EMBEDDED PC BASED WIRELESS COMMUNICATION
USING XTEA

KHOK JESS LYN

This thesis is submitted as partial fulfillment of the requirements for the award of

Bachelor of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

NOVEMBER, 2010

CHAPTER 1

INTRODUCTION

1.1 Introduction

Men are social beings. Communication has and will always play an integral
part in their lives. As men evolve and progress, so does its communication skills.
These communication skills have developed to the extent that the information passed
must be at times concealed and protected for reasons such as integrity, authenticity
and confidentiality. The increasing need and interest in information protection have
given rise to a new scientific field called cryptology. Cryptology is divided to two
areas: cryptography and cryptanalysis.

Cryptography, in essence is the art of hiding information. It is a technique
used to hide the meaning of a message and is derived from the union of the Greek
words ‘krypt6’ which means hidden and ‘grafo’ which means to write. This is
different from steganography techniques in that one is not hiding the actual message,
only the meaning of the message. If a message were to fall into the hands of the
wrong person, cryptography should ensure that that message could not be read.
Typically the sender and receiver agree upon a message scrambling protocol and

methods for encrypting and decrypting the messages beforehand.

On the other hand, cryptanalysis deals with the breaking of the encrypted
information. It is the study of methods for obtaining the meaning of encrypted
information, without access to the secret information. Typically, this involves
knowing how the system works and finding a secret key. In other words, this is the
practice of code breaking or cracking the code. The process flow of a cryptosystem is
simple in principle. However, the difficult and challenging part is to ensure that the

cryptosystem is strong enough to withstand attacks.

Today, cryptanalysis is practiced by a broad range of organizations:
governments try to break other governments' diplomatic and military transmissions;
companies developing security products send them to cryptanalysts to test their
security features and to a hacker or cracker to try to break the security of web sites by
finding weaknesses in the securing protocols. It is this constant battle between
cryptographers trying to secure information and cryptanalysts trying to break
cryptosystems that moves the entire body of cryptology knowledge forward.

For this project, the Extended Tiny Encryption Algorithm (XTEA) has been
chosen as the cryptography method. This is due to the reason of it being rather
flexible and small in size which makes it run fast in software. XTEA is the precursor
of Tiny Encryption Algorithm (TEA) designed by David Needham and Roger

Wheeler to correct the weaknesses in TEA.

1.2 Problem Statement

In the last few decades, the information and communication technology
industry has evolved such that it is increasingly permeating all aspects of our
everyday life from emails, social networking to e-commerce. As we get
progressively dependent on computers and communications networks, demand for
ever more sophisticated mobile and wireless technologies in terms of security
expands. However, whether or not the communication happens with the internet
does not matter because as long as there is interaction between A and B, online or
offline, wireless communication puts users at risk of data interception. Data,
regardless of its level of confidentiality causes one vulnerable to attacks once it is

passed to the wrong hand.

1.3 Objective

This project aims to produce a safe measure for wireless data communication
which is fast and easy to use. This is achieved by implementing XTEA in an
embedded system for PC based wireless communication using the XTend OEM RF
module. When data is input from one end user, the microcontroller should be able to
immediately encrypt the input and transmit it over to the other end user. The
microcontroller then decrypts the encrypted data and the original message will be

displayed.

1.4 Scope of Project

The project encompasses interfacing XTEA in an embedded system using the
PIC18F14K50 for PC based wireless communication. The wireless module used is
the XTend OEM RF module by MaxStream.

XTEA is an encryption/decryption algorithm which is has little memory
footprint, fast and is simple to use. Data is sent from one PC to another wirelessly
after it is encrypted by the PIC. The encrypted data prevents leakage of secret or vital
information should there be an intercept because it is only decrypted when it has

reached the other end user.

1.5 Organization of Thesis

This thesis is a combination of five chapters which includes the introduction,

literature review, methodology, result and conclusion.

Chapter 1 is the introduction to the project. In this chapter, the project is
given an overview whereby it discusses the background leading to the project,

problem statement, and the objectives to be achieved.

Chapter 2 is a compilation of literatures related to the project. Past
developments, achievements and the milestone of cryptography, notably the XTEA,

are discussed in this chapter.

Chapter 3 comprises of the project methodology. There are two main parts:
hardware development and software development. Hardware development of the
project includes the hardware components and how they are set up in stages.
Software development relates the program development in C language.

Chapter 4 presents the result and discussion of this project. This chapter is

mainly made up of simulations and their analysis to test the versatility of the project.

Chapter 5 is the final chapter in which this project is wrapped up. An
executive summary is given and recommendations are made for future improvement

of the project.

CHAPTER 2

LITERATURE REVIEW

2.1 Cryptography: A Brief History

Natural language ciphers have existed for over 4,000 years, with the
Egyptians being the first that is known to engage in the practice. Not long after the
first text was encrypted, the art of decrypting the cipher- cryptanalysis; emerged. The
history of cryptography can be broadly divided into three phases:

1. From ancient civilizations to the nineteenth century and the first part of the
twentieth century, with relatively simple algorithms that was designed and
implemented by hand.

2. Extensive use of encrypting electro-mechanical machines, around the period
of the Second World War.

3. Ever more pervasive use of computers, about in the last fifty years, supported
by solid mathematical basis [3].

Early ciphers used substitution to replace letters and eventually evolved to
also include transpositions of characters as well as simple substitution. Julius Caesar

was the first recorded user of the substitution technique. Many experts in the field of

cryptography have argued that all good -cryptographers are also good at
cryptanalysis. The idea is that if one has experience with methods of attack and
cracking codes, he or she probably has better ideas on how to construct codes that
cannot be cracked.

After World War | had ended, in 1926 the German Navy adopted the use of a
family of electro-mechanical encryption devices that became collectively known as
the Enigma machine. The device proved to be so effective that by World War 11 their
use had spread to every branch of the German military. The enigma machine is said

to have kick start the cryptography revolution.

The dawn of the computer age has brought about the invention of new
mathematical techniques to accelerate the cryptography process to even better
methods of encryption. In fact today, cryptography has become so advanced that
many of the ciphers are considered to be unbreakable, in a relative term. Although it
might take as long as several decades for one of today's computers to systematically
decode a ciphertext produced by some of today's leading methods of encrypting,
there is no guarantee that it would never be cracked.

In order for the ciphertext to be at all useful to the intended receiver, it must
have some form of order to it, no matter how obscure this sense of order may be.
Herein lies the problem. If there is an order to the cipher, regardless of how remote,
there will always be the possibility that someone will find a way to exploit this order,
and eventually crack the cipher [11]. Thus, the discovery of an absolutely secure

means of communication continues to elude cryptologists today.

2.2 Standards

Over the course of the years, cryptography has gained worldwide interests so
much so that a standard encryption algorithm was requested to standardize the
presently available cryptography methods back in the early 70s. From then on, the
Data Encryption Standard (DES) was proposed. However over time, the DES was
found to be insecure in many applications. This is chiefly due to the 56-bit key size
being too small and in 1999 where the collaboration between distributed.net and the
Electronic Frontier Foundation managed to publicly break a DES key in 22 hours and
15 minutes. Therefore eventually in 2001, a new method called the Rijndael was
announced as the new Advanced Encryption Standard (AES) to replace DES.

2.2.1 Data Encryption Standard (DES)

The Data Encryption Standard (DES) [8] is a cipher selected as an official
Federal Information Processing Standard (FIPS) for the United States in 1976. As a
block cipher DES operates on blocks with a size of 64 bits. The key also consists of
64 bits; only 56 of these are actually used by the algorithm, the other ones are parity
check bits. The overall structure consists of a so-called Feistel network with 16
identical base rounds with 8 substitution boxes (S-Boxes), an initial permutation, a

final permutation, and a separate key schedule.

The whole cipher consists only of bit operations, namely shifts, bit-
permutations and exclusive-or operations. The introduction of DES is considered to
have been a catalyst for the academic study of cryptography, particularly of methods

to crack block ciphers. Figure 2.1 shows the feistel function of DES.

Half Block (32 bits) Subkey (48 bits)

!

E

51 52 53 54 55 56 57 58

i

Figure 2.1: The feistel function of DES

2.2.2 Advanced Encryption Standard (AES)

AES was announced by National Institute of Standards and Technology
(NIST) on 26 November 2001 after a 5 year standardization process before Rijndael
was selected as the most suitable. It became effective as a Federal government
standard after approval by the Secretary of Commerce. The Rijndael cipher was

developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen.

AES is based on a design principle known as a substitution permutation
network and is fast in both software and hardware. Unlike its predecessor, DES, AES
does not use a Feistel network. AES has a fixed block size of 128 bits and a key size
of 128, 192, or 256 bits, whereas Rijndael can be specified with block and key sizes
in any multiple of 32 bits, with a minimum of 128 bits. The block size has a

maximum of 256 bits, but the key size has no theoretical maximum.

10

The AES cipher is specified as a number of repetitions of transformation
rounds that convert the input plaintext into the final output of ciphertext. Each round
consists of several processing steps, including one that depends on the encryption
key. A set of reverse rounds are applied to transform ciphertext back into the original

plaintext using the same encryption key.

2.3 Tiny Encryption Algorithm (TEA)

In cryptography, TEA is a block cipher notable for its simplicity of
description and implementation, typically a few lines of code. It was designed by
David Wheeler and Roger Needham of the Cambridge Computer Laboratory and was
first published in the proceedings of the Fast Software Encryption workshop in 1994.
The main goal of their design at that time was to produce a cipher that is simple,

short and does not rely on large tables or pre-computations [1].

