

Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Nazikussabah Zaharudin^{a,b,*}, Armando Asunción Salmeán^c, Lars Ove Dragsted^a

^a Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen DK-1958, Denmark

^b Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

^c Department of Plant Glycobiology, Faculty of Science, University of Copenhagen, Copenhagen DK-1871, Denmark

ARTICLE INFO

Keywords: Seaweed Glucose liberation α-Amylase Phenolic compound Alginate Inhibitor Hyperglycaemia

ABSTRACT

Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α -amylase inhibitory effects. The kinetics of inhibition was assessed in comparison with acarbose. The methanol extract of *Laminaria digitata* and the acetone extract of *Undaria pinnatifida* showed inhibitory activity against α -amylase, IC₅₀ 0.74 \pm 0.02 mg/ml and 0.81 \pm 0.03 mg/ml, respectively; both showed mixed-type inhibition. Phenolic compound, 2,5-dihydroxybenzoic acid was found to be a potent inhibitor of α -amylase with an IC₅₀ value of 0.046 \pm 0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α -amylase activity with an IC₅₀ of (0.075 \pm 0.010–0.103 \pm 0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α -amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia.

