
Sādhanā Vol. 123, No.4, January 2016, pp.2333–2335
DOI 12.3456/s78910-011-012-3

c© Indian Academy of Sciences

Single-solution simulated Kalman filter algorithm
for global optimisation problems

NOR HIDAYATI ABDUL AZIZ1,2,*, ZUWAIRIE IBRAHIM2, NOR AZLINA AB AZIZ1,
MOHD SABERI MOHAMAD3 and JUNZO WATADA4

1 Faculty of Engineering and Technology, Multimedia University, 75450 Bukit Beruang, Melaka, Malaysia.
2 Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.
3 Faculty of Creative Technology and Heritage, Universiti Malaysia Kelantan, Karung Berkunci 01, 16300 Bachok,
Kelantan, Malaysia
4 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610
Teronoh, Perak, Malaysia.

Abstract. This paper introduces single-solution Simulated Kalman Filter (ssSKF), a new single-agent optimisa-
tion algorithm inspired by Kalman Filter, for solving real-valued numerical optimisation problems. In comparison,
the proposed ssSKF algorithm supersedes the original population-based Simulated Kalman Filter (SKF) algorithm
by operating with only a single agent, and having less parameters to be tuned. In the proposed ssSKF algorithm,
the initialisation parameters are not constants, but, are produced by random numbers taken from a normal dis-
tribution in the range of [0, 1], thus excluding them from tuning requirement. In order to balance between the
exploration and exploitation in ssSKF, the proposed algorithm uses an adaptive neighbourhood mechanism during
its prediction step. The proposed ssSKF algorithm is tested using the 30 benchmark functions of CEC 2014, and its
performance is compared to the original SKF algorithm, Black Hole (BH) algorithm, Particle Swarm Optimisation
(PSO) algorithm, Grey Wolf Optimiser (GWO) algorithm, and Genetic Algorithm (GA). The results show that the
proposed ssSKF algorithm is a promising approach and able to outperform GWO and GA algorithms, significantly.

MS received 1 January 2016; revised 1 January 2016; accepted 1 January 2016

Keywords. single-solution, adaptive neighbourhood, SKF, Kalman, optimisation, metaheuristics.

1 Introduction

Heuristic optimisation method is becoming more relevant in
today’s world. The complexity of many real-world optimisa-
tion problems have turn scientists and engineers to heuristic
methods to solve their problems, where optimality is being
traded-off with near optimal solutions that can be achieved
within reasonable computational time.

Metaheuristic optimisation algorithms characterise a group
of general-purpose heuristic optimisation methods that is gov-
erned by a higher-level strategy that leads the search [1].
Derivation of mathematical models of the optimisation prob-
lems is not required when using metaheuristics methods as
the problems are treated like black boxes [2]. Genetic Algo-
rithm (GA) [3] and Particle Swarm Optimisation (PSO) [4]
are some well-known examples of metaheuristics algorithms.
The search for the best global optimisation algorithm still
continues despite the introduction of “No Free Lunch (NFL)
Theorems for Optimisation” by Wolpert and Macready in
1997 [5]. The NFL theorems suggest that in average, all
optimisation algorithms perform equally when all types of
optimisation problems are taken into consideration. How-
ever, instead of hampering the field, these NFL theorems

*For correspondence

have inspired researchers to keep on improving and propos-
ing new optimisation algorithms in search for the best opti-
misation algorithm that works for most problems, even if not
for all. Thus, several new global optimisation algorithms,
mostly nature-inspired, have been developed over the last
few decades [6–8]. The Black Hole (BH) [9], Grey Wolf Op-
timiser (GWO) [10] and Simulated Kalman Filter (SKF) [11]
are few examples of recently proposed metaheuristics algo-
rithms.

Based on the number of agents used, a metaheuristic al-
gorithm can be classified into either single solution-based
metaheuristics or population-based metaheuristics. Single
solution-based metaheuristics make use of only a single agent,
improved from one iteration to another. Simulated Anneal-
ing (SA) [12], Tabu Search (TS) [13], and Variable Neigh-
bourhood Search (VNS) [14] are examples of algorithms in
this category. Population-based metaheuristics adopt a num-
ber of agents to explore the search space in order to solve
an optimisation problem. Besides GA, PSO, BH, GWO and
SKF, examples of population-based metaheuristics include
Ant Colony Optimisation (ACO) [15], Firefly (FA) [16] and
Cuckoo Search (CS) [17]. Population-based algorithms are
said to perform better because they employ a number of agents
(normally many) that shares information about the search
space to avoid local optima stagnation [18]. Due to this

2333

2334 Nor Hidayati, Zuwairie, Nor Azlina, Mohd Saberi, Watada

strong point, many population-based algorithms are employed
to solve challenging optimisation problems.

Previously, the original SKF algorithm was introduced
as a population-based metaheuristic algorithm. It has been
subjected to solve various types of benchmark optimisation
problems [19]. SKF makes use of a population of agents that
operates using a standard Kalman Filter framework to solve
optimisation problems. Each agent in SKF makes estima-
tion of the optimum based on a simulated measurement pro-
cess that is guided by a best-so-far solution. Kalman Filter,
named after its founder, is a renowned state estimation al-
gorithm based on minimum mean square error method [20].
Kalman Filter is considered as an optimal estimator for a
linear system, especially when the noises are Gaussian in
nature. While multiple sequential measurements are nor-
mally required to come out with a good estimation of a sys-
tem’s state, Kalman Filter requires only the last estimated
state and a new measurement to come out with a better es-
timation. The capability of the Kalman Filter to make a
good estimation, supported by the information sharing be-
tween agents, make SKF a good global optimiser and a com-
petitive algorithm compared to existing metaheuristic algo-
rithms. Ever since its introduction, SKF has undergoes var-
ious adaptations and applied in many applications. These
include extensions of the SKF algorithm to deal with com-
binatorial optimisation problems [21–23], and hybridisation
of the SKF algorithm with PSO algorithm [24] and GSA al-
gorithm [25]. The population-based SKF algorithm has been
applied to find the optimal path of a 14-hole drill path op-
timisation problem [26] and Airport Gate Allocation Prob-
lems (AGAP) [27]. The discrete type of the SKF algorithm
has been subjected to resolving the AGAP [28] and to solve
feature selection problem for EEG peak detection [29].

Despite its good performance, SKF is not a parameter-
less algorithm. In the SKF algorithm, three parameter val-
ues are assigned during initialisation, the initial error covari-
ance, P(0), the process noise, Q, and the measurement noise,
R. Parameter tuning is a tedious task, and the process itself
can be considered as an optimisation problem. For example,
some Evolutionary Algorithms (EA) have many parameters
that are hard to tune. The challenges in EA are not only the
requirement of good initial parameter values, but also the ex-
cessive sensitivities of some of the EA’s parameters towards
the overall performance. Genetic Algorithm (GA) is another
example of algorithms that has many setting parameters. Pa-
rameters in GA include the probability of mutation, probabil-
ity of crossover, and the selection procedure. Particle Swarm
Optimisation (PSO) on the other hand, despite being easy to
be understood, has 3 parameters to be tuned. Some classical
algorithms, such as Tabu Search (TS) and Simulated Anneal-
ing (SA), has at least 1 or 2 parameters that require tuning.
Usage of such algorithms requires some preliminary tuning
computation of the parameters before it can be applied to
solve an optimisation problem. One alternative is to offer
some default values for the parameters. Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [30] is an example
of algorithms that offers some default parameter values to the

users. These values are claimed to be applicable to any opti-
misation problems in hand. Self-tuning parameters, like what
has been introduced in Differential Evolution (DE) [31], is
another alternative solution. Ultimately, parameter-free algo-
rithms such as Black Hole and Symbiotic Organisms Search
(SOS) [32] are desirable.