TEA uses only simple addition, XOR and shifts functions, and has very small
code size. This makes TEA an ideal candidate to provide data security services for
wireless sensor network (WSN). Even though TEA was proposed mainly for
software implementations, its simple design makes it also very suitable for hardware

implementation.

TEA operates on 64-bit blocks and uses a 128-bit key. It has a Feistel
structure with a suggested 64 rounds, typically implemented in pairs termed cycles. It
has an extremely simple key schedule, mixing all of the key material in exactly the
same way for each cycle. Different multiples of a magic constant are used to prevent
simple attacks based on the symmetry of the rounds. Figure 2.2 shows the adaptation
of the TEA in C code.

#include <stdint.h>

vold encrypt (uint32 t# v, uint32 t~k)
uint32 t vO=v[0], vi=v[1l], suw=0, i;
uint32 t delta=0x9e3779b3;
uint32 t© ko=[0], kl1=k[l], k2=k[2], k3=k[3]:

for (i=0; i<32; i++)

sum += delta:;

vl += ([(vl<<4)+k0) ~ (vl+sum) ~ ((vl>>5)+kl):

vl += ([(vO0<<4)+k2) * (wvO+sum) ~ | (v0>>5)+k3):

w[0]=wv0; w[1l]=w1;

#include <stdint.h>

volid decrypt (uint32 t*v, uint32 t*k)
uint32 t© vO=v[0], vl=v[l], sum=0xCEEF3720, i:
uint32 t delta=0x5e3779b3;
uint32_t ko=[0], kl=k[1l], k2=k[2], k3=k[3]:

for (i=0; i<32; i++)

vl —-= [(vO0<<4)+k2) * (wO+sum) ~ | (v0>>5)+k3):

vl —-= [(vli<<4)+k0) © (wl+sum) ~ ((v1>>5)+kl):

sum —-= delta;

w[0]=w0; w[l]=w1;

Figure 2.2: Adaptation of the reference encryption and decryption routines in C

k[0]

T
-
aY
i/h

—l_"
HE »m g

K[3]

Figure 2.3: Two Feistel rounds of the TEA

12

Shortly after TEA was published, a few weaknesses were found. The mixing
portion of TEA seems unbroken but related key attacks are possible even though the
construction of 232 texts under two related keys seems impractical. The second
weakness is that the effective length of the keys is 126 bits not 128 does affect
certain potential applications but not the simple cypher decipher mode [2]. The

authors rectified those weaknesses in a new version of TEA called XTEA.

2.4 Extended Tiny Encryption Algorithm (XTEA)

XTEA is designed by Needham and Wheeler to correct the weaknesses of
TEA and was presented in an unpublished technical report in 1997. The XTEA is a
block cipher that uses a cryptographic key of 128 bits to encrypt or decrypt data in
blocks of 64 bits. Each input block is split into two halves, y and z, which are then
applied to a routine similar to a Feistel network for N rounds where N is typically 32.
Most Feistel networks apply the result of a mixing function to one half of the data
using XOR as a reversible function. XTEA uses for the same purpose integer

addition during encryption and subtraction during decryption.

Several differences from TEA are apparent, including a somewhat more
complex key-schedule and a rearrangement of the shifts, XORs, and additions.
Presented along with XTEA was a variable-width block cipher termed Block TEA,
which uses the XTEA round function but applies it cyclically across an entire
message for several iterations. Because it operates on the entire message, Block TEA
has the property that it does not need a mode of operation.

13

2.4.1 Mode of Operation

Figure 2.4 shows the C source code for XTEA as it was introduced in [4].
Additional parentheses were added to clarify the precedence of the operators. The
main variables y, z, and sum, which assist with the subkey generation, have a length
of 32 bits. All additions and subtractions within XTEA are modulo 2%. Logical left
shifts of z by 4 bits are denoted as z < 4 and logical right shift by 5 bits as z> 5. The
bitwise XOR function is denoted as “*” in the source code and & in Figure 2.4 and

Figure 2.5.

tean (long*v, long~k, long N

unsigned long w=v[0], =2=v[1l], delta=0x%e3779L5;
if (H>=0

unsigned long limitc= delta*N, sum=0;
while (sum!=limit

v += (z<<4 ™ z»»D) + z"sum + k[sum&3],

sum += delta,

Z += ([(y<<4 ™ y>>5) 4+ y"sum + k[sum>>11 &£3]:
else

unsigned long sum= delta=® (-N):
while (sum

zZ —-= [y<<4 ™ y>>5) 4+ y"sum + k[sum>>11 &3],
sum -= delta
¥y —-= [Z<<4 ™ z»>5) + z7sum + k[sum&3],
v[0]=y, v[1l]l==z;
return;

Figure 2.4: Standard C source code for XTEA

The first part of the algorithm is the encryption routine and the second part is
the decryption routine. The while-loop constitutes the round function. The formulae
that compute the new values for y and z can be split into a permutation function f(z)

= (z<4 P z>5) + z and a subkey generation function sum + k(sum).

The function k(sum) selects one block out of the four 32-bit blocks that

comprise the key, depending on either bits 1 and 0 or bits 12 and 11 of sum. The

14

results of the permutation function and the subkey generation function are XORed
and then applied to y and z respectively, by addition in the case of encryption or
subtraction in the case of decryption. This leads to the simplified block diagram

shown in Figure 2.5.

For encryption, z is applied to the left side, y to the right side, and all
adder/subtractors are in addition mode. For decryption, the opposite is applied. The
permutation function is shown as ‘f” and the subkey generation as ‘keygen’. One

round of XTEA computes a new value for y and z. [1]

Halfround 2

Figure 2.5: Two Feistel rounds (one cycle) of the XTEA

Therefore, the computation of one value can be viewed as a halfround. A new
value for sum is computed between the first and the second half round. It is

incremented by a constant A during encryption and decremented during decryption.

15

This computation is included into the first halfround as it can be performed

concurrently with the final addition/subtraction of the data in this half round.

CHAPTER 3

METHODOLOGY

3.1 Introduction

Embedded PC based wireless communication using XTEA is an
incorporation of GUI, cryptography algorithm and wireless modules. Figure 3.1
shows an overview of the project while Figure 3.2 is the project flow chart.

I——u—l
&] ciphertext [f

Iil

Figure 3.1: Project overview

W
User inputs
data in PC1

kil
Microcontraller

encrypts data

W
Encrypted data is

transmitted

Receiver receives
data

kil
ser enters

key in PC2 /"“

Is the key
correct?

Data is not
decrypted

Microcontroller
decrypts data

Decrypted data is
displayed in PC2

Figure 3.2: Flow Chart

17

18

The two PCs relay information in the form of ciphertext. GUI provides a
platform for users to enter and display data. When data is entered in the PC, the input
data is encrypted using XTEA and then transmitted by the XTend OEM RF module.
The receiver on the other PC receives the ciphertext. If the correct key is entered,
again using XTEA, the microcontroller decrypts the ciphertext. The original data is

then displayed in the PC. The encryption/decryption process is bidirectional.

3.2 Hardware Development

The project utilizes three types of components:

e UCOOA (USB to UART converter)
e PIC18F14K50 microcontroller
e XTend OEM RF module

Figure 3.3 shows how the three components are connected to the PC. The PC
and microcontroller interface through serial communication. However, the PC’s
serial port uses the RS232 protocol but the microcontroller uses TTL UART. In that
case, the UCOOA bridges the PC and microcontroller by acting as a level shifter for
the interface. The XTend OEM RF module is the transmitter/receiver for the wireless

communication between the PCs.

PC

I——LI—I

USB to UART XTend OEM

_— —= | PIC18F14K50 |—=>
converter RF module

Figure 3.3: Hardware setup

3.21 PIC18F14K50

The PIC18F14K50 as shown in Figure 3.4 is an 8-bit microcontroller by
Microchip Technology. This microcontroller is chosen because it is high
performance while economically priced, has 16 Kbytes of flash memory up to 8192
single-word instructions, and is small in size. The microcontroller is programmed

using the PICKkit2 programmer. Figure 3.5 is the hex file while Figure 3.6 shows how

the microcontroller is programmed.

voo—[]°

RAS/OSC1/CLKIN =—= [
RA4/ANI/OSCACLKOUT =—=]
RAIMCLRNVPP —s [
RCS/CCP1/P1AITOCK] =—= []
RC4/P1B/C120UTISRQ =— [
RC3IANT/P1C/C12IN3-PGM =— [
RCE/ANS/SST13CKIT10SCI=—= [
RCTIANS/SDOT10SCO =—= [
RE7TX/CK=—=]

[=Ji=- - = R [N FUI Y

1
.

