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ABSTRACT. In this paper, a new population-based metaheuristic optimization algorithm, 
named· Simulated Kalman Filter (SKF) is introduced. This new algorithm is inspired by 
the estimation capability of the Kalman Filter. In principle, state estimation problem is 
regarded as an optimization problem, and each agent in SKF acts as a Kalman Filter. 
Every agent in the population finds solution to optimization problem using a standard 
Kalman Filter framework 1 which includes a simulated measurement process and a best-so­
far solution as a reference. To evaluate the performance of the SKF algorithm in solving 
unimodal optimization problenis, it is applied to unimodal benchmark functions of CEC 
2014 for real-parameter single objective optimization problems. Statistical analysis is then 
carried out to rank SKF results to those obtained by other metaheuristic algorithms. The 
experimental results sho~ that the proposed SKF algorithm is a promising approach in 
solving unimodal optimization problems and has a comparable performance to some well­
known metaheuristic algorithms. 
Keywords: Optimization1 Meta.heuristics, Kalman1 Unimodal 

l. Introduction. Optimization is often required in solving engineering problems. Exact 
optimization methods normally fail to solve complex nonlinear and multimodal prob­
lems that exist in most real world applications in reasonable computational time. Thus, 
metaheuristic optimization methods are often sought to solve these kinds of problems. 
Metaheuristic algorithms are general algorithms that can be adapted into solving a wide 
range of optimization problems. A variant of metaheuristic algorithms is population-based. 
They rely on collection of agents to look for a near optimum solution within a reasonable 
computational effort. 
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Several population-based metaheuristic algorithms have been developed over the past 
20 years. Most of them are inspired by nature. According to [l], existing algorithms can 
be divided into four categories based on their source of inspiration: bio-inspired swarm 
intelligence (SI) based, bio-inspired (non-SI) based, physics or chemistry based, and tho~e 
that are not inspired by nature. Bio-inspired algorithms dominate the nature-inspired al­
gorithms classification category. Among the famous and relatively new bio-inspired algo­
rithms are Particle Swarm Algorithm [2], Bee Colony Optimisation [3], Cuckoo Search [4] 
and Firefly Algorithm [5]. All of them belong to Swarm Intelligence based algorithm. Be­
sides that, there are famous algorithms belonging to physics inspired algorithm such as 
Gravitational Search Algorithm (GSA) [6] and Black Hole (BH) algorithm [7]. 

GSA is a well-known population-based metaheuristic algorithm inspired by physical 
phenomenon of Newtonian gravity and motion [6]. Black Hole is a more recent population­
based metaheuristic algorithm inspired by the physical phenomenon of black hole [7]. 
While there are many metaheuristic algorithms being inspired by nature, some researchers 
do look away from nature for their source of inspiration. One example of non-nature 
inspired optimization algorithm is Heuristic Kalman Algorithm (HKA) by Toscano and 
Lyonnet in 2009 [8]. This population-based optimization algorithm is based on Kalman 
estimation method. 

In this paper, a new meta.heuristic optimization algorithm named Simulated Kalman 
Filter (SKF) is proposed to solve unimodal optimization problems. Similar to HKA, this 
new algorithm is inspired by the estimation capability of Kalman Filter. Therefore, it is 
expected that SKF has a very fast convergence rate as HKA. However, instead of relying 
on the properties of Gaussian distribution as in HKA, SKF simulates the measurement 
process as individual agent's update mechanism acting as feedback givers in estimating 
the optimum without being tied up to any type of distribution. 

This paper is organized as follows. In Section 2, the proposed SKF algorithm is pre­
sented. Section 3 explains the experimental parameters in evaluating the performance 
of SKF, followed by experimental results and discussion in Section 4. Finally, Section 5 
summarizes and concludes the paper. 

2. Simulated Kalman Filter (SKF). Kalman Filter is a well-known state estimation 
method of a dynamic system that is excited by a stochastic process and measurement 
noise. Ever since its introduction by R. E. Kalman in 1960 [9], it has been extensively 
explored and used in many applications [10, 11, 12]. 

2.1. Principle of SKF algorithm. Figure 1 shows the principle of SKF algorithm. SKF 
makes an attempt to solve optimization problem by finding an estimate of the optimum. 