Further investigations on the effectiveness of Kalman Fil-
ter estimation capability as a source of inspiration for meta-
heuristics optimisation algorithms suggests that it can be re-
alised by using only a single Kalman Filter estimator. Thus,
in this paper, a single agent version of the SKF algorithm
is proposed to solve single objective, real parameter optimi-
sation problems. The proposed algorithm, named as single-
solution Simulated Kalman Filter (ssSKF), requires only one
single agent. This agent iteratively improves its estimation
according to the standard Kalman Filter framework with the
help of adaptive neighbourhood method during its prediction
step. The problem of parameter tuning is reduced by adopt-
ing normally distributed random numbers for all three param-
eters, P(0), Q, and R whenever they are needed [33,34]. The
normally distributed random numbers are scaled and shifted
so that they lie in the range of 0 to 1, defined by N(µ, σ2) =

N(0.5, 0.1). However, a new parameter α is introduced, but,
a fixed value is suggested. In this study, the ssSKF algo-
rithm is tested using all 30 benchmark functions of CEC 2014
benchmark suite [35], and is compared against some existing
metaheuristic optimisation algorithms including the state-of-
art PSO and GA.

The remaining part of the paper is organised as follows.
Section 2 gives a brief description of the Kalman Filter frame-
work. In Section 3, a detailed description of the proposed
single solution-based SKF algorithm is explained. Section 4
describes the experimental setup. Next, the experimental re-
sults and discussion are presented in Section 5. And finally,
Section 6 concludes the paper.

2 Kalman Filter Framework

Kalman Filter is a well-known state estimation method of a
dynamic system that is excited by a stochastic process and
a measurement noise. Kalman Filter is used to estimate the
state variable, X, of a discrete time controlled process that is
governed by a linear stochastic difference equation by using
a measurement, Z.

Kalman Filter is based on two sets of recursive mathe-
matical equations that efficiently estimate the state of a pro-
cess by obtaining feedback in the form of noisy measure-
ments. The first set of equations is called the predict equa-
tions, whereas the second set of equations is called the esti-
mate equations.

Given the current state and error covariance estimates
(X(t) and P(t)), predict equations are used to make predic-
tion of the next estimation. Equation (1) and (2) show the
Kalman Filter predict equations with the superscript (T) rep-
resents a transpose operation.

X(t|t + 1) = A(t) × X(t) × AT (t) + B(t) × u(t) (1)

Single-Solution Simulated Kalman Filter 2335

P(t|t + 1) = P(t) + Q(t) (2)

where X(t|t + 1) is the predicted state vector, X(t) is the es-
timated state vector at time t, P(t|t + 1) is the predicted error
covariance matrix reflecting the error of estimation, P(t) is
the estimated error covariance matrix at time t, Q(t) is the
process covariance matrix reflecting the error due to process.
A(t) is the state transition matrix that determines the transi-
tion between states for each system state variable, B(t) is the
control input matrix that maps the control input vector, u(t),
to state vector, X(t), and u(t) is the control input vector con-
taining any control input variables.

Once a measurement is received, estimate equations are
used to obtain a better estimation by incorporating the new
measurement into the predicted values. Equation (3) and (4)
show the Kalman Filter estimate equations.

X(t + 1) = X(t|t + 1) + K(t) × (Z(t) − H(t) × X(t|t + 1)) (3)

P(t + 1) = P(t|t + 1) − K(t) × H(t) × P(t|t + 1) (4)

where X(t + 1) is the estimated state vector for the next time
step, P(t + 1) is the estimated error covariance matrix for the
next time step, Z(t) is the measurement at time t, H(t) is the
measurement matrix that maps the measurements onto the
state vector variables, and K(t) is the Kalman gain.

The Kalman gain improves state estimate by minimising
the error covariance during each iteration, and can be calcu-
lated as (5).

K(t) = (P(t|t+1)×HT (t))× (H(t)×P(t|t+1)×HT (t)+R(t))−1

(5)
where R(t) is the measurement covariance matrix reflecting
the error from measurements.

In Kalman Filter framework, the process and the mea-
surement noise are assumed to be independent of each other
and normally distributed. If the assumption is true, Kalman
Filter effectively minimises the mean squared error (MSE) of
the estimated state variable. However, Kalman Filter is still
able to give a very good estimate even if the noises are not
Gaussian.

3 The Proposed Single-Solution Simulated Kalman Fil-
ter (ssSKF) Algorithm

The single-solution Simulated Kalman Filter (ssSKF) algo-
rithm is a single agent version of the population-based Sim-
ulated Kalman Filter algorithm. It is inspired by the esti-
mation capability of the Kalman Filter. Principally, ssSKF
embraces the same principle as SKF. However, instead of re-
lying on a population of agents to estimate the optimum so-
lution, ssSKF uses only a single agent. The ssSKF algorithm
depends on the efficiency of the Kalman Filter algorithm it-
self to iteratively improve its estimation.

Like SKF, the ssSKF algorithm attempts to solve optimi-
sation problems by iteratively estimating the optimum solu-
tion using the scalar model of Discrete Kalman Filter frame-
work. By using this model, the state vector, X, holds the

⊗

Xbest

X(t+ 1)

b

search space

best-so-far solution

estimated statelocal neighbourhood

(during prediction)

Figure 1. Local neighbourhood concept in ssSKF.

agent’s estimated position, which is a scalar value for each
dimension in the search space. This estimated state variable
is used in the calculation of fitness based on the specific ob-
jective function. The use of the scalar model also reduces
the computation complexity because all the matrices can be
reduced to scalar values.

In ssSKF, the algorithm starts with the initialisation of the
single agent. This agent represents a Kalman Filter. Next, fit-
ness of the agent is evaluated. During each iteration, Xbest,
which holds the best-so-far solution, is updated. The single
agent in ssSKF algorithm iteratively improves its estimation
by using the standard Kalman Filter framework which com-
prises of predict, measure, and estimate steps. An adaptive
neighbourhood is employed to make prediction during the
prediction step. The measurement, guided by the best-so-
far solution, Xbest, is simulated during the measurement step.
Finally, the agent makes an improved estimation during the
estimation step, by using the predicted and the measured val-
ues under the influence of the calculated Kalman gain. This
process continues until the stopping condition is met.