PIC18F1XK50/
PIC18LF1XK50

20
19
18
17
16
15
14
13
12

[=— Vss

[] =—= RAD/D+/PGD

[] =— RA1/D-PGC

1 -—vuse

[=—= RCO/ANAIC12IN+/INTO/NREF+

[=— RC1ANSICI12INI-INT1/VREF-

[= RC2IANG/P1DIC1ZINZ-ICVREF/INTZ
[] = RB4/AN10/SDUSDA

[] =— RBS/ANTU/RX/DT

[] = RBE/SCKISCL

Figure 3.4: PIC18F14KS50 pin diagram

Address
0D30
0D40
0D50
0D60
0D70
0D80
0D90
0DAD
0DBO
0DCo
0DDO
0DEO
0DFO
0E0D
0E10

300000

00 02

6EE9 0E00
519B 5D9A
6B9A 079C
coo1 F1B1
B6EEA ciB1
[aet-4 0E20
2BAE D7C5h
6FB6 0E1D
6FB8 0100

Fo00 0101

0E12 0101

10EF E012
0100 ECD&
B4D8 2AEA
0101 D697
c938 1E3E

04
2003
E006
D002
6A03
FFEF
o101
6BB3
6FBS5
D60E
2BB2
5DB2
CFEA
Foo0
0101
0003
8800

06
6EEA
519A
o101
S1AE
c1B1
6FB5
0E9D
OE08
o101
6E00
E1F1
F1B3
c1B3
D7EB

0089

08 0A oc
CFEF F1B2 0101
087E E302 2B9A
6BB2 0101 ciB2
O0F1D 6EES 0E01
F1B3 0E37 6FB4
0100 ECD8& F000
6FB2 0E08 6FB4
6FB7 0E01 6FB9
6BB2 51B2 0100
6FBS 0100 ECDs
B6AEA 0ESD 6EE9
CFES FiB2 CFEF
FFEA c1B2 FFE9
0100 6B9C 6B9A
coo3 E003 4003

Figure 3.5: Hex file

0100
D001
Fo01
2003
0100
0101
0E01
O0ESD
EC9E
Fo00
0EO00
FiB5
2AE9
6B9B

20

(@ Pickit 2 Programmer [E=NE—)

File DeviceFamily Programmer Tools View Help

PIC18F_K_ Configuration

Device: PIC18F14K50 Configuration: €238 1E1E 8800 0009
UseclDs: FF FEFEFEFEEEFFFF CU00 R COlC 03
Checksum: 1270

I S Mcsoce

VDD PiCk 2
(] On -
[(Resd |[wie | [vedy | [Eese |[Bokonesk | T omar 33E
Program Memory

] Ensbled [HexOnly v| Source: [Cl. niDocuments'PShijessy'xtea jessy hex

0000 EF41 F00S FEFF FFFF 6E05 CED8 F006 CFEO ~
0010 F007 0100 CFE9 FoOD CFEA Fooe CFE1 F009 |
0020 CrE2 Faor CFD9 FO0B CEDR Fooc CEFf3 F0l4
0030 CTF4 FO1S CFFA FO16 €000 FOOF CO01 F010
0040 coo2 Fo11 Ccoo3 FO12 cood F013 AR9D EF2C
0050 F000 BARSE EFB6 F000 COOF F000 coto F001
0060 co11 F002 co12 F0o3 cois Fo04 CooD FFE9
0070 cooe FFER 8EQB8 coos FFEL Coox FFE2 Co0B
0080 FED9 C00C FFDA CO014 FEF3 CO015 FFF4 €016
0090 FEFA 5008 coo7 FFEQ coos FFDe o010 CFF2
00RO FOCE SEEF2 6AF7 OrBg 6EF6 QE00 2287 0009
0080 50FS BEOE B8EF2 0012 O0ROA 520D 6165 7964 ~

EEPROM Data

Auto Import Hex
V| Enabled | Hex Only - +Wiite Device
00 FF FF FF FF FF FT FF FE FF FF FF FF FF FF FF FF & Read Device +
10 F FF FF FF FF FF FF FF FF F F FF FF Expon Hex Fle
20 F FF EF FF FF FF FF FF FF FF FF IF FF FF [e
werrrrrrrrrrrrrer - PICKt 2

Figure 3.6: Programming the PIC

3.2.2 Serial Communication

Serial communication is the most popular interface between devices and this
applies to microcontroller and computer. UART is one of those serial interfaces.
Traditionally, most serial interface from microcontroller to computer is done through
serial port (DB9). However, since computer serial ports use RS232 protocol and

microcontrollers use TTL UART, a level shifter is needed between these interfaces.

Recently, computer serial port has been phased out. It has been replaced with
USB. Of course most developer chooses USB to serial converter to obtain virtual
serial port. The level shifter is still necessary for UART interface. Thus, the
UCO0Aproduced by Cytron is developed as a USB to UART converter which offers
USB plug and play, direct interface with microcontroller and provides low current

5V supply from USB port.

21

Traditional method:

Computer = Serial Port > MAX232 - Microcontroller

Or

Computer - USB -> Serial Port > MAX232 - Microcontroller

Using UCO00A:

Computer > UCO0A -> Microcontroller

The connection is made so much simpler with UCOOA as there is no need for

additional connections.

3.2.3 XTend OEM RF Module

The XTend OEM RF Module interface to a host device through a TTL-level
asynchronous serial port. Through its serial port, the module can communicate with
any UART voltage compatible device or through a level translator to any serial
device (For example: RS-232/485/422 or USB interface board) [6]. Devices that
have a UART interface can connect directly to the pins of the RF module as shown
in the Figure 3.7. Some of the key features of the Xtend OEM RF module are as

follow:

e Low power: 2.8 — 5.5 supply voltage
e Indoor/Urban range up to 900 m

¢ Its small form-factor enables it to be easily designed into a wide range

of data systems

22

e There are no master/slave setup dependencies

TTL Lagic <7 — TTL Logke
\ [- » /

O (detair)
T

xTond .

_ D0 d%a ouf

A5

Figure 3.7: System Data Flow Diagram in a UART-interfaced environment

12 mm

R
. |

S mm

Figure 3.8: Side view of the XTend OEM RF module

_— IFmm —

/I

&1 mm

40mm—o |}—

20mm) 1.0mm
30mm

Fin 2—— 1 l

L4
i 11
Pin 1—| L L
I Fin 19 49 mm

55MMe—] [—

20 mm

Figure 3.9: Top view of the XTend OEM RF module

To check for the functionality of the modules, X-CTU, a testing and
configuration software is used for this purpose. Figure 3.10 shows the
communication between two properly working modules in which they were
embedded on a USB interface board and are connected to the PC through USB
cables. Once connected to a PC, the module would automatically assume a COM

23

port. The words in red denote input data while the words in blue denote data
received. The exchange seems to be almost immediate and there was no lagging.

BE x-CTU [cOM3] o= [| B8 X-CTU [COMIS] F=2

About PC Settings | Range Test Teminal | Modem Configuiation |

Line Status Assert
PC Settings | Range Test Teminal | Modem Canfiguration | = Close | Assemble| Clear | Show
Line Status basert ETSIEDIDER [OTRWV RTSW [Break ™| ComPost| Packet | Screen| Hex
Close: Assemble| Clear | Show
Com Port | Packet | Sereen| Hex N

C7SI)E0I [05R | [DTR W [RTS I [Break ™ helTol!
heTToll this is just a test!
Llo: : =

this is just a test! oh really??
oh really?? "

v testing...1,2,3...
testing...1,2,3... 5 s S5 3 5
i think it's working perfectly fine..
i think it's working perfectly fine..
woots!!
woots |

=l 5
COM3 | 5600 &H-1 FLOW NONE Fir. 77 byes oM | 9008N1 FLOWNONE Rx 2 bytes

Figure 3.10: X-CTU

The hardware for the project is set up in stages until it eventually is as shown
in Figure 3.3. The setup is done in stages to ensure that each and every component is
working properly. Throughout the stages, X-CTU is used to test the wireless

communication between the XTend OEM RF modules.

In the first stage, the XTend OEM RF modules are connected directly to the
PCs through a USB interface board, as what has been described above. This is shown
in Figure 3.11 below. The output is as shown in Figure 3.10 and the expected output
for all stages goes the same.

XTend OEM XTend OEM
RF module RF module

Figure 3.11: Stage 1

24

For the second stage, the UCOOA USB to UART converter is placed between
the XTend OEM RF module and PC without the USB interface board as is visualized
in Figure 3.12.

XTend OEM XTend OEM
RF module RF module

UCooA |+ UCo0A

Figure 3.12: Stage 2

The final stage is shown in Figure 3.13. With the programmed
microcontroller placed in between UCOOA and the XTend OEM RF module, data
encryption/decryption is incorporated in the wireless communication. Before the data
is transmitted from the PC, the microcontroller encrypts the data based on the XTEA
cryptography algorithm. The wireless module on the other PC receives the ciphertext
but does not decrypt it until the correct key has been entered by the receiver (user).

The original data is then displayed on the PC.

vcooa L eic L XTend OEM XTend QEM | pic L ucooa

RF module RF module

Figure 3.13: Stage 3

25

3.3 Software

This project involves PC to PC wireless communication using XTend OEM
RF modules. Since this is a program centric project, the early part of this project

consists of simulations using software such as:

e CCS C Compiler
e Proteus ISIS Professional
e Eltima Virtual Serial Port Driver

e Microsoft Visual Studio

These softwares work together running simulations in such a way that Proteus
ISIS Professional and Microsoft Visual Studio are connected by Eltima Virtual Serial

Port Driver to send and receive data serially between the two softwares.

3.3.1 CCS C Compiler

CCS provides a complete integrated tool suite for developing and debugging
embedded applications running on Microchip PIC® MCUs and dsPIC® DSCs. The
heart of this development tools suite is the CCS intelligent code optimizing C
compiler which frees developers to concentrate on design functionality instead of
having to become an MCU architecture expert. The C language program is written
and compiled using this software to generate the hex file which would then be
programmed into the PIC18F14K50.

