), (3) 
and (4). Due to the improvement of the edgewise buckled surface of the circular plate, the equations 
(1) and (2) are used to express Nr. 
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As reported by Berger’s approximation [11], the second invariant of the strains are neglected or 

εr << θε , the expression for Nr can be stated as 
2
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The exact numerical results are obtained for simply supported immovable edges, u = 0 but 0≠dw
dr

 

and for clamped edge, u = 0 and 0=
dw
dr

. The uniform radial edge load developed due to large 

deflections in circular plates gained in non – dimensional form as 

( )
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By considering appropriate admissible function for the lateral displacement ‘w’, the uniform radial 
edge tensile load 

Tr
N developed in the circular plate can be attained from equation (12) which satisfies 

the geometric boundary conditions. The admissible function 
2

0 1
  = −     

n
rF b
a

for the lateral 

displacement ‘w’ is considered. 
The supposed algebraic function satisfies the given boundary conditions. 
(i) Simply supported:  At r = 0, w ′ = 0;   At r = a, w = 0 
(ii)  Clamped:   At r = 0, w ′ = 0;  At r = a, w = 0, w ′ = 0. 

The values of n = 1 and n = 2 represent the simply supported and clamped boundary conditions, for 
the function F respectively.  

If the plate is heated to a temperature ∆T from the stress free plate, an equivalent uniform radial 
edge compressive load Nr is developed in the plate.  When the temperature becomes the critical 
temperature (∆Tr), the plate just buckles because of the critical uniform radial edge compressive load 

crrN  developed.  If the temperature ∆T is further raised, lateral displacements of the plate take place 

and an additional uniform radial edge tensile load 
Tr

N  is developed because of the large lateral 
displacements.  This

Tr
N , for a particular central (maximum) lateral displacement, allows the plate to 

take more thermal load beyond the critical load or in other words the plate can withstand more 
equivalent uniform radial edge compressive load Nr beyond

crrN .Therefore, the total equivalent 

compressive uniform radial edge load carrying capacity of the circular plate ( )NLrN , namely post 
buckling load, will be mathematically represented as 
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where each term in equation (12) is non – dimensionalised as 
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in which D is the plate flexural rigidity 
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The ratio of the radial edge tensile load to the linear buckling load parameters, which represent the 
postbuckling load (γ), can be calculated from equation (14).  
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 
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r

r

N bc
N t

        (16)    

When the values of TrN  and crrN are known, the postbuckling performance of the orthotropic 
circular plates can be evaluated. As the values of b0/t varies, the corresponding postbuckling loads (γ) 
are evaluated for various values of orthotropic parameter β ranging from 1.2 to 2.0  

 

3.  Numerical results and discussions 
The thermal postbuckling behavior of circular plates with orthotropic material properties are presented 
by determining the linear buckling and radial edge loads  for numerous values of β. The appropriate 
admissible function for the lateral displacement ‘w’, which satisfies the boundary conditions, is 
supposed. The radial edge tensile load and the thermal postbuckling load carrying capacity for 
different β values ranging from 1.2 to 2.0 in steps of 0.2 are tabulated.  

The post buckling loads for both simply supported and clamped orthotropic circular plates with the 
values of b0/t are included in Tables 1 and 2 which give a clear idea about the thermal postbuckling 
results. The numerical values attained from the present study are compared with the results from [9] 
for various β values. It can be observed that the given numerical results are match well with those 
obtained by [9] which applying the finite element approach. The maximum error percentage from the 
reference is noticed as 1.37% for simply supported and 3.08% for clamped boundary conditions. It is 
assumed in Berger’s approximation that the strain energy due to the second variant of the middle 
surface strains can be neglected could be the reason for the much higher values for the simply 
supported and clamped circular plates. 

Also, it can be seen that the error percentage of simply supported circular plates are less than 
clamped circular plates. The result shows that some has to be cautious in choosing admissible function 
for deriving nonlinear differential equations of the plates where geometric nonlinearity is involved.   