Besides operating with only a single agent, as opposed
to a population of agents in SKF, the ssSKF differs from the
population-based SKF in its prediction step. The idea of hav-
ing a prediction step is to make a best guess on the location
of the optimal solution. This element is missing in the orig-
inal SKF algorithm. In the view of having Xbest as the best-
so-far solution, it is wise to predict that the position of the
optimum solution is somewhere near the Xbest. Therefore, in
ssSKF, a decreasing local neighbourhood is employed during
the prediction step to further exploit the information. The de-
creasing neighbourhood mechanism can be seen as a type of
adaptive step-size adjustment process, used by many other
single solution-based metaheuristic algorithms. The idea of
having a local neighbourhood during the prediction step is
illustrated in Fig. 1 in 2D representation.

Considering the search space, S , of an optimisation prob-
lem, given by [lowerlimit, upperlimit], the local neighbour-

2336 Nor Hidayati, Zuwairie, Nor Azlina, Mohd Saberi, Watada

0 1 2 3 4 5 6 7 8 9 10

Iterations ×105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

α=1
α=2
α=3
α=4
α=5
α=6
α=7
α=8
α=9
α=10

X: 5e+05
Y: 0.0821

Figure 2. Plot of δ for different α values.

hood, NS , which is centred around Xbest is defined to be
[Xd

best − δ,X
d
best + δ]. The size of the local neighbourhood is

determined by the step-size, δ, which is adaptively decreas-
ing following (6).

δ = exp−α×t/tMax ×δ0 (6)

In an iteration t, once the Xbest has been updated, the
search strategy in ssSKF starts by predicting the location of
the optimum solution. By using the concept of local neigh-
bourhood during the prediction step, the single agent in ssSKF
makes a prediction that the optimum solution resides in a
confined neighbourhood of [Xd

best − δ,X
d
best + δ] with Xbest to

be the centre of the neighbourhood.
The initial neighbourhood limit, δ0, is selected to be δ0 =

max(|lowerlimit|, |upperlimit|) to ensure maximum coverage
of the search space during the first iteration. Fig. 2 shows the
plot of the step-size, δ, for different adaptive coefficient, α,
over 1, 000, 000 iterations, with t to be the iteration number,
and δ0 is set at 100. From Fig. 2, we can see that a small α
value will lead to a linear decrement while a larger α value
will lead to a faster convergence. In ssSKF, α is chosen to
be 5, to allow exploration to take place during the first half
of the iterations while focusing on exploitation in the neigh-
bourhood of around 10% of the original search space for the
remaining half iterations.

The ssSKF algorithm is illustrated in Fig. 3.

3.1 Initialisation

The initialisation of the ssSKF algorithm is almost similar
to the population-based SKF, where X(0) is randomly ini-
tialised according to search space of the problem to be solved.
However, instead of initialising multiple agents, only a sin-
gle agent is initialised in ssSKF. The initial error covariance,
P(0), is set to a normally distributed random number instead
of using the suggested value of 1000 [11]. The normally dis-
tributed random number is denoted as randnd. This value is
generated in every dimension.

Generate initial solution

Evaluate fitness of the solution

Update Xbest

Predict

Measure

Estimate

Stopping condition?

Return Xbest

No

Yes

Figure 3. The ssSKF Algorithm.

3.2 Fitness evaluation and Xbest update

At the beginning of each iteration, the fitness of the solution
is evaluated. Then, according to type of the problem, the
best-so-far solution, Xbest, is updated. The Xbest is updated
only if X(t), which holds the estimation in the correspond-
ing iteration is a better solution. For minimisation problem,
Xbest will be updated if the fitness of X(t) is less than the fit-
ness of Xbest. While, for maximisation problem, Xbest will
be updated if the fitness of X(t) is greater than the fitness of
Xbest.

3.3 Predict, measure, and estimate

The search strategy in ssSKF mimics the cycle in Kalman
Filter estimation method. Kalman Filter is conceptualised as
having two distinct phases: prediction and estimation. Kalman
Filter works recursively with prediction advancing the state
prior to the next measurement. Then, the estimation phase
incorporates the new measurement to improve the state es-
timation. Thus, there are three steps in the ssSKF search
strategy: prediction, measurement, and estimation.

During prediction, the following predict equations are
used to make prediction of the optimum solution. Instead
of using the suggested value of 0.5 for the process noise,
Q [11], a normally distributed random number, randnd, is
used whenever the parameter value is needed for each di-
mension in every iteration.

Xd(t|t + 1) ∼ U[Xd
best − δ,X

d
best + δ] (7)

Pd(t|t + 1) = Pd(t) + randnd (8)

Prediction in ssSKF is carried out by using (7) instead of
(1). Equation (7) indicates that the prediction is carried out in

Single-Solution Simulated Kalman Filter 2337

a local neighbourhood surrounding the best-so-far solution,
Xd

best. The local neighbourhood, NS , is adaptively reduced in
size as the iteration increases. This adaptive reduction of the
step-size causes the algorithm to move from exploration to
exploitation during the prediction step itself. In (8), randnd

is used to replace the parameter Q(t) in (2).
The next step is measurement. Measurement in ssSKF

is simulated in a similar manner as in the population-based
SKF algorithm. The best-so-far solution, Xd

best, steered the
agent’s simulated measurement value, Zd(t), by using (9).

Zd(t) = Xd(t|t+1)+sin(randd×2π)× | Xd(t|t+1)−Xd
best | (9)

The purpose of measurement is to give feedback to the
estimation process. According to (9), the measurement pro-
cess is simulated in such a way that the measured value of the
agent may take any random value surrounding the predicted
value, Xd(t|t+1), either approaching to or moving away from
the best-so-far solution, Xd

best. The random element, randd,
which is uniformly distributed in the range of [0, 1], is re-
sponsible for the stochastic nature in SKF. The sine function
in (9) on the other hand, is the one that causes the measured
value to either being located closer to or distant from the best-
so-far solution, Xd

best, balancing between exploration and ex-
ploitation. The exploration and exploitation mechanism in
SKF is further compromised as the distance between the pre-
dicted value, Xd(t|t + 1), and the best-so-far solution, Xd

best,
decreases with the increase of the number of iteration.

Finally, the estimation step. During estimation, the state
and error covariance estimates for the next iteration are cal-
culated using the esimate equations right after the calcula-
tion of the Kalman gain. The estimate equations are used to
improve the estimation by incorporating the simulated mea-
surement value into the predicted value, with the influence of
Kalman gain.

The measurement noise, R(t), which involves in the cal-
culation of the Kalman gain, K(t) in (5), is given a normally
distributed random number randnd, defined in the range of
between 0 to 1 with a mean of 0.5, generated for every di-
mension every time it is needed, as depicted in (10). Kalman
gain acts as a weighted average between the prediction and
measurement to produce a better estimated value for the next
time step, Xd(t + 1), as shown in (11). The corresponding
error covariance, Pd(t + 1), is estimated to be reduced due to
the effect of Kalman gain in (12).