26

3.3.2 Proteus ISIS Professional

Proteus ISIS Professional is a complete electronics design system which lets
users simulate entire microprocessor/microcontroller designs running on actual
processor machine code in real-time. It features a range of simulator models for
popular microcontrollers, and a set of animated models for related peripheral devices

such as LED and LCD displays, and keypads.

Two special features which are the highlights in the simulations are the
COMPIM and virtual terminal functions. COMPIM is a COM port physical interface
model which acts as a RS232 terminal. The virtual terminal acts like some sort of
GUI whereby user can input data and it can also read data received. In other words, it
forms the basis of the GUI later.

3.3.3 Eltima Virtual Serial Port Driver

Virtual Serial Port Driver (VSPD) emulates physical COM ports by creating
virtual serial ports and connects them in pairs via virtual null-modem cable.
Applications on both ends of the pair will be able to exchange data in such a way,
that everything written to the first port will appear in the second one and backwards.

All virtual ports work and behave exactly like real ones, emulating all their settings.

27

3.3.4 Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE)
from Microsoft. It can be used to develop console and graphical user interface
applications along with Windows Forms applications, web sites, web applications,
and web services in both native code together with managed code for all platforms
supported by Microsoft Windows, Windows Mobile, Windows CE, .NET
Framework, .NET Compact Framework and Microsoft Silverlight.

For this project, it is used to build the GUIs using the C# language in which it
will input data and display the output. A unique function to note here is the serialPort
tool. The serialPort tool enables the GUI to be connected to USB devices to transmit
data over the COM port.

3.4 C Programming

The C language is a general purpose computer programming language mainly
used to develop application software. In this project, the C language is chosen to
develop the XTEA encryption/decryption routine for the microcontroller. Table 3.1
shows the comparison of the C language with other common programming language;
assembly and basic, in terms of code complexity, software speed, program size, and

development time for a basic application.

Language Assembly Basic C
Code complexity Hard Easy

Speed Very fast Slow Fast
Program size Very small Big Small
Development time Long Short

Table 3.1: Programming language comparison

28

From the table above it is no surprise why the C language is the most widely
used programming language. There are also other variations to the C language such
as C# and C++.

3.4.1 Program Code

The principle of the XTEA cryptography algorithm has been explained in
Chapter 2 (2.4.1 Mode of Operation). Figure 3.14 shows the header for the program.

#include <18F14E:S0.h>
finclude <string.h>
Finclude «<xXtea.h>

fuse=s INTRC, HOWDT, NOPROTECT , HOLVE
use delay(clock=16000000
use rs232 (baud=%600,parity=N, xmit=PIN B7,rcv=PIN B5 bits=E&, strean=DATR

u=e rs232 baad=9633.parity=ﬂ.xmit=FIN:CE.rcv=PIN:C?.bits=E.5tIE&H=CNTL

Figure 3.14: Header

HoH M M

#use rs232 is a directive that tells the compiler the baud rate and other options
like transmit, receive and enable pins. More than one rs232 statements can be used to
specify different streams. For this project, it is used twice to differentiate the data
from PC to microcontroller and vice versa, and to and fro from microcontroller to
XTend OEM RF module. Pins RB7 and RC6 transmits data out from the

microcontroller while pins RB5 and RC7 receives data into the microcontroller.

One point to note here however is the use of the xtea.h driver. This driver
contains the XTEA algorithm which forms the back bone of the program. Whenever

the following lines are called, these routines below in the xtea.h driver is executed.

29

XTEA _encrypt and XTEA_decrypt are the algorithms as have been stated in Chapter
2.

XTEZ encrypt string (strng, L1, cryptl , L2 ,key):

XTER decrypt_string (strng, £, cryptl , 8 , key):

Figure 3.15: Function to call for XTEA

void XTEA encrypt_string (char® data plain, int length plain, char*® data_crypt, int length_crypt, int32* key

char tmp[8]:
intg i,j,m:
for (i=0:; i < length_crypt: i+=8
for (3=0; 3<8:; Jj++) {
m = i+j;

if (m < length plain) {
tmp[j]=data_plain[m]:

else
tmp [J]1=0;
XTEA encrypt (tmp, key):
for (j=0; Jj<8; Jj++) {

m = i+j:
data_cryptim =tmp[j]:

Figure 3.16: Program code for string encryption

As can be seen in Figure 3.16, the plaintext is represented as string, and the
length of both the plaintext and encrypted data are set to blocks of 8 bytes. This
means that even though the input data is less than 8 bytes long (less than 8
characters) it will still be encrypted to a length of 8 bytes. If however the input data
is more than 8 bytes long (more than 8 characters) the data will be encrypted to full

two sets (meaning two blocks).

char strng [128]:

char cryptl [128]:

char key[1l6] = "thisismyownkey!";

Figure 3.17: Key

30

The key length is 128 bit. For this program, the key is set as
‘thisismyownkey!” which has 16 characters. These 16 characters when entered are
translated into a routine of decryption whereby the output is 32 hexadecimal
characters. This key functions like a password in which case if the ciphertext is to be

decrypted to its original data, the correct key must be entered.

3.5 Software Development

Simulations play a very huge part in completing this project. In fact, a big
chunk of time is invested in simulating the project to especially test out the
functionality of the program. By simulating first the project, time is saved in
troubleshooting the software and virtual hardware before implementing it into the
real hardware. The simulations are run in steps by slowly building it up to the end
product.

3.5.1 Step 1: Program

The program is written and compiled using CCS C Compiler to generate the
hex file. Figure 3.18 shows the program written while Figure 3.19 shows the
message box upon successful compilation. The hex file generated is saved by the

name of ‘xtea jessy’ at the destination address.

31

® row o 53
@ Project | Edit Searcn Options Compile View Took Debug Documemt UserToolber 6
= - - = -
(T~ 7 O N et S
Broject PO Woerd 24 B0t Wizard Creste Open Al Files Chose Project Files. Project

A Ppee Inset CAP Pt xtes jessy C\Users\Khok bess Lyn Docurnents\PSM\jessy'aten jessy.c

Figure 3.18: Program in CCS C Compiler

% oW =@ =
® Project Edit Seaech Options |Compik| View Tools Debug Document UserToolbar @
J 1
¢ e = = = =
4 - » = &
E & & 7 |~ ® k. 7 & & §)
‘ b aant | o | ew | B e 0 i Sesovis CMDee Swio Dwape
—TET—

a INTRC,NOWDT, NOPROTECT , NOLVP

Statements: 233, Time: 2 Sec, Lines: 1145

Files: 6, m
" Output files: ERR HEX SYM LST COF PJT TRE STA

Figure 3.19: Successful compilation

3.5.2 Step 2: Test Run on Virtual Circuit

A circuit which mirrors the actual circuit is constructed in Proteus ISIS
Professional as shown in Figure 3.20. Even though there are no tools to represent the
XTend OEM RF modules or any other wireless modules, the two PICs are connected

by wire, assuming that they are communicating wirelessly. The hex file generated is

32

‘programmed’ into the PIC as shown in Figure 3.21. VT1 and VT2 in Figure 3.20 are
the representation of GUI.

When the data received in VT2 is as expected from the input in VT1, the
program is said to be successful. The PIC encrypts the input in VT1 before
transmitting it to the second PIC which would then decrypt the data it receives. The

decrypted data is displayed in VT2.

BB run! - ISIS Professianal =1) [
Fie_ View it Tooks Design Gaph ~Souwce- Dsbug _Lbxary _Tempiate System - Hel
IEE IR SR B+ +RQ44 (90| XA ZZNN A% ARXNBR (@
X C
» 9 o U1
+ || = 19 5
T RAOD+PGD RCO/ANAICIZINHINTONREF+ [—12=
- L RAID-PGC RCHANSICIZNINTIVREF. [—= VT1
t [p]i] oo RAIMCLRIVPP RCUANBPIDICI2N2JCVREFINT2 [—=
| ——{ RAYANYOSCICLKO RCHANTPICICI2NGPGM | RXD
B [BStaow —2 RASIOSC1ICLKI RCAP1BIC120UT/SRQ |2)
= |powas - RCS/CCPPTATOCK) f—— ™
5 RB4/AN10/SDISDA RCH/ANS/SSTICKITIOS! |
> 5 RESIAN1IRXIDT RCT/ANI/SDOMOSO —a1s
o 5 RESISCKISCL ”
- REITXICK VUSB [— —]crs
o IC16F 14K50
@
7 u2 {
[£ rA0DYPGD RCO/ANA/CT2NAINTONREF+ [—12
® S RAIDPGC RCTANSICIZNINTIIVREF- [—= VT2
D S—{ RASNCLRIVPR RCZ/ANSIPIDIC12N2/CVREFINT2 f—=
® —— RAJAN3IOSCIICLKO RCHANTRPICICI2NGPGM |—— RO
A ~2— RASIOSCIICLKI RC4P1B/C120UT/SRA |
. = RCSICCPPIATOCK] |—— ™D
5 RE4/AN1ISDISDA RCB/AN/SSITIICKITIOS! |
+ 1| RESIANT/RXIDT RCT/ANI/SDOTI0SO — RTS
5] REsISCKISCL 5
Lo rermuck vuse - —crs
1C18F 14K50
DI [W I 8] & 0Messagelsh || Rock sheet 1
[E8 run - ISI Professions| =@ 2
DS5HE @R &R B+ +484% [9¢ ¥ne TTAE Qe ||[RAXBERLBRE
L3l-]
> |9 |‘El-n:| u1
+ || 2o Aol Lt
®m|n St Component i e
| TEwcEs
|t Conporent Fference: & Hidder M o
¢ |dmeen Conponent Yok Fomma e || BEE
= PILIF13K50 PCB Package iz <[] [Haean <] Dot 2z
1'3 Fuogiem Flc lioa o] FlrmElirr /TS
Proooss: Dlck Feuency ooz =] | ——
g USB Host Compuses Addhess localhat Hdedl - e —]cTs
ek Progesi
o [Fotcn ADC Breakpor 2 Sampie Tve? =] [l =] e =]
@ Ot Fropsite
s
]
2 VT2
® Evchad fum i [— o
Esncluds from PO8 Layout
g il popeis s et -
o
*+ —=— RESIANT1/RXDT RCTIANGISDOMI0S0 [— —rrs
T ResiscKiscL =
L rezmuck vuse L —{crs
PIC18F14K50