In modelling the optimization problem as an estimation process of the optimum, static 
model of Discrete Kalman Filter is employed because the optimum solution to be esti­
mated is not time dependent. Thus, the state vector can be reduced to a scalar. The state 
vector then contains only one variable that holds an agent's estimated position in the 
search space. These estimated states are used in the calculation of fitness based on an 
objective function. 

Based on the capability of Kalman Filter in state estimation, each agent in SKF is able 
to improve its estimation of the optimum. In the proposed SKF algorithm, each agent 
acts as an individual Kalman Filter. Consider there are N agents and t indicates the 
iteration number, the estimated state of the ith agent at a time t, x,(t), is defined as: 

X,(t) = { xHt), xi(t), ... , xf(t), ... , xf (t)} for i = 1, 2, ... , N (1) 

where xf represents the estimated state of the ith agent in the dth dimension and D is 
defined as the maximum number of dimension. In an iteration t, a number of agents 
are involved in the calculation of fitness, and agent with the best fitness, x,",(t), is 
identified. The SKF algorithm requires a simulated measurement process, which is led 
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FIGURE 1. Principle of SKF algorithm 
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by a true value, Xtcue· The Xtrue represents the best solution so-far, and will be updated 
when a better solution than Xtr1Le is found. 

2.2. SKF algorithm. The proposed Simulated Kalman Filter (SKF) algorithm starts 
with initialization of the population. Then, the solutions of the initial population are eval­
uated and a true value is updated. Next, SKF algorithm iteratively improves its estimation 
by using the standard Kalman Filter framework which comprises predict, measure, and 
estimate. This process continues until the stopping condition is met. 

2.2.1. Initialization. The SKF algorithm starts with random initialization of its agents' 
estimated state, X(O), within the search space. Besides the initial state estimate, the initial 
value of error covariance estimate, P(O), the process noise) Q, and the measurement noise, 
R, are defined during initialization stage. Based on experiments, the value of P(O), Q, 
and R are set to be 1000, 0.5, and 0.5, respectively, to give the best performance. The 
maximum number of iteration, tMax, is also initialized. 

2.2.2. Fitness evaluation, and Xb"t and Xtru, update. The iteration begins with fitness 
calculation of the ith agent, fit,(X(t)). Then, the Xb"t(t) is updated according to the 
type of problem. In minimization problem, 

Xb,,,(t) = . min fit;(X(t)) 
tEl, ... ,N 

(2) 

whereas, for maximization problem, Equation (3) is employed. 

Xb"t(t) =.max fit,(X(t)) 
iEl, ... ,N 

(3) 

After that, the true value, :X,'"" is updated. Note that the Xtrue represents the best solu­
tion so-far. Thus, Xtrue is updated if a better solution (Xbest(t) < Xtrue for minimization 
problem, or Xb"'(t) > Xtrue for maximization problem) is found. 

2. 2. 3. Predict, measure, and estimate. The search strategy follows three simple steps: 
predict-measure-estimate. Two sets of Kalman equations are adopted in SKF. The time­
update equations are used to obtain the a priori estimates for the next time step. After the 
measurement process, estimation equations are used to obtain an improved a posteriori 
estimates. 

In the prediction step, the following time-update equations: 

X(tit - 1) = X(t-1) (4) 
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P(tit - 1) = P(t - 1) + Q (5) 
are used to make prediction of the state and error covariance estimates given the prior 
estimates. These estimates are called the a priori estimates. For static model of Discrete 
Kalman Filter, the state transition matrix takes the value of l. And, since no control 
mechanism is employed in SKF, both the control input matrix and the control input 
vector are not used. This implies that there is no prediction in the state estimate because 
no control mechanism is used. However, the error covariance estimate, which is influenced 
by the process noise, is predicted. 

The next step is measurement. Measurements act as feedback to estimation process. 
Measurement of each individual agent is simulated based on the following equation: 

z,(t) = x,(t[t - 1) + sin(rand x 2rr) x IX,( tit - 1) - Xtruel (6) 

Given the predicted state estimate, X;(tlt-1), measurement may take any random value 
from the predicted state estimate, X,(tit-1), to the true value, Xtrue· A random element, 
rand, in sin(rand x 2rr) is the stochastic aspect of SKF algorithm. rand takes a random 
value that is distributed uniformly in the range of [O, 1]. The probability density function 
(pdf) of the sine-wave distribution gives a high probability of occurrence near the extreme 
values, thus increasing the chance for more exploration. Since the difference between the 
predicted state estimate, X,(tit - 1), and the true value, Xtruc is getting smaller as 
the iteration increases, exploration and exploitation can be compromised in SKF using 
Equation (6). 