Kd(t) = (Pd(t|t + 1))/(Pd(t|t + 1) + randnd) (10)

Xd(t + 1) = Xd(t|t + 1) + Kd(t) × (Zd(t) − Xd(t|t + 1)) (11)

Pd(t + 1) = (1 − Kd(t)) × Pd(t|t + 1) (12)

At the end of the estimation step, a better estimation for
the next iteration that lies between the predicted and the mea-
sured value is produced. This process continues until the
stopping condition is met.

4 Experiments

The CEC 2014’s benchmark suite [35] is chosen to evaluate
the performance of the ssSKF algorithm. There are 3 uni-
modal functions, 13 simple multimodal functions, 6 hybrid
functions and 8 composition functions, which make up a to-
tal of 30 benchmark functions in the CEC 2014’s benchmark
suite. All these benchmark functions are minimisation type
of optimisation problems.

The performance of the ssKSF is benchmarked against
the population-based Simulated Kalman Filter algorithm, two
state-of-art algorithms, the Particle Swarm Optimisation and
the Genetic Algorithm, and two new nature-inspired algo-
rithms, the Black Hole and the Grey Wolf Optimiser. The
stopping condition is set at 1, 000, 000 number of function
evaluations. The complexity of the benchmark functions is
set at 50 dimensions and the experiments are carried out for
50 times. The initialisation and parameter setting for all
tested algorithms are listed in Table 1. All algorithms are
implemented in MATLAB. The MATLAB codes for the CEC
2014’s benchmark suite including the PSO algorithm are avail-
able in [36]. In the experiments, the parameter setting for
PSO is set according to [37]. The algorithm employed for
GWO is adapted from [38] and the algorithm for GA is adapted
from [39]. BH and SKF algorithm on the other hand are
coded according to the principle of search cited in their re-
spective literature.

The results of the experiments are compared statistically
by using the mean and the standard deviation for each bench-
mark function. Due to space limitation, only selected func-
tions are chosen to be presented graphically. Convergence
curves of the algorithms for selected functions are presented
to show the comparison in the convergence behaviour of the
algorithms in solving different type of benchmark problems.
They are plotted for every 100 function evaluations to cater
for the difference between single solution-based algorithm
and population-based algorithms of 100 agents. Boxplots for
the selected functions are provided to give a graphical rep-
resentation of the data distribution by each algorithm. The
use of boxplots is a convenient way to display surprisingly
high maximums and low minimums, also known as outliers,
produced by the algorithms.

A Friedman statistical test is then carried out to test for
differences in performance between the algorithms at 5% sig-
nificance level. To control the familywise error rate, the
Holm procedure is chosen. These analyses are performed
by using the KEEL software [40].

5 Results and Discussion

This section presents the results of the proposed ssSKF al-
gorithm, compared against the population-based SKF, BH,
PSO, GWO and GA algorithms using the CEC 2014’s bench-
mark suite. Table 2 - 5 present the mean and standard devia-
tion achieved by all tested algorithms for unimodal, simple
multimodal, hybrid and composition benchmark functions
respectively. The numbers written in bold indicates the best

2338 Nor Hidayati, Zuwairie, Nor Azlina, Mohd Saberi, Watada

Table 1. Initialisation and Parameter Settings for ssSKF, SKF, BH, PSO, GWO and GA

Algorithm Initialisation (random) Parameter settings

ssSKF Initial state estimate Number of agent = 1

Adaptive coefficient, α = 5

SKF Initial state estimate Number of agents = 100

Initial error covariance estimates, P(0) = 1000

Process error, Q = 0.5

Measurement error, R = 0.5

BH Initial stars Number of stars = 100

PSO Initial positions and velocities Swarm size = 100

Initial inertia weight = 0.9

Final inertia weight = 0.4

Cognitive acceleration factor, c1 = 2

Social acceleration factor, c2 = 2

[Vmin,Vmax] = [Xmin, Xmax]

GWO Initial search agents Number of agents = 100

Adaptive parameter, a = linear decrease from 2 to 0

Coefficient vector, C = random[0, 2]

GA Initial population Population size = 100

Mutation probability = 0.2

Crossover probability = 0.5

mean value obtained for the corresponding objective function
among all tested algorithms.

5.1 Unimodal Functions

The results in Table 2 shows an exceptional performance of
the ssSKF algorithm in solving function no. 3 compared to
the other algorithms. The ssSKF algorithm managed to con-
verge near to the ideal fitness of 300 with a very small stan-
dard deviation value. This achievement is far better than the
population-based SKF algorithm and the other tested algo-
rithms. Benchmark function no. 3 is a rotated discus func-
tion, where the properties are non-separable with one sensi-
tive direction.

Both function no. 1 and no. 2 are also rotated and non-
separable unimodal functions, but are a bit harder to be solved.
Fig. 4 shows the convergence curves and boxplots com-
parison in solving for function no. 1. Function no. 1 is
a rotated high-conditioned elliptic function. The quadratic

ill-conditioned property of the function makes it hard to be
solved to optimality. The ssSKF algorithm however, still per-
forms competitively compared to the other algorithms, espe-
cially to PSO, GWO and GA algorithm, with a small devia-
tion from the median value as can be seen in Fig. 4b. We can
also see from the convergence curve of the ssSKF algorithm
that once the agent enters the second half of the iterations,
exploitation kicks in to refine the estimation.

5.2 Simple Multimodal Functions

The results in Table 3 shows that although ssSKF managed to
outperform the others in only 3 out of 13 simple multimodal
functions, the results for the other functions are very com-
petitive. The ssSKF algorithm managed to solve most of the
problems closer to optimality. This shows that even with only
a single agent, ssSKF algorithm managed to escape from the
local optima stagnation problem.

Function no. 4 is selected to show the convergence be-
haviour of the ssSKF algorithm in comparison to the other al-

Single-Solution Simulated Kalman Filter 2339

Table 2. Experimental Results Comparison (Unimodal Functions)

No. ssSKF SKF BH PSO GWO GA

1 5.02e+06 4.70e+06 4.11e+06 4.35e+07 5.63e+07 3.40e+08

±1.30e+06 ±1.84e+06 ±82.5e+06 ±3.45e+07 ±3.11e+07 ±0.845e+08

2 1.34e+07 2.45e+07 1.93e+05 1.14e+07 5.27e+09 2.36e+10

±0.136e+07 ±5.65e+07 ±2.57e+05 ±6.72e+07 ±3.18e+09 ±0.339e+10

3 367.88 ± 11.909 18148 ± 8044.5 11558 ± 1989.3 9934.1 ± 9628.3 49774 ± 13648 62700 ± 10493

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of function evaluations (x100)

106

107

108

109

1010

M
ea

n
F

itn
es

s

Convergence Curve - F1

ssSKF
SKF
BH
PSO
GWO
GA

(a) Convergence curve

ssSKF SKF BH PSO GWO GA

Algorithms

0

1

2

3

4

5

6

F
itn

es
s

V
al

ue

×108 Boxplot - F1

(b) Boxplot

Figure 4. Experimental results comparison for function no. 1 (rotated high-conditioned elliptic function)

gorithms in solving simple multimodal problem, as shown in
Fig. 5a. Function no. 4 is a shifted and rotated rosenbrock’s
function. Besides being multimodal and non-separable, this
benchmark function has a very narrow valley from a local
optimum to the global minimum. Based on the convergence
behaviour of the algorithms, we can see that the ssSKF al-
gorithm able to do exploitation better although converge a
bit later than the population-based SKF, BH, GWO and GA.
When the performance of ssSKF is compared graphically to
other tested algorithms, we can see from Fig. 5b that ssSKF
algorithm has a very good and consistent performance de-
picted by the position of the boxplot and its size.