o T T30 [W][30Mesagelsl || oot sheet 1

Figure 3.21: ‘Programming’

the PIC

[ER run - 515 Professional (Animating)
e View £t Took Design Greph Source Debug Library Templste System Help
1 P+ AR Iy

[BR=] Ban @
I L

L3

e Fn

2ICLKO
kI

IsDA
DT

P RCUANEIP 1DIC1 2IN2HCVREFANT2

RCUANACZNHINTOVREF+ f—t=
RC1ANSIC 12IN1-INT1/VREF-

RCIANTPACIC12IN-PGM f—
RCAPIBICT120UTISRQ ==
RCS/CCP1/P 1ASTOCK] ==
RCHANS/SSIT13CKITIOS

RCT/AN/SDOT10S0 [~

vuse 1L

QERY

+E>BUO B\ [T

PICTEF14K50

’s

2ICLKO
ki

DA
T

[P T DT T m]unau

RC2/IANGIP 1DIC1 2N2-ICVREFINT2

RCOANAIC ZN+INTONREF+ f—12
RCUANSIC12NTANTIVREF- p——

RCHANTIP1CIC1ZINZPGM
RC4AP1B/C120UT/SRQ
RCSICCP1P1ATOCKI
RCOANSSSIT13CKITIOS
RCT/ANS/SDOM10S0

VUSB —

L
PIC1BF14K50

essagefs) | | ANIWATING: 00,0007 71805 [CFU koad 8]

-

RTS

CTS

L)

I no
LN S

[

CTS

Figure 3.22: Circuit running on xtea jessy.hex program

3.5.3 Step 3: GUI

| oo

33

Two simple GUIs, one to send data and another to receive data, are

constructed in Microsoft Visual Studio using the C# language. The serialPort’s COM
port is set to the other half of the virtual COM port pair.

oZ Forml

[cose ||

SEND | [ExT |

A

Figure 3.23: GUI to send data serially over COM port

34

o Form 1

Close

S =

.

Figure 3.24: GUI to receive data serially over COM port

3.5.4 Step 4: Serial Port Communication

The virtual terminals in the Proteus ISIS Professional simulation are
substituted with COMPIMs as shown in Figure 3.25 below. In this step, the VSPD
acts as a bridge connecting the GUIs in Microsoft Visual Studio (serialPort) and the
virtual circuit in Proteus ISIS Professional (COMPIM) by creating virtual COM port
pairs.

8 run - SIS Professional (oo -
e Viow Edt_Took Design rophSource. Debug LibrayTemplate SytemHelp
DEH S G ||[@iH+ +RLRQ |9 [} @& T BABRENER(E
L] | P1
: Al
as = | e RCOANAIC 2o NTONREF+ |12 —
| | E RAUDPGC RCH/ANSICIINTINTINREF- |2 -
R T e S| RAGWCLRNRR RCJANGIDICIZNZ/CVREFINT2 =2 -
w| . S RAGANIOSCICLKG RCHANTIPICICIINE PG |—— —]
| bR,] RASIOSCIICLKI RCAPABIC120UTISRO 2= -
= PICIBF14KED i RCSACCP /P 1ATOCK] = I =]
>- =1 RBA/AN10SDVSDA, RCB/ANS/SST13CKITIO0S!] =1
I T REBSMANTIRXDT RCTIANSISDOT1050 e —
T reerscroscy 7
‘5’ RETMAICK VUSE [— =
ot FICTEF 14H50
n i
@
7 U2 4
m 2 raoDwPeD RCUANAICTZNSINTONVREF+ |—2 +
® L RATDPGC RCI/ANSICINTNTINVREF. |2 -
[3 RAIMCLRIVPP RC2ANGP 1DIC 2IN2-FCVREFANT2 = —
® = RAAANIOSCACLKO RC3/ANTIP1CHC12INZ-PGM e =
A —] RASIOSCCLKI RCAP1B/IC120UTISRO = £
] 13 RCSACCP1/P1ATOCKI '—'—8 El
r i RBaIANIOSDISDA RCBIANSSETICHITION |2 —
12 RESIANTIRADT RCT/ANSISDOTI0SO zd
- resscrscL .
L0 RBIMUCK use (L =
TR |01 Error)
ETEXT>E COMPIM
TETs

(BT T 00 T W] 0Mesnapetl || Fook sheet

Figure 3.25: Circuit with COMPIM

Edit Component

Camponent Fieference [F Hiden oK
Component Yalug [ComPM— Hidden: T
VSM Model [coMPIM.DLL [Hidean =]
Physical port | [Hidear -]
Physical Baud Fiate: Hidedll ~
Physical Data Bils [Hidean ~|
Physical Pariy: Hidedll ~
Vitual Baud Rate: [ss00 | [Higear <]
Vitusl Dats Bits [2 | [Hidear]
Vitual Pariy [one | [Hidean |
Advanced Fropetties:
Physical Stop Bits ~l[| [Hidear]
Other Properties:
Exelude from Simulation Attach hierarchy module

Exclude from PCE Layaut
Edit gll propeties as text

Figure 3.26: Edit COMPIM properties

35

Figure 3.26 shows the COMPIM’s properties which can be edited by user.

For the simulation, the baud rate is set to 9600 and the COM port is set according to

the virtual COM port created such as shown in Figure 3.27.

&
Port pairs Options Help

Serial ports explorer

{51 Virtual Serial Port Driver
[E Physical ports
©oLAh come

-8 Virtual ports

*..[H Other virtual ports

Virtual Serial Port Driver 6.0 by Eftima Software

Manage ports Port access list Custom pinout
VSPD by Ellima can create vitual serial ports with any names you like,

50 you are not limited to COMx names only. However. please, make
sure that programs working with these ports support custom port names,

& First port: COME -
¢ i; et per :I A pa
- Secondport COMT -

(f’;% Delete pair

Enable stict baudrate emulation

Ereak line/Restore connection

For help press F1

[f'_? Al wirtwal serial pairs will be
* temaved from your system, Please, Delete all
make sure al ports are closed

Figure 3.27

: Eltima Virtual Serial Port Driver

36

EE run - 1515 Professional (Animating) SIS
File View Edit Tools Design Graph Source Debug Library Template System Help

DEW|dE en || B+ +aaaq o

I
£
B

[T

== o Form1

o

g

5
[zl
g

received=A3 8362 1CBACA 20 7A FCO/ANSIC 2N INTOVREF +

Fo
Decrypted: hello RC1ANSICI2N1-INT1 FVREF- Hmo O
Lome || cdoroirin e =it Po
g = e
RCAPIBICI20UTISRG Hoas =0
JCCP1P1ATOCKE o= o
ROSANBISSIT13CHIT1 01 “~r 0
RET/ANSSOOTI0S0 =to
17 .
VuSB [—- O error B

OMFIN

oPEN + LTEXTe
CLOSE Bdr 2!

i

RCO/ANAICI 2N INTOVREF
RC1ANSIC1201-INT1 VREF -
RC2(ANSIPIDICI 2N2-ICVREFINT2

e
)
e RCSANTFICCI205- PG Fo
RAGIOBCH LA RC4PIBICIZ00T15RG o
ecpimamock Fo
B4 2410DITD RCBIANGSSTSCHIT 051)
BS/ENTT DT RCTNAIDOM 050 o
1] Remcnisel = o
RETTHICH YUsB [—— =
TG 4KG0 0O error O

*1FoQ|+@E>8U@EN\NEY YO DK V&

» [[W [m][t 15Message(s) || [ANIMATING: 00.00:1 868405 (CPU load 1007 serial (Running) - Microsoft Visual Studio

Figure 3.28: Simulation using all software

The simulation is then performed by running the GUIs in Microsoft Visual
Studio and the virtual circuit in Proteus ISIS Professional as shown in Figure 3.28
above. Once the simulation is successful, producing the desired output, the

simulation is translated into the hardware.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

The objective of the project is to produce a safe measure for wireless
communication. The embedded PC based wireless communication using XTEA is a
method which encompasses both software and hardware. PC based communication is

achieved by the GUI where user input data and data is displayed.

