
 

 

 

 

EDU_VISTEC: A SOFTWARE FOR COMPUTER VISION EDUCATIONAL 

TRAINER USING MATLAB 

 

 

LAW KOK SIN 

 

 

FINAL DRAFT THESIS 

Bachelor Degree of Electrical Engineering (Electronic) 

 

 

Faculty of Electrical & Electronic Engineering 

Universiti Malaysia Pahang 

 

 

 

11 NOVEMBER 2010 

 



1 
 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

New technologies need to be exploring for the development a system for help in 

the human daily life. Exploring and learn a new technologies is not that easy because it 

need some guide for it. Nowadays, the application of image processing and analysis are 

now used in a wide range of industrial, artistic, and educational applications such as 

biotechnology, medicine, environmental science and art. Image processing in 

biotechnology or medicine also need use the basic application of object detection and 

color recognition. So, development of object detection and color recognition module 

need the intelligence on new technologies as a contribution due to help the industries 

and also education field. Designing this module is useful for the new learner and this 

module is a process to determine the shape detection and color recognition. In this 

module will be cover several method such as edge detection and using histogram. The 

basic tools that be used is MATLAB software. That is basic software that used in 

engineering field especially. Then implement MATLAB GUI which is one of the 

functions in MATLAB to design as simple module applications. Therefore, the new 

learner can follow step by step in this module to know more about the application of 

image processing that helpful in the entire field.  

 

 



2 
 

1.1   Problem Statement 

 

 

Exploring a new technology like image processing is quite hard and need some 

guide for it. In the internet got a lot of the manual guide for it but it hard for new learner 

to really understand about it. Unfortunately, the guide from a module or system that can 

let the new learner to try it out some method that can be use for the image processing 

applications is much effective. So, a module about that is needed then this project is 

important to complete for that purpose.  

 

 

 

 

1.2   Objective 

 

 

This project aims to create a module about the application of image processing 

which using the MATLAB software as the main tools and use the application Graphics 

User Integrated (GUI) skill. In these modules which cover two parts, shape detection 

(circle and square) and color recognitions (RGB). Both of these basic applications are 

suitable for the new learner for their understanding to help in their learning process so, 

that is the main purpose of create this module. 

 

 

 

 

1.3  Scope of project 

 

 

 The related scopes of this project are basic application of image processing and 

MATLAB software. It involves data collection, image acquisition, image processing, 



3 
 

classification and decision. The data collection involves collecting the image consists of 

different shape or color. Image processing consist of shape detection and color 

recognition that can be many type of techniques but we used edge detection and 

histogram for the two applications. 

 

 

MATLAB Software is utilized where .m file as the location to write program and 

form linkages between main program and sub programs, also, as the platform where 

ANN program is trained to be accurate, efficient and user friendly. 

 

 

 

 

1.3 Thesis Outline 

 

 

This thesis is organized as below: 

 

Chapter 1 will describes the introduction of this system, the purpose of this project, 

problem statement, the work scope and brief explanation of