5.3 Hybrid Functions

The ssSKF algorithm managed to outperform the other tested
algorithms the most in solving for hybrid benchmark prob-
lems. Hybrid functions mimic real-world optimisation prob-
lems, as the variables in the hybrid functions are randomly
divided into subcomponents. Then, different basic functions
are applied to these different subcomponents making each of

them having different properties. From Table 4, it can be seen
that ssSKF algorithm performs the best compared to other
tested algorithms in all but one hybrid function.

The convergence curve and boxplot for function no. 17
are selected for comparison purposes. Function no. 17 is a
hybrid of 3 basic functions which is the modified shwefel’s
function, the rastrigin’s function and the high conditioned
elliptic function. It can be seen from Fig. 6a that the explo-
ration phase ends a bit early in ssSKF algorithm, however,
further improvements are carried out during the exploitation
phase. We can also see from Fig. 6b that ssSKF algorithm
has a very consistent performance throughout the 50 runs.

5.4 Composition Functions

Composition functions are used to test the algorithms’ ten-
dency to converge to the centre of the search space. A local
optimum is set to the origin as a trap for each composition
functions.

Results in Table 5 shows that the ssSKF algorithm out-
perform the other tested algorithms for 3 out of 8 composi-

2340 Nor Hidayati, Zuwairie, Nor Azlina, Mohd Saberi, Watada

Table 3. Experimental Results Comparison (Simple Multimodal Functions)

No. ssSKF SKF BH PSO GWO GA

4 498.46 ± 17.462 532.77 ± 42.776 564.79 ± 40.504 1062.1 ± 277.16 958.42 ± 288.82 3008.5 ± 717.97

5 521.11 ± 0.0323 520.01 ± 0.0196 520.01 ± 0.0210 521.06 ± 0.0594 521.11 ± 0.0319 521.01 ± 0.0592

6 619.91 ± 4.5744 633.44 ± 3.9608 658.13 ± 5.0154 631.49 ± 5.2445 625.95 ± 3.1894 655.83 ± 2.7594

7 701.13 ± 0.0108 700.25 ± 0.9076 700.13 ± 0.0801 700.02 ± 0.0334 745.23 ± 27.639 924.79 ± 32.65

8 974.5 ± 39.406 807.98 ± 5.3569 922.25 ± 14.311 858.72 ± 12.203 975.3 ± 28.277 1067.9 ± 18.924

9 1082.2 ± 38.155 1059.1 ± 27.703 1212.1 ± 42.612 1051.7 ± 29.129 1078.9 ± 27.883 1400.3 ± 35.998

10 5769.1 ± 737.4 1335.2 ± 159.62 3121 ± 546.24 1644 ± 227.67 6381 ± 645.94 6254.2 ± 492.28

11 6240.5 ± 902.72 6249.4 ± 641.48 8051 ± 876.77 11966 ± 2741.9 6582.8 ± 1287.8 12793 ± 540.93

12 1201 ± 0.34346 1200.2 ± 0.0825 1200.7 ± 0.2264 1202.6 ± 0.4937 1202 ± 1.5515 1202.2 ± 0.2794

13 1300.6 ± 0.1343 1300.6 ± 0.0873 1300.5 ± 0.0367 1300.6 ± 0.1127 1300.6 ± 0.2986 1302.8 ± 0.5706

14 1400.4 ± 0.3032 1400.3 ± 0.0390 1400.3 ± 0.0152 1400.3 ± 0.0683 1407.3 ± 8.3571 1461.6 ± 11.996

15 1532.6 ± 3.5675 1551.7 ± 16.126 1787.8 ± 50.267 1528.8 ± 8.9937 1965.3 ± 548.62 35514 ± 27831

16 1620.8 ± 0.6714 1619.1 ± 0.8810 1621.5 ± 0.6899 1621.7 ± 0.6907 1619.5 ± 1.0406 1621.9 ± 0.3835

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of function evaluations (x100)

102

103

104

105

106

M
ea

n
F

itn
es

s

Convergence Curve - F4

ssSKF
SKF
BH
PSO
GWO
GA

(a) Convergence curve

ssSKF SKF BH PSO GWO GA

Algorithms

0

1000

2000

3000

4000

5000

6000

F
itn

es
s

V
al

ue

Boxplot - F4

(b) Boxplot

Figure 5. Experimental results comparison for function no. 4 (shifted and rotated rosenbrock´s function)

tion benchmark functions, specifically for function no. 25, 27
and 28. The ssSKF algorithm also gives a very high competi-
tion for the other composition functions, especially in solving
function no. 23, 24 and 26. These results exhibit the ssSKF’s
ability in avoiding the centre trap while searching for the op-

timum position.
Fig. 7a gives a graphical view of the convergence be-

haviour of the ssSKF algorithm in comparison to the other
tested algorithms when solving benchmark function no. 23.
This is followed by Fig. 7b which shows the results distri-

Single-Solution Simulated Kalman Filter 2341

Table 4. Experimental Results Comparison (Hybrid Functions)

No. ssSKF SKF BH PSO GWO GA

17 3.36e+05 9.08e+05 5.52e+05 3.59e+06 3.23e+06 1.68e+07

±1.41e+05 ±6.16e+05 ±1.60e+05 ±4.79e+06 ±2.10e+06 ±0.818e+07

18 3.64e+05 6.94e+07 2433.4 30741 4.82e+07 5.48e+06

±76796 ±18.6e+07 ±269.07 ±1.46e+05 ±10.1e+07 ±3.08e+06

19 1920 ± 2.5822 1950.2 ± 31.019 1952.8 ± 32.801 1962.3 ± 29.926 1979.5 ± 32.789 2004.5 ± 18.806

20 2488.9 ± 96.724 34799 ± 13337 8499.6 ± 2606.1 6513.6 ± 2534.9 14603 ± 5844.8 35020 ± 14191

21 2.55e+05 1.19e+06 3.95e+05 7.10e+05 1.92e+06 5.30e+06

±1.15e+05 ±0.625e+06 ±1.16e+05 ±8.06e+05 ±2.31e+06 ±2.76e+06

22 2806.3 ± 260.07 3429.1 ± 306.4 3708.2 ± 349.39 3421.4 ± 331.98 2873.3 ± 221 3429 ± 249.95

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of function evaluations (x100)

105

106

107

108

109

1010

M
ea

n
F

itn
es

s

Convergence Curve - F17

ssSKF
SKF
BH
PSO
GWO
GA

(a) Convergence curve

ssSKF SKF BH PSO GWO GA

Algorithms

0

0.5

1

1.5

2

2.5

3

3.5

4

F
itn

es
s

V
al

ue

×107 Boxplot - F17

(b) Boxplot

Figure 6. Experimental results comparison for function no. 17 (hybrid function 1)

bution comparison between algorithms tested in solving the
same benchmark problem over 50 runs. From Fig. 7a, we
can see the improvement of the estimation continues from the
exploration phase throughout the exploitation phase which
is the second half of the total iterations. Performance wise,
compared to SKF, the ssSKF algorithm has a better consis-
tency than the population-based SKF, depicted by a narrower
boxplot as in Fig. 7b.

