UMP Institutional Repository

Embedded Character Recognition System using Random Forest Algorithm for IC Inspection System

Chong, Wei Jian and M. Z., Ibrahim and Thum, Wei Seong and Ting, Ei Wei and Sabira, Khatun (2017) Embedded Character Recognition System using Random Forest Algorithm for IC Inspection System. Journal of Telecommunication, Electronic and Computer Engineering, 10 (1-3). pp. 121-125. ISSN 2289-8131 (Unpublished)

[img]
Preview
Pdf
Embedded Character Recognition System using Random Forest Algorithm for IC Inspection System.pdf

Download (269kB) | Preview

Abstract

Character recognition system based on human inspection is unpractical due to lack of accuracy and high cost. Therefore, investigating on automated character inspection system by computer is needed to improve the accuracy, reduce the cost and inspection time. In this project, a Beagle Bone Black (BBB) was used as a processing device and Logitech webcam was used for as an image acquisition device. Total of 1080 training samples will undergo the image pre-processing, character segmentation, feature extraction and training using random forest classifier. The optimal parameter values of random forest classifier are determined by computing cross validation misclassification rate. The maximum number of splits, number of trees, and learning rate that yields the zero-misclassification rate is 1, 39 and 0.10 respectively. The process of testing random forest classifier was done using SN74LS27N chip under five different illuminations: no LED, one LED, two LED, three LED and four LED. From the experiments, it shows that the proposed system able to achieve 90.00% of accuracy within 1second to recognize characters on the SN74LS27N chip compared to 65.56% accuracy of human inspection.

Item Type: Article
Uncontrolled Keywords: Beagle bone black; Character segmentation; Character classification; Random Forest algorithms; Embedded system
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Faculty/Division: Faculty of Electrical & Electronic Engineering
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 19 Feb 2018 06:07
Last Modified: 30 Jan 2020 07:18
URI: http://umpir.ump.edu.my/id/eprint/19731
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item