 
Table 1. Representing the values of postbuckling load ‘γ’ of simply supported circular plates for 

the assumed function. 
b0/t 
 

Present results 
β = 1.2 Error 

(%) 
β = 1.4 

 
Error 
(%) 

β = 1.6 Error 
(%) 

β = 1.8 Error 
(%) 

β = 2.0 Error 
(%) 

0.0 2.2786 
(2.2557)* 

1.01 2.2621 
(2.2466)* 

0.69 2.2518 
(2.2381)* 

0.61 2.2426 
(2.2300)* 

0.57 2.2354 
(2.2224)* 

0.59 

0.2 2.2879 
(2.2661)* 

0.96 2.2718 
(2.2566)* 

0.67 2.2642 
(2.2478)* 

0.73 2.2507 
(2.2393)* 

0.51 2.2431 
(2.2314)* 

0.52 
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0.4 2.3146 
(2.2972)* 

0.75 2.3014 
(2.2866)* 

0.65 2.2875 
(2.2767)* 

0.48 2.2761 
(2.2673)* 

0.39 2.2614 
(2.2584)* 

0.13 

0.6 2.3553 
(2.3487)* 

0.27 2.3476 
(2.3363)* 

0.48 2.3295 
(2.3246)* 

0.21 2.3205 
(2.3136)* 

0.3 2.3198 
(2.3032)* 

0.72 

0.8 2.4536 
(2.4203)* 

1.37 2.4146 
(2.4054)* 

0.38 2.4142 
(2.3913)* 

0.95 2.3817 
(2.3780)* 

0.16 2.3692 
(2.3654)* 

0.16 

1.0 2.5283 
(2.5114)* 

0.67 2.5085 
(2.4932)* 

0.61 2.4976 
(2.4761)* 

0.87 2.4831 
(2.4600)* 

0.94 2.4629 
(2.4448)* 

0.74 

* Indicates the reference values taken from [9]. 
 
 
 

Table 2. Representing the values of postbuckling load ‘γ’ of clamped circular plates for the 
assumed function. 

 
b0/t 

Present results 
β = 1.2 Error 

(%) 
β = 1.4 

 
Error 
(%) 

β = 1.6 Error 
(%) 

β = 1.8 Error 
(%) 

β = 2.0 Error 
(%) 

0.0 2.2237 
(2.1951)* 

1.3 2.2145 
(2.1924)* 

1.01 2.2095 
(2.1894)* 

0.92 2.1988 
(2.1860)* 

0.59 2.1876 
(2.1824)* 

0.24 

0.2 2.2515 
(2.2031)* 

2.19 2.2416 
(2.2003)* 

1.88 2.2300 
(2.1972)* 

1.49 2.2195 
(2.1936)* 

1.18 2.2084 
(2.1899)* 

0.85 

0.4 2.2865 
(2.2271)* 

2.67 2.2728 
(2.2239)* 

2.19 2.2673 
(2.2204)* 

2.11 2.2529 
(2.2164)* 

1.65 2.2373 
(2.2122)* 

1.14 

0.6 2.3356 
(2.2666)* 

3.04 2.3210 
(2.2629)* 

2.57 2.3122 
(2.2587)* 

2.37 2.2964 
(2.2540)* 

1.88 2.2781 
(2.2491)* 

1.29 

0.8 2.3928  
(2.3212)* 

3.08 2.3799  
(2.3167)* 

2.73 2.3681  
(2.3117)* 

2.44 2.3552  
(2.3061)* 

2.13 2.3333  
(2.3002)* 

1.44 

1.0 2.4557 
(2.3902)* 

2.74 2.4386 
(2.3848)* 

2.26 2.4278 
(2.3788)* 

2.06 2.4153 
(2.3720)* 

1.83 2.3951 
(2.3648)* 

1.27 

* Indicates the reference values taken from[9].  
 

The complexity of solving related problems are stated in literature earlier using various 
mathematical methods. This complexity is prompted us to select an innovative substitution based 
derivation through which postbuckling load can be calculated. The present mathematical analysis is 
more simple and yet are able to obtain the accurate results.    
 
4.  Conclusions 
A simple mathematical approximation based on von Kàrmàn nonlinearity to evaluate the thermal 
postbuckling load of orthotropic circular plate is presented.  Both simply supported and clamped 
boundary conditions are considered. The uniform radial edge tensile load is evaluated by taking 
suitable assumptions and by introducing stress-free simplifications. The obtained numerical results 
show a satisfactory agreement with the results attained from the literature with in engineering 
accuracy.    
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