5.5 Statistical Analyses

Statistically, the ssSKF algorithm performs better compared
to the other tested algorithms. The average ranking according
to Friedman 1 × 5 statistical test is given by Table 6. Fried-
man test ranks ssSKF algorithm the highest, followed by the
population-based SKF algorithm, BH, PSO, GWO and then
the GA algorithm.

According to the Friedman test statistic of 47.319048,
distributed according to the χ2-distribution with 5 degrees
of freedom, a significant difference exists between the al-
gorithms. In order to test which algorithm is significantly

2342 Nor Hidayati, Zuwairie, Nor Azlina, Mohd Saberi, Watada

Table 5. Experimental Results Comparison (Composition Functions)

No. ssSKF SKF BH PSO GWO GA

23 2647.9 ± 1.065 2645.7 ± 2.2752 2649.5 ± 0.4324 2661.5 ± 5.2579 2708.3 ± 21.85 2714.8 ± 18.45

24 2676.4 ± 6.2471 2667.2 ± 5.8049 2666.4 ± 9.8025 2672.8 ± 6.819 2600 ± 0.0002 2777.2 ± 11.155

25 2711.9 ± 1.9048 2730.4 ± 3.716 2750.5 ± 7.9287 2729.8 ± 4.7321 2725.3 ± 6.4155 2761.2 ± 10.72

26 2710.6 ± 30.387 2766.4 ± 47.794 2792.2 ± 27.298 2700.5 ± 0.1206 2769.2 ± 54.188 2702.7 ± 0.4142

27 3516.2 ± 119.07 3883.3 ± 123.41 4654.8 ± 263.57 3843 ± 204.98 3672.9 ± 95.244 4473.2 ± 72.069

28 4621.5 ± 399.55 7223.4 ± 1153.5 11048 ± 1068.1 9891.7 ± 1869.1 4647 ± 457.53 6288.7 ± 461.05

29 76422 5997.8 10361 23202 3.28e+06 6.72e+06

±20519 ±5310.7 ±1668.5 ±1.07e+05 ±8.34e+06 ±4.09e+06

30 47030 19753 58613 1.95e+05 1.12e+05 1.62e+05

±10475 ±3511.6 ±4320 ±1.17e+05 ±68623 ±55409

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of function evaluations (x100)

3000

3500

4000

4500

5000

5500

6000

M
ea

n
F

itn
es

s

Convergence Curve - F23

ssSKF
SKF
BH
PSO
GWO
GA

(a) Convergence curve

ssSKF SKF BH PSO GWO GA

Algorithms

2640

2660

2680

2700

2720

2740

2760

2780

2800

F
itn

es
s

V
al

ue

Boxplot - F23

(b) Boxplot

Figure 7. Experimental results comparison for function no. 23 (composition function 1)

better than the other, Holm procedure is carried out. Post-
hoc Holm’s procedure control the family-wise error rate by
adjusting the rejection criteria of each of the individual hy-
potheses. The result of the analysis is given by Table 7.

Based on Table 7, the Holm’s procedure rejects those hy-
potheses that have an unadjusted p-value less than 0.016667.
Thus, the ssSKF algorithm can be concluded as perform-
ing significantly better than the GWO and GA algorithms in
solving the CEC 2014 benchmark problems.

5.6 Exploration and exploitation in ssSKF

Although it is statistically proven that the ssSKF algorithm is
performing better than the population-based SKF, BH, PSO,
GWO and GA algorithm in the testing framework, the search
behaviour in terms of exploration and exploitation of the sin-
gle agent during optimisation should be observed to confirm
its performance when solving for other problems, especially
the real-world problems. Thus, for this purpose, the ssSKF
algorithm is tested on the two-dimensional version of the

Single-Solution Simulated Kalman Filter 2343

Table 6. Friedman Average Rankings of the Algorithms

Algorithm Friedman Rank

ssSKF 2.4667

SKF 2.7667

BH 3.1833

PSO 3.2167

GWO 4.0000

GA 5.3667

Table 7. Post Hoc Holm’s Analysis of ssSKF, SKF, BH,
PSO, GWO and GA (α = 0.05)

i Algorithms z p Holm

5 ssSKF vs. GA 6.00357 0 0.01

4 ssSKF vs. GWO 3.174302 0.001502 0.0125

3 ssSKF vs. PSO 1.552648 0.120507 0.016667

2 ssSKF vs. BH 1.483641 0.137904 0.025

1 ssSKF vs. SKF 0.621059 0.534561 0.05

benchmark problems. Another round of experiment is con-
ducted on two-dimensional problems of CEC 2014’s bench-
mark functions except for hybrid functions and function no.
29 and 30, because these functions are not defined in two-
dimensional domain. The maximum number of iteration is
set to 100 iterations only. The results of some selected func-
tions are presented graphically to show how the agent be-
haves over the course of iterations.

In order to observe the exploration and exploitation of the
search agent in particular, the trajectory of the search agent in
both dimensions are captured and presented in Fig. 8. From
these figures, we can see clearly that the agent undergoes
extensive exploration during the first half of the total itera-
tions and then decrease gradually to exploit better around the
improved best-so-far solution due to the effect of adaptively
decreasing step size, δ, as given in (6).

To further observe how the search agent moves around
the search space, search history of search agent for selected
functions are provided in Fig. 9. The search history marks
the visited locations of the search agent in the search space
throughout the optimisation process, plotted on the contour
map of the specific problem. We can observe from these

figures that there is sufficient exploration conducted by the
search agent especially for multimodal problem in order to
avoid being trapped in local optima before converging around
the best solution obtained. Finally, Fig. 10 shows the fitness
trend obtained by the search agent throughout the course of
iterations. High fluctuations in the fitness value obtained dur-
ing the first half of the search process is preferable because it
confirms the extensive exploration behaviour in the ssSKF al-
gorithm, while the low changes observed after that confirms
the exploitation behaviour in the ssSKF algorithm. These
fluctuations are the results of the stochastic element during
the measurement step given in (9). As the iteration increases,
the exploration is being compromised by exploitation due to
the fact that the agent is predicted to move closer to the best-
so-far solution. The best-so-far solution, Xbest, exhibit a de-
scending pattern which reflects the convergence in finding
the optimal solution of the minimisation problem. All these
evidences prove the ability of the ssSKF algorithm to solve
optimisation problem by iteratively estimating the optimum
solution.