When data is entered in the GUI, it is transmitted serially to the
microcontroller through the UCO0A USB to UART converter. The microcontroller
then encrypts the data using the XTEA cryptography algorithm producing a
ciphertext. The ciphertext is transmitted wirelessly from one PC to another with the
XTend OEM RF modules acting as the transmitter and receiver. Unless the correct
key is entered, the ciphertext remains encrypted. The original data after it has been
decrypted is then displayed in the GUI in the PC. Figure 4.1 shows the hardware and
figure 4.2 shows the GUI.

Figure 4.1: Hardware

ol XTEA [E= e ™
Data Received
- Open Port
o
Send Data
o

Figure 4.2: GUI

38

39

4.2 PC to PC Wireless Communication

Users are able to communicate in a distance wirelessly through the XTend
OEM RF modules. However, the confidentiality of the data transmitted is protected
by the XTEA. The analysis of the encryption/decryption process is discussed below.

4.2.1 XTEA Encryption/Decryption

The figures below show the communication between the two PC. XTEA 1 is
the GUI for PC1 while XTEA 2 is the GUI for PC2. First, just like during
simulation, the COM port is opened. Should the ‘Open Port’ button clicked more
than once, a message box notifying that the COM port has already been opened will

appear as shown in Figure 4.3.

0
D
%

‘
Close Port

Send Data

E

Figure 4.3: Message box

The figures below show how to send data and how data is received step by
step. When the user input data in the ‘Send Data’ text box such as shown in Figure
4.4, upon clicking the ‘Send’ button the word ‘hello’ is transmitted from the PC to
the microcontroller to be encrypted. The encrypted data is then transmitted wirelessly

40

by the XTend OEM RF module to another. The latter would then receive the
encrypted data and the microcontroller decrypts it before being transmitted back to
the PC. The decrypted message is displayed in the ‘Data Received’ section as shown
in Figure 4.5. Figure 4.6 and Figure 4.7 show the data being sent from the receiver
PC instead.

ol XTEA_L = E e | Wl XTEA 2 S =] = |

Data Received Data Received

- o] - Comm)

Send Data Send Data

hella| A -

Figure 4.4: Input from PC1

asl XTEA_1 = [B [| o XTEA2 = =] = |
Data Received Data Received
shelloL1=5 L2-Blencrypled=A8 B3 62 ICBACA - received=A8 83 62 1C BACA 20 7A => Decrypte -
207A) d hello

Send Data Send Data

Figure 4.5: Data sent from PC1

ud XTEA 1 [o[m] =8] all XTEA 2 | e
Data Received Data Received
shelloL1=5 |2=Bencrypted=AB 8862 ICBACA - received=Ag 88 62 1CBACA 20 7A => Decypte -
2074 d: hello

Send Data Send Data

- world| i

Figure 4.6: Input from PC2

41

sl XTEAL = (B R all XTEA_2 | |
Data Received Data Received
shelloL1=5 L 2-Bencoypted=ABBE 62 ICBACA ~ | OpenPot | received=AE 8862 ICBACAZ07A =>Deenpte - | OpenPor |
7 —— d: hello e
yeceived=000 12CEF9040721 =>Deanpted: [Gogopon | swordL1<5 L2-8(encypted=0000 12CBF90407 [Ooseper |
world e ===] 21) e == |
Send Data Send Data
Send | Ea | [Send | Edt

Figure 4.7: Data sent from PC2

Since, there were no means to intercept the data transmitted wirelessly
between the two modules, what could be done to prove that the data is indeed
encrypted when being transmitted is to ‘read’ it from the simulation. As shown in
Figure 4.8 below, virtual terminals are placed on the wires connecting the two
microcontrollers. What transpired between the input and output of the

microcontrollers are captured by the virtual terminals VT1 and VT2 as shown in
Figure 4.9.

uice Debug Library Tempiste System Help

+H>BUOENEYYRER

i

[T T 00 T W] 1 25 Messagels) || Click o deglay the simdation log

Figure 4.8: Bidirectional circuit

42

Virtual Terminal - 101 [=] | Virtual Terminal - 102 =]

[Ready. ..
received=A8 88 62 lg BA CA 28 7A

=» Decrypted: hello

d=-n8 BB &2 1C BA Ch 20 70 >
12 C8 F? B4 @87 21
r1d

{encrypted=H@ BA 12 C8 F? B84 B7 21 >

Virtual Terminal - VTL Virtual Terminal - VT2

B0 B8 12 C8 F9? B4 47 21 A8 88 62 1C BA CA 28 7A

Figure 4.9: Virtual terminals

The encrypted data input in 101 captured by VT2 are the same. The same
goes for the encrypted data input in 102 captured by VT1 are the same. This shows
that, the data when transmitted wirelessly would be in its encrypted form also.

4.2.2 Cryptography Key

The cryptography key of XTEA is a 128 bits long key used to “unlock’ the
encryption. Unless a correct key is entered by the receiver user, the ciphertext
remains encrypted. Figure 4.10 shows the simulation when data is entered in 102.
This depicts how it is like when data is sent from one PC but the receiver user has
not entered the cryptography key. The data received by the wireless module is in its

encrypted form.

1515 Professional (Animating]
Fde View Edt Tooks Oesgn Graph Source Debug Library Templste System Help

B @R [+ RS o

Virtusi Terminel - ¥TL

YOERE

Virtual Terminal - VT2

'@ B\

+ 0> 8

[T T 0 T W] 0 23Messaouil | | ANATIG: 00071 20645 P load G35

=
s

= reessciusaL
FETNEK

Virtual Terminal - 101

1

1 Pyvrarens RO e TR

RCHANSICI2M1-IVTIVR
RE2UANEPADIC 2M2-ICVREFAT
AAMIOSCCLND RUSIANTPICICIZNG- P
SIGECHCLK REAPIBICI 2007
RESICP 1 ATD(

| mesanosoisoA FCBANAESTI3AT(
s

HI1RKOT RCTIANBSDOMIC)

v

TR

+
Virtual Tesrrinal - 102 =
12
S v [T ———
e T
SR rcamnaeiD e
e o e p
freecim
n prasipliott
it pminoeens, nosssedEr oo
ey e
[l
[t wy
S

Figure 4.10: Data entered

Virtual Terminal - 101

Virtual Terminal - 102

Ready. ..

>

Virtual Terminal - VT1

{encrypted=C6 DA G7 2F A4 64 6C 22 >

Virtual Terminal - VT2

IC6 DA C7 2F A4 64 6C 22

Figure 4.11: Virtual terminals

43

When the correct key is entered, the ciphertext would then be decrypted to its

original data as shown in Figure 4.12 and Figure 4.13.

BE

&

+HE>80@E\ "

> T L0 [W] 4 23 Messogels) || [SREATING 0000

Virtual Terminal - [01

TG (P oo 30

Figure 4.12: Key entered

|3 | virtual Terminal - 102

nyownkey?t
younke y¥
L1=15 L2=16

=» Decrypted: hello|

Virtual Terminal - ¥T1

Kencrypted=F? D3 A8 S5E 6A 3@ EA 2C 72 43 CB DC 98 Al
received=C6 DA C?7 2F A4 64 6C 22

[®] Virtual Terminal - vT2

(encrypted=Cé DA C? 2F A4 64 6C 22)
jreceived=F? D3 A8 S5E 6A 38 EA 2C
=> Decrypted: thisismy

" =]

E]

4.2.3 Encryption Length

C6 DA C7 2F A4 64 6C 22 7

Figure 4.13: Virtual terminals

[F? D3 A8 5E 6A 38 EA 2C 72 43 CB DC 98 A6 48 5D .

44

In XTEA, data is encrypted in blocks of 8 characters; or 64 bits long. Figure

4.14 shows how it is being done. When the data entered is less than 8 characters, as

what that has been shown in all the simulations beforehand, the algorithm would still

encrypt the data in blocks of 8 characters by considering the remaining spaces as
characters. L1 is the length of the data entered by the user while L2 is the length of

the ciphertext.

45

Should the data is longer than 8 characters, the data will be encrypted in the
next multiplication of 8. For a data length of 11 characters as what is shown in Figure
4.14, the XTEA will run in two rounds. The data ‘khokjesslyn’ has 11 characters
altogether. But since it is longer than the first multiplication of 8, it will be encrypted
in the next multiplication of 8, which is in the length of 16. Thus, ‘khokjess’ is
produced from the decryption of the first round of ciphertext and ‘lyn’ the remaining

data is produced from the second round.

Virtual Terminal - INPUT =

{encrypted=A8 B8 62 1C BA CA 28 7A4 >

>khokjesslyn

(khokjess lyn

Li=11 L2=16

{encrypted=85 ED CA AB 8D 7F 5B 51 61 BE 85 23 49 8D BB (J

>

Virtual Terminal - QUTPUT (=]

[Ready. ..

received=A8 88 62 1C BA CA 28 74
=» Decrypted: hello

received=85 ED CA AB 8D 7F 5B 51
=>» Decrypted: khokjess

J
received=61 8E 85 23 4% @D BB C2
=» Decrypted: lyn

Figure 4.14: Virtual terminals

CHAPTER 5

CONCLUSION

5.1 Conclusion

In this modern age, cryptography is ever more advanced and pervasive as the
information technology industry grows. It is now widely used for military, political
and economic reasons. People are getting very obsessed with information security
especially since now that the internet has become an almost integral part in many
lives. There are many cryptography methods but the XTEA cryptographic algorithm

used for this project outputs a satisfactorily secured wireless data transmission.

The embedded wireless system using XTEA cryptographic algorithm
provides a secure measure for PC based wireless data transmission. When data is
sent from one user to another the data is encrypted and then only transmitted. The
receiver at the other end decrypts the data automatically upon receiving the
encryption. The result is pretty impressive as the time taken for the whole process;
data encryption, wireless transmission, and data decryption; happens altogether in
real time immediately. This is proven true even when tested for the range of more

than 300m. Suffice to say, XTEA is able to be implemented in almost any kind of

47

system as its unusually small size and flexibility makes it versatile for many types of
application.

This project produces two small and lightweight wireless modules which are
easy to use and portable. These are the basics for a PC based wireless
communication. The modules can communicate up to a range of 900m due to the
restriction of the wireless module. However, for a longer communication distance

this matter could be rectified easily by opting for a bigger scale wireless module.

Therefore, the project can be said to have achieved its objective of producing

a PC based wireless communication which is fast and easy to use.

5.2 Recommendation

There are a few recommendations to further enhance this project for better
application.

The implementation of multiple keys which enables keys unique to each user
be used. This would provide a higher security and lesser chances of being hacked.
This implementation however would require a database in which the key cannot be

determined directly in the C programming.

The successor of XTEA, the Corrected Block Tiny Encryption Algorithm
(XXTEA), can replace XTEA as it is said to be more likely to be more efficient for
longer messages. The difference between XTEA and XXTEA is that the former’s
round function to each word in the block and combines it additively with its leftmost

neighbour. The slow diffusion rate of the decryption process was immediately

48

exploited to break the cipher in [10]. XXTEA uses a more involved round function
which makes use of both immediate neighbours in processing each word in the
block.

49

REFERENCES

[1] Jens-Peter Kaps, Chai-tea, Cryptographic Hardware Implementations of XTEA,
Volgenau School of IT&E, George Mason University, Fairfax, VA, USA

[2] David J. Wheeler and Roger M. Needham, (October 1997). TEA Extensions,
Technical report, Computer Laboratory, University of Cambridge.

[3] http://www.logicalsecurity.com/resources/whitepapers/Cryptography.pdf
Accessed: 14 May 2010

[4] Soren Rinne, Thomas Eisenbarth, and Christof Paar Performance Analysis of

Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers, Horst
G ortz Institute for IT Security, Ruhr University Bochum

[5] http://www.ridex.co.uk/cryptology/# Toc439908852
Accessed: 14 May 2010

[6] Vikram Reddy Andram, (2003), A Cryptanalysis of the Tiny Encryption Algoritm

University of Alabama
[7] XTend OEM RF Module datasheet
Available at: http://www.digi.com/
Accessed: 26 March 2010
[8] PIC18F14K50 datasheet
Available at:
http://www.datasheetpro.com/1073385_view PIC18F14K50 datasheet.html
Accessed: 24 March 2010
[9] Matthew D. Russell, (2004). Tinyness: An Overview of TEA and Related Ciphers
[10] David J. Wheeler and Roger M. Needham, (October 1998). Correction to XTEA,
Technical report, Computer Laboratory, University of Cambridge.

[11] Chris Savarese, Brian Hart (1999) Cryptography: Introduction Trinity College
of Hartford, CT

http://www.logicalsecurity.com/resources/whitepapers/Cryptography.pdf
http://www.ridex.co.uk/cryptology/#_Toc439908852
http://www.digi.com/
http://www.datasheetpro.com/1073385_view_PIC18F14K50_datasheet.html

APPENDIX

Datasheet

9XTend™ OEM RF Module - Product Manual 2 .x4x [2007.01.04]

51

Chapter 1 - 9XTend OEM RF Module

1.3. Pin Signals

Figure 1-01. XTend OEM RF Module Pin Numbers

Table 1-03. Pin Signal Descriptions
(Low-asserted signals distinguished with a horizontal line over signal name.)

0 @]
Wetni Shield male up na
[Srebrudng =} el

Pin
Number

Mnemonic

o]

High Impedance
during Shutdown

Must
Connect

Function

1

GND

yes

Ground

2

VCC

yes

Power: 2.8-5.5VDC

GPOZJ
RX LED

yes

General Purpose Output 2: <Default (CD=2)> Pin is driven low. Refer to the CD
Command [p24] for other configuration options.

RX LED: Pin is driven high during RF data reception; otherwise, the pin is driven
low. Refer to the CD Command [p24] to enable.

TX_PWR

yes

Transmit_Power: Pin pulses low during RF transmission; otherwise, the pin is
driven high to indicate power is on and the module is not in Sleep or Shutdown
Mode.

DI

yes

yes

Data In: Serial data entering the module (from the UART host). Refer to the Serial
Communications [p3] section for more information.

Do

yes

Data Qut: Serial Data exiting the module (to the UART host). Refer to the Serial
Communications [p3] section for more information.

SHDN

yes

Shutdown: Pin is driven high during operation and low during Shutdown.
Shutdown enables the lowest power mode (-5 pA) available to the module. Refer
to the Shutdown Mode [p14] section for mare information.

GP12 / SLEEP

yes

General Purpose Input 2: reserved for future use

SLEEP: By default, SLEEP is not used. To configure this pin io enable Sleep
Maodes, refier to the Sleep Mode [p15], SM Command [p37] & PW Command [p32]
sections.

GPO1/CTS/
RS-485 TX_EN

yes

General Purpose Output 1: reserved for future use

CTS (Clear-to-Send): <Default (CS=0)> When pin is driven low, the UART host
is permitted to send serial data to the module. Refer to the Serial Communications
[p9) & CS Command [p25] sections for more information.

RS-485 Transmit Enable: To confiqure this pin to enable R5-485 half and full-
duplex communications. Refer to the Serial Communications [pd] & CS Command
[p25] sections.

10

GPIIRTS
CMD

yes

General Purpose Input 1: reserved for future use

RTS (Request-to-Send): By default, is notused. To configure this pin to
requlate the flow of serial data exiting the module, refer to the Serial
Communications [p9] & RT Command [p36] sections.

CMD (Command): By default, CMD is not used. To configure this pin to enable
binary command programming, refer to the Binary Commands [p18] & RT
Command [p36] sections.

CONFIG/
RS3I

Configuration: Pin can be used as a backup method for entering Command
Made during power-up. Refer to the Command Mode [p17] section for more
information.

o

Receive Signal Strength Indicator: By default, pin is used as an RSS| PWM
output after at the conclusion of the power-up sequence. Refer to the RP
Command [p35] for more information.

12-20

reserved / do not connect

* RF module has 10K 0 internal pull-up resistor

Note: When integrating the module with a Host PC board, all lines not used should be left disconnected (floating).

3 Max5tream. © 2007 MaxStrean, Inc.

52

PIC18F1XKS50/PIC18LF1XK50

Program Memory Data Memory 10-hit MSSP E)
] - i) . ECCP < Timers
Device Flash |# Single-Word | SRAM| EEPROM |VO A.'Dz (PWM) | spi Master | « [Comp.|g. oo | USB
(bytes)| Instructions |(bytes)| [bytes) {ch)@ e~ | 3

PIC18F13K50/| 8K 4096 51289 256 15 1 1 Y Y 1 2 113 Y
PIC18LF13K50
PIC18F14K50/| 16K 8192 76803 256 15 11 1 Y Y 1 2 113 Y
PIC18LF14K50

Note 1: One pin is input only.
2. Channel count includes intemal Fixed Voltage Reference (FVR) and Programmable Voltage Reference (CVReF) channels.
3: Includes the dual port RAM used by the USB module which is shared with the data memory.

Pin Diagrams

20-pin PDIP, SSOP, SOIC (300 MIL)

Vop—=[°1 ! 0[] =— Vas
RASIOSCUCLKIN=— [2 19[J =— RADD+PGD
RAHANNOSCHCLKOUT =—=] 3 & 18] | =— RANDPGC
RAVMCLRVar—=[] 4 =3 17 =—wuss
RCSICCPAPIATOCK =—=[] 5 X% 16] =—= ROOANAICIZINHINTONREF+
RC4P1BIC120UTISRQ=—[| & = 5 15[] =—= RCUANSIC12IN1-INT1/VREF-
RCUANTIPIC/ICT12INAPGM =—=] 7 @ 14[] =—= RCZANEP1DICI12INZ-CVRERINT2
RCBIANESSIT13CKITIOSCl=—=] & SN] 13[] =—= RB4/ANIIVSDISDA
RCTIANSISDOTI0SC0 -—= I: el oo 12 :I == RBSIANT1RXDOT
RBTTHCK=—" |: 10 11[] = RBGISCK/SCL

TABLE 1: PIC18F1XK50/PIC18LF1XK50 PIN SUMMARY

2 2 - L a

sle| 5|8 8 |%)| % : e |18 ;

| E e Y e o® : HEE
19 | RaD 10C D+ PGD
18 | RAT 1ac D- PGC
4 | ra3l 10C ¥ MCLRNRR

RA4 AN3 1oc ¥ OSC2CLKOUT

2 | RAS loc b OSC1/CLKIN
13 | RB4 | ANID SDISDA 1ac ¥
12 | RB5 | AN RA/DT oc | Y
11 | RBS SCLUSCK 1oc ¥
10 | RBT7 THICK ol
16 | RCO | AN4 | C12IN+ | Vmer+ INTD
15 | RC1 ANS | C12IN1- | Vrer- INT1
14 | rRC2 | anNg | c12mnz- | cveer P1D INT2
7 | RC3 | AN7 | C12IN3 P1C PGM
6 | RC4 C120UT P1B SRQ
5 | RCS CCP1P1A TOCKI
B | RCE | AME 55 T13CKUT105CI
9 | RcT | amg SDO T10SCO
17 VUSB
1 Voo
20 \es

Note 1: Inputonly

DS41350B-page 2 Preliminary @® 2008 Microchip Technology Inc.