The final step is the estimation. During this step, Kalman gain, K(t), is computed as 
follows: 

K t _ P(tit - 1) 
( )- P(tit-1) +R (7) 

Then, the estimation equations, given by Equations (8) and (9), are used to improve the 
a posteriori estimates from the a priori estimates by making use of the measurement. 

X;(t) = X,(tit -1) + K(t) x (Z,(t) - X,(tit -1)) 

P(t) = (1- K(t)) x P(tit - 1) 

(8) 

(9) 
Using the measured position as feedback and influenced by the Kalman gain value, K(t), 
each agent will give an estimate of the optimum position for that corresponding iteration. 
The next iteration is executed until the maximum number of iteration, tM ax, is reached. 

3. Experiments. The SKF algorithm is implemented using MATLAB. To evaluate the 
performance of the SKF algorithm in solving unimodal optimization problems, it is imple­
mented to all three unimodal CEC 2014's benchmark functions [13]. There are three basic 
functions being considered in the unimodal benchmark functions. These basic functions 
are: 

l. High Conditioned Elliptic Function 

D i-1 

fi(x) = L (106
) D-' xi (10) 

i=l 

2. Bent Cigar Function 
D 

h(x) =xi+ (106
) LXI (11) 

i=2 

3. Discus Function 
D 

fs(x) = (106
) xi+ Lxi (12) 

i=2 
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TABLE 1. Summary of CEC 2014 unimodal benchmark functions 

Function No. Function Ideal Fitness 
1 
2 
3 

F1 (x) = fi(M(x - 01)) +Ft 
F2(x) = h(M(x - 02)) + F2 
F'.1(x) = h(M(x - o,)) + F3 

TABLE 2. SKF initialization parameters 

100 
200 
300 

Initialization Parameters Values 
Initial state estimate, X(O) rand[-100, 100] 
Initial error covariance estimate, P(O) 1000 
Process noise, Q 0.5 
Mea.surernent noise, R 0.5 

TABLE 3. Experimental parameters 

Experimental Parameters Values 
Number of agents, N 100 
Number of iterations, tM ax 2000 
Number of dimensions, D 50 
Number of runs, runMax 50 
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All the benchmark functions are minimization problems. They are shifted to global 
optimurn, oi, and scalable. Different rotation matrix, Mi, are assigned to each basic 
function. These benchmark functions are summarized in Table 1. The search space is 
the same for all the benchmark functions, which is [-100, 100] for all dimensions. The 
MATLAB data files were downloaded from [14]. 

In SKF, 4 parameters need to be set during initialization stage. The initialization 
parameters are listed in Table 2. 

In order to compare SKF results with those obtained by other metal1euristics, which 
are HKA, GSA and BH algorithm, all the other three algorithms were implemented in 
the same platform and subjected to the same parameter settings as listed in Table 3. 
The stopping criterion is set to be the maximum number of iteration for all algorithms. 
Boxplots are used to show the quality and consistency of the algorithms' performance. 
Since all the benchmark functions in the benchmark suite is a minimization problem, 
lower boxplot indicates a better quality solution. On the other hand, size of the boxplot 
represents its variance. Thus, smaller boxplot's size indicates a better consistency in the 
algorithm's performance. 

To compare the results of all algorithms statistically, the mean fitness of the algorithms 
for each benchmark function is used. Friedman statistical test for non-parametric data 
with significance level a = 0.05 is chosen for comparison purposes. This test is chosen 
because the nature of the solutions is not normally distributed. Non-parametric tests are 
encouraged to come out with the analysis of continuous optimization problems in multi­
problem analysis [15]. In Friedman test, the algorithms are first ranked based on their 
mean fitness for ea~h benchmark function. Then, the average rank for each algorithm is 
computed. These average Friedman rank is then used to calculate the Friedman statistical 
value given by Equation (13). 