6 Conclusion

In this paper, a novel single solution-based metaheuristic op-
timisation algorithm, named ssSKF, is introduced to solve
real-valued, numerical optimisation problem. The ssSKF al-
gorithm utilises a decreasing neighbourhood mechanism to-
gether with the Kalman Filter framework in order to improve
its estimation of the optimum. The ssSKF algorithm reduces
number of parameters needed as the P(0), Q and R values are
replaced with normally distributed random numbers in the
range of [0,1] with 0.5 mean, generated for every dimension
whenever the parameters’ value are required. However, an
adaptive coefficient, α, is introduced for the adaptive neigh-
bourhood, with a suggested value of 5. The ssSKF algorithm
is implemented to CEC 2014 benchmark suite which con-
sists of unimodal, simple multimodal, hybrid and composi-
tion functions of 50 dimensions. The performance of ssSKF
algorithm is benchmarked against the population-based SKF
algorithm, BH, PSO, GWO and GA algorithms. The results
show that despite being a single solution-based algorithm,
ssSKF managed to outperform population-based algorithms
under the same number of function evaluations.

Acknowledgment

This research was financially supported by Fundamental Re-
search Grant Scheme (FRGS) awarded by the Ministry of
Education (MOE) to Multimedia University under grant no.
FRGS/1/2015/TK04/MMU/03/02 and Universiti Malaysia Pa-
hang under grant no. RDU140114. We would like to thank
Multimedia University and Universiti Malaysia Pahang for
providing all the facilities required for this study.

2344 Nor Hidayati, Zuwairie, Nor Azlina, Mohd Saberi, Watada

0 10 20 30 40 50 60 70 80 90 100

Iteration

-80

-60

-40

-20

0

20

40

D
im

en
si

on
 1

 V
al

ue

Trajectory (first dimension) - F1

Search agent
Best-so-far solution

(a) Unimodal - first dimension

0 10 20 30 40 50 60 70 80 90 100

Iteration

-100

-80

-60

-40

-20

0

20

40

60

80

100

D
im

en
si

on
 1

 V
al

ue

Trajectory (first dimension) - F4

Search agent
Best-so-far solution

(b) Simple multimodal - first dimension

0 10 20 30 40 50 60 70 80 90 100

Iteration

-100

-80

-60

-40

-20

0

20

D
im

en
si

on
 1

 V
al

ue

Trajectory (first dimension) - F23

Search agent
Best-so-far solution

(c) Composition - first dimension

0 10 20 30 40 50 60 70 80 90 100

Iteration

-100

-50

0

50

D
im

en
si

on
 2

 V
al

ue

Trajectory (second dimension) - F1

Search agent
Best-so-far solution

(d) Unimodal - second dimension

0 10 20 30 40 50 60 70 80 90 100

Iteration

-80

-60

-40

-20

0

20

40

D
im

en
si

on
 2

 V
al

ue

Trajectory (second dimension) - F4

Search agent
Best-so-far solution

(e) Simple multimodal - second dimen-
sion

0 10 20 30 40 50 60 70 80 90 100

Iteration

-40

-20

0

20

40

60

80

100

D
im

en
si

on
 2

 V
al

ue

Trajectory (second dimension) - F23

Search agent
Best-so-far solution

(f) Composition - second dimension

Figure 8. Trajectory of the ssSKF’s agent during optimisation of benchmark functions.

References

[1] E. Talbi, Metaheuristics. Hoboken, NJ: John Wiley & Sons,
2009.

[2] S. Droste, T. Jansen and I. Wegener, “Upper and lower bounds
for randomized search heuristics in black-box Optimisation”,
Theory of Computing Systems, vol. 39, no. 4, pp. 525–544,
Jul. 2006.

[3] J. Holland, Adaptation in natural and artificial systems. Cam-
bridge, MA: The MIT Press, 1992.

[4] J. Kennedy and R. Eberhart, “Particle swarm Optimisation,”
in Proc. IEEE International Conference on Neural Networks,
Dec. 1995, pp. 1942–1948.

[5] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for Optimisation,” IEEE Transactions on Evolutionary Com-
putation, vol. 1, no. 1, pp. 67–82, Apr. 1997.

[6] I. Boussaid, J. Lepagnot, P. Siarry, “A survey on Optimisation
metaheuristics,” Information Sciences, vol. 237, pp. 82–117,
Jul. 2013.

[7] J. A. Parejo, A. Ruiz-Cortes, S. Lozano, P. Fernandez, “Meta-
heuristic Optimisation frameworks: a survey and benchmark-
ing,” Soft Computing, vol. 16, no. 3, pp. 527–561, Mar. 2012.

[8] I. Fister Jr. et al., “A brief review of nature-inspired algorithms
for Optimisation,” Elektrotehniski Vestnik [English], vol. 80,
no. 3, pp. 1–7, 2013.

Single-Solution Simulated Kalman Filter 2345

Search History - F1

-100 -80 -60 -40 -20 0 20 40 60 80 100

Dimension 1

-100

-80

-60

-40

-20

0

20

40

60

80

100

D
im

en
si

on
 2

(a) Unimodal

Search History - F4

-100 -80 -60 -40 -20 0 20 40 60 80 100

Dimension 1

-100

-80

-60

-40

-20

0

20

40

60

80

100

D
im

en
si

on
 2

(b) Simple multimodal

Search History - F23

-100 -80 -60 -40 -20 0 20 40 60 80 100

Dimension 1

-100

-80

-60

-40

-20

0

20

40

60

80

100

D
im

en
si

on
 2

(c) Composition

Figure 9. Search history of the ssSKF’s agent during optimisation of benchmark functions.

0 10 20 30 40 50 60 70 80 90 100

Iteration

0

0.5

1

1.5

2

2.5

F
itn

es
s

V
al

ue

×109 Fitness Trend - F1

Search agent
Best-so-far solution

(a) Unimodal

0 10 20 30 40 50 60 70 80 90 100

Iteration

0

0.5

1

1.5

2

2.5

3

F
itn

es
s

V
al

ue

×104 Fitness Trend - F4

Search agent
Best-so-far solution

(b) Simple multimodal

0 10 20 30 40 50 60 70 80 90 100

Iteration

2500

3000

3500

4000

4500

5000

F
itn

es
s

V
al

ue

Fitness Trend - F23

Search agent
Best-so-far solution

(c) Composition

Figure 10. Fitness trend of the ssSKF’s agent during optimisation of benchmark functions.

2346 Nor Hidayati, Zuwairie, Nor Azlina, Mohd Saberi, Watada

[9] A. Hatamlou, “Black hole: A new heuristic Optimisation ap-
proach for data clustering”, Information Sciences, vol. 222,
pp. 175–184, Feb. 2013.

[10] S. Mirjalili, S. M. Mirjalili and A. Lewis, “Grey Wolf Opti-
miser”, Advances in Engineering Software, vol. 69, pp. 46–61,
Mar. 2014.

[11] Z. Ibrahim et al., “A Kalman filter approach for solving uni-
modal Optimisation problems”, ICIC Express Lett., vol. 9, no.
12, pp. 3415–3422, Dec. 2015.

[12] S. Kirkpatrick, C. D. Gelatt Jr. and M. Vecchi, “Optimisa-
tion by Simulated Annealing”, Science, vol. 220, no. 4598,
pp. 671–680, May 1983.