Cytron

n>

Tachnologia.

53

ROBOT . HEAD to TOE
Product User's Manual — UC00A

5. PRODUCT SPECIFICATION

UCODA is designed to ease communication between microcontroller and PC. The
specifications are as listed below:

5.1 4 ways 2510 header pin

Pin Label Definition Function

i 5V Power output 5V supply from USB, optional for user to power

* from UCO00A external device, maximum current 200mA.
L Ground of power and signal. This pin should be

2 - Ground or negative connected to device's GND pin.

UCO00A UART This is UCO0A's transmitter pin (5V TTL). It

3 TX T Lo . . .

ransmit pin should be connected to device's receiver pin.

1 RX UC00A UART This is UCDDA’s receiver pin (3V TTL). It should

Receive pin

be connected to device's transmitter pin.

Absolute Maximum Rating

not to use this power source to power application circuit or device. Wrong connection
such as wrong polarity, wrong voltage, shorted might permanently damage computer.

Symbol Parameter Min Max Unit
+ Power output pin 5.0 5.0 V
- Operating voltage 0 0 V
TX Transmitter pin of UC00A 0 5.5 V
RX Receiver pin of UCO0A 0 5.5 \4
Cautions: “+" on UC00A is 5V supply directly from USB port of computer; it is advised

Created by Cytron Technologies Sdn. Bhd. — All Rights Reserved 6

“All the trademark and copyrights use herein are property of their respective owner.
References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature

Author : KHOK JESS LYN

Date : 26 NOVEMBER 2010

To my family

ACKNOWLEDGEMENT

Words cannot describe how indebted I am to my supervisor, Encik Mohd
Zamri Ibrahim, for all the help and guidance he has given me throughout this project.
He is truly one talented man, and is perhaps one of the most gracious person | have
ever come across to. For the inspiration, support and mentor he has been, this is my

heartfelt gratitude.

To my family and best friends who has been my greatest strength and support
throughout my journey here in Universiti Malaysia Pahang, this thesis is my way of
saying thank you and appreciating all that they have done for me. They have helped

nurture and shape me into who | am today.

ABSTRACT

This project presents an embedded cryptosystem for PC based wireless
communication using the XTend OEM RF modules. It focuses mainly on
cryptography and its implementation in an embedded system. The Extended Tiny
Encryption Algorithm (XTEA) is the chosen encryption method. This is due to the
fact that it is a cryptographic algorithm designed to minimize memory footprint and
maximize speed. Being flexible and fast in software, XTEA is fast in hardware as
well. A Graphical User Interface (GUI) is designed for the application whereby the
user communicates with another user through it. It is able to send and also display
the data exchange between two PC users. When data is entered in one of the PC, the
PIC18F14K50 microcontroller encrypts the data before it is transmitted wirelessly
from one PC to another through the XTend OEM RF modules. The ciphertext is then
received by the XTend OEM RF module at the other PC but will remain encrypted
unless the receiver inputs the correct key. This key is used to decrypt the ciphertext
into its original data. When the receiver from the other PC enters the correct key, the
ciphertext will be decrypted by the PIC18F15K50 microcontroller and the original
data will be displayed in the GUI. The resultant hardware is two sets of identical
cryptography wireless module which are able to perform both the encryption and
decryption process, connected to the GUI in two different PC. This project produces

a secure mean for safe wireless communication on PC level.

Vi

ABSTRAK

Projek ini menyampaikan Kkriptosistem untuk komunikasi tanpa wayar tahap
PC dengan menggunakan modul XTend OEM RF. la berfokuskan kriptografi dan
implikasinya dalamsistem terbenam. Extended Tiny Encryption Algorithm (XTEA)
merupakan method enkripsi yang terpilih. Hal ini demikian kerana ia adalah suatu
logaritma kriptografi direka untuk meminimakan saiz memori dan memaksimakan
kelajuan. Oleh kerana ia fleksibel dan cepat dalam software, XTEA juga adalah
cepat dalam hardware. Satu ‘Graphical User Interface’ (GUI) dibina untuk aplikasi di
mana pengguna berkomunikasi antara satu sama lain melaluinya. la boleh
menghantar dan memapar data perhubungan antara dua PC. Apabila data dihantar,
mikrokontroller PIC18F14K50 mengenkrip data tersebut sebelum ditransmisi dari
satu PC ke PC yang lain melalui modul XTend OEM RF. ‘Ciphertext’ akan diterima
oleh modul XTend OEM RF pada PC yang lagi satu tetapi tidak akan didikrip
melainkan kata kunci yang betul dimasuk oleh pengguna kedua. Data yang telah
didikrip kemudiannya akan terpapar pada GUI. Hasilnya ialah dua set modul tanpa
wayar yang boleh menjalani proses enkripsi dan dikripsi dengan menghubung
dengan GUI pada PC. Projek ini menghasilkan suatu kaedah yang selamat untuk

komunikasi tanpa wayar pada tahap PC.

TABLE OF CONTENTS

TITLE PAGE
DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTACT

ABSTRAK

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS
LIST OF APPENDICES

1 INTRODUCTION
1.1 Introduction
1.2 Problem Statement
1.3 Objective
1.4 Scope of Project

1.5 Organization of thesis

2 LITERATURE REVIEW
2.1 Cryptography: A Brief History
2.2 Standards
2.2.1 Data Encryption Standard (DES)

2.2.2 Advanced Encryption Standard (AES)

2.3 Tiny Encryption Algorithm (TEA)

vii

Vi

vii

Xii
Xiii

Xiv

A~ A W W

© 0 00 O

2.4

Extended Tiny Encryption Algorithm (XTEA)
2.4.1 Mode of Operation

METHODOLOGY

3.1
3.2

3.3

3.4

3.5

Introduction

Hardware Development

3.2.1 PIC18F14K5027

3.2.2 Serial Communication

3.3.3 XTend OEM RF Module
Software

3.3.1 CCS C Compiler

3.3.2 Proteus ISIS Professional

3.3.3 Eltima Virtual Serial Port Driver
3.3.4 Microsoft Visual Studio

C Programming

3.4.1 Program Code

Software Development

3.5.1 Step 1: Program

3.5.2 Step 2: Test Run on Virtual Circuit
3.5.3 Step 3: GUI

3.5.4 Step 4: Serial Port Communication

RESULTS AND DISCUSSION

4.1 Introduction

4.2 PC to PC Wireless Communication
4.2.1 XTEA Encryption/Decryption
4.2.2 Cryptography Key
4.2.3 Encryption Length

CONCLUSION

5.1

Conclusion

viii

12
13

16
18
19
20
21
25
25
26
26
27
27
28
30
30
31
33
34

37
39
39
42
44

46

5.2 Recommendation

REFERENCES

APPENDIX

47

49

50

LIST OF FIGURES

FIGURE NO. TITLE PAGE
2.1 The feistel function of DES 9
2.2 Adaptation of the reference encryption and decryption 11

routines in C
2.3 Two Feistel rounds of the TEA 11
2.4 Standard C source code for XTEA 13
2.5 Two Feistel rounds (one cycle) of the XTEA 14
3.1 Project overview 16
3.2 Flow chart 17
3.3 Hardware setup 18
3.4 PIC18F14K50 pin diagram 19
3.5 Hex file 19
3.6 Programming the PIC 20
3.7 System Data Flow Diagram in a UART-interfaced environment 22
3.8 Side view of the XTend OEM RF module 22
3.9 Top view of the XTend OEM RF module 22
3.10 X-CTU 23
3.11 Stagel 23
3.12 Stage 2 24
3.13 Stage 3 24
3.14 Header 28
3.15 Function to call for XTEA 29
3.16 Program code for string encryption 29
3.17 Key 29
3.18 Program in CCS C Compiler 31
3.19 Successful compilation 31

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14

Circuit in Proteus ISIS Professional
‘Programming’ the PIC

Circuit running on xtea jessy.hex program
GUI to send data serially over COM port
GUI to receive data serially over COM port
Circuit with COMPIM

Edit COMPIM properties

Eltima Virtual Serial Port Driver

Simulation using all software

Hardware

GUI

Message box

Input from PC1
Data sent from PC1
Input from PC2
Data sent from PC2
Bidirectional circuit
Virtual terminals
Data entered
Virtual terminals
Key entered
Virtualterminals

Virtualterminals

Xi

32
32
33
33
34
34
35
35
36
38
38
39
40
40
40
41
41
42
43
43
44
44
45

Xii

LIST OF TABLE

TABLE NO. TITLE PAGE

3.1 Programming language comparison 27

XTEA
TEA

PC

GUI
PIC
XXTEA

xiii

LIST OF ABBREVIATIONS

Extended Tiny Encryption Algorithm
Tiny Encryption Algorithm

Personal Computer

Graphical User Interface
Programmable Interface Controller

Corrected Block Tiny Encryption Algorithm

Xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE
A Datasheet 50