2 12 '°'( 2 
X = nk(k + l) L-- Ravg * n) - 3n(k + 1) (13) 
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where n is number of algorithms, k is number of benchmark functions, and Ravg is the 
average Friedman rank. Friedman test will reject the NULL hypothesis if the statistical · 
value is greater than the critical value (x2 > x;',.,,). The NULL hypothesis set here is that 
the algorithms tested have equivalent performance to one another. · 

4. Results and Discussion. This section presented the results of the proposed SKF 
algorithm over the 3 unimodal benchmark functions available in the CEC 2014 Benchmark 
Suite. The performance of the SKF algorithm is then compared statistically to those 
obtained by other metaheuristic algorithms mentioned in the literature. 

4.1. SKF vs HKA, GSA and BH. The boxplots are presented to show quality of 
results for CEC 2014 benchmark functions for all four algorithms. The outliers are ex­
cluded for better observation of the variance. The convergence curves are presented to 
show the convergence rate of the algorithms for all three unimodal benchmark functions. 
The convergence curves are plotted based on the mean fitness for each iteration until 
iteration 1000. The results of experiments when all the four algorithms are applied to the 
benchmark functions are presented as follows. 

Figure 2 shows the boxplots for unimodal benchmark functions. It can be seen from 
Figure 2 that SKF gives the best and the most consistent performance for all unimodal 
functions. These are reflected by the position and size of SKF's boxplots for all three 
functions. 

The convergence curves for Function 1 (Rotated High Conditioned Elliptic Function), 
Function 2 (Rotated Bent Cigar Function), and Function 3 (Rotated Discus Function) 
are shown in Figure 3. It can be seen from Figure 3 that the Kalman-based optimizers, 
which are SKF and HKA have a higher convergence rate compared to the other two 
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FIGURE 2. Results of experiments for unimodal benchmark functions 
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FIGURE 3. Convergence curve comparison for unimodal benchmark functions 

algorithms, thus managed to locate the global minimum faster. This trend is considered 
unique compared to the other existing algorithms. 

4.2. Statistical analysis. Statistical analysis is performed to rank the performance of 
SKF algorithm versus the other three metaheuristic algorithms. For this purpose, Fried­
man test is used to evaluate whether there is a significant difference between the algo­
rithms' performance. The performance of the algorithms is ranked based on the mean 
value over the total number of runs for all three unimodal benchmark functions. The 
mean value calculated is inclusive of the outliers and is shown in the boxplot using the * 
symbol. 

Table 4 shows the mean values for all the four algorithms for every benchmark function. 
The best solution for each benchmark function is marked in bold. Due to the fact that 
in Friedman test, the algorithms need to be ranked based on their mean fitness for each 

TABLE 4. Mean value and Friedman rank of SKF, HKA, GSA, and BH 

Function No. SKF HKA GSA BH 

1 17370000 33716000 69128000 38451000 
1 2 4 3 

2 18365000 122180 123250000 1481600000 
2 1 3 4 

3 16118 192690 138080 43235 
1 4 3 2 

Average Friedman Rank 1.33 2.33 3.33 3 
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benchmark function, the Friedman rank for all the four algorithms for every benchmark 
function is shown beneath the corresponding mean value in the same table. The average 
Friedman rank is then calculated for each algorithm. According to Friedman test, SKF 
is ranked the best among the four algorithms. 

The Friedman statistical value is calculated using the average Friedman rank according 
to Equation (13) and is compared to the critical value according to chi-square distribution 
with 3 degrees of freedom. Statistically, Friedman test accepts the NULL hypothesis. 
Friedman test shows no significant difference exists between the algorithms since the 
statistical value (x2 = 4.2) is less than the critical value (x;;,,, = 7.815). 

5. Conclusions. In this paper, a new population-based metaheuristic optimization al­
gorithm based on Kalman Filter approach, named Simulated Kalman Filter (SKF) is 
introduced to solve unimodal optimization problems. In evaluating our proposed algo­
rithm, we have tested it using CEC 2014 unimodal benchmark functions and compared its 
performance to some existing metaheuristic algorithms. The results obtained show that 
SKF is able to converge to near-optimal solution and has a comparable performance to 
HKA, GSA and BR algorithm in solving unimodal optimization problems. 
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