[13] F. Glover, “Future paths for integer programming and links
to artificial intelligence”, Computers & Operations Research,
vol. 13, no. 5, pp. 533–549, 1986.

[14] N. Mladenovic and P. Hansen, “Variable neighborhood
search”, Computers & Operations Research, vol. 24, no. 11,
pp. 1097-1100, Nov. 1997.

[15] M. Dorigo, “Optimisation, Learning and Natural Algorithms,”
Ph.D. dissertation, Politecnico di Milano, Italy, 1992.

[16] X. Yang, “Firefly algorithm, stochastic test functions and
design optimisation”, International Journal of Bio-Inspired
Computation, vol. 2, no. 2, pp. 78–84, Mar. 2010.

[17] X. Yang and S. Deb, “Cuckoo Search Via Levy Fight,” in Proc.
of World Congress on Nature& Biologically Inspired Comput-
ing (NaBIC 2009), India, Dec. 2009, pp 210–214.

[18] S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving Op-
timisation problems”, Knowledge-Based Systems, vol. 96, pp.
120–133, Mar. 2016.

[19] Z. Ibrahim et al., “Simulated Kalman Filter: A Novel
Estimation-Based Metaheuristic Optimisation Algorithm,”
Advance Science Lett., vol. 22, no. 10, pp. 2941–2946, Oct.
2016.

[20] R. E. Kalman, “A New Approach to Linear Filtering and Pre-
diction Problems”, Journal of Basic Engineering, vol. 82(Se-
ries D), pp. 35–45, 1960.

[21] Z. Md Yusof et al., “Angle Modulated Simulated Kalman
Filter algorithm for combinatorial Optimisation problems,”
ARPN Journal of Engineering and Applied Science, vol. 11,
no. 7, pp. 4854-4859, Apr. 2016.

[22] Z. Md Yusof et al., “Distance Evaluated Simulated Kalman
Filter algorithm for combinatorial Optimisation problems,”
ARPN Journal of Engineering and Applied Sciences, vol. 11,
no. 7, pp. 4911-4916, Apr. 2016.

[23] Z. Md Yusof, I. Ibrahim, S. N. Satiman, Z. Ibrahim, N. H. Ab-
dul Aziz and N. A. Ab. Aziz, “BSKF: Binary Simulated
Kalman Filter,” in Proc. of 2015 3rd International Conference
on Artificial Intelligence, Modelling and Simulation (AIMS),
Dec. 2015, pp. 77-81.

[24] B. Muhammad et al., “A new hybrid Simulated Kalman Fil-
ter and Particle Swarm Optimisation for continuous numer-
ical Optimisation problems,” ARPN Journal of Engineering
and Applied Sciences, vol. 10, no. 22, pp. 17171-17176, Dec,
2015.

[25] B. Muhammad, Z. Ibrahim, K. Z. Mohd Azmi, K. H. Abas,
N. A. Ab. Aziz, N. H. Abdul Aziz and M. S. Mohamad, “Four
different methods to hybrid simulated Kalman filter (SKF)
with gravitational search algorithm (GSA),” in Proc. of 3rd
National Conference of Postgraduate Research, Sep. 2016,
pp. 854–864.

[26] N. H. Abdul Aziz, N. A. Ab. Aziz, Z. Ibrahim, S. Razali,
K. H. Abas and M. S. Mohamad “A Kalman Filter approach
to PCB drill path Optimisation problem,” in Proc. of IEEE
Conference on Systems, Process and Control, Dec. 2016, pp.
33–36.

[27] Z. Md Yusof, S. N. Satiman, B. Muhammad, S. Razali,
Z. Ibrahim, Z. Aspar and S. Ismail, “Solving airport gate al-
location problem using Simulated Kalman Filter,” in Proc. of
International Conference on Knowledge Transfer (ICKT’15),
Malaysia, Dec. 2015, pp. 121–127.

[28] K. Z. Mohd Azmi, Z. Md Yusof, S. N. Satiman, Z. Ibrahim,
N. A. Ab. Aziz and N. H. Abdul Aziz, “Solving airport gate
allocation problem using angle modulated simulated Kalman
filter,” in Proc. of 3rd National Conference of Postgraduate
Research, Sep. 2016, pp. 875–885.

[29] A. Adam et al., “Feature selection using angle modulated sim-
ulated Kalman filter for peak classification of EEG signals,”
SpringerPlus, vol. 5, pp. 1580–1603, 2016.

[30] N. Hansen,A. Ostermeier and A. Gawelczyk, “On the adap-
tation of arbitrary normal mutation distributions in evolution
strategies: the generating set adaptation,” in Proc. of the 6th
International Conference on Genetic Algorithms, 1995, pp.
57–64.

[31] R. Storn and K. Price, “Differential evolution a simple and
efficient heuristic for global Optimisation over continuous
spaces,” Journal of Global Optimisation, vol. 11, pp. 341–
359, Dec. 1997.

[32] M. Cheng and D. Prayogo, “Symbiotic organisms search:
a new metaheuristic Optimisation algorithm,” Computers &
Structures, vol. 139, pp. 98-112, Jul. 2014.

[33] N. H. Abdul Aziz, Z. Ibrahim, N. A. Ab. Aziz, and S. Razali,
“Parameter-less Simulated Kalman Filter,” International Jour-
nal of Software Engineering and Computer Systems (IJSECS),
vol. 3(February), pp. 129-137, 2017.

[34] N. H. Abdul Aziz, Z. Ibrahim, T. A. Bakare, and N. A. Ab.
Aziz, “How Important the Error Covariance in Simulated
Kalman Filter?,” in Proc. of The National Conference for Post-
graduate Research 2016, Sept. 2016, pp. 315-320.

[35] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problems defi-
nitions and evaluation criteria for the CEC 2014 special ses-
sion and competition on single objective real-parameter nu-
merical Optimisation,” Computational Intelligence Labora-
tory, Zhengzhou University, Zhengzhou, China, Tech. Rep.

Single-Solution Simulated Kalman Filter 2347

201311 and Nanyang Technological University, Singapore,
Tech. Rep., Dec. 2013.

[36] P. N. Suganthan. (2016) Shared Documents. [Online].
Available: http://http://web.mysites.ntu.edu.sg/epnsugan/

PublicSite/Shared%20Documents/CEC-2014/cec14-matlab-
code.zip

[37] R. C. Eberhart and Y. Shi, “Comparing inertia weights and
constriction factors in particle swarm Optimisation,” in Proc.
of the 2000 Congress on Evolutionary Computation, Jul. 2000,
pp. 84–88.

[38] S. Mirjalili. (2016) Seyedali Mirjalili homepage. [Online].
Available: http://www.alimirjalili.com/GWO.html.

[39] R. L. Haupt and S. E. Haupt, Practical genetic algorithms.
Hoboken, NJ: John Wiley & Sons, 2004.

[40] J. Alcala-Fdez et al., “KEEL: a software tool to assess evolu-
tionary algorithms for data mining problems”, Soft Comput-
ing, vol. 13, no. 3, pp. 307–318, May 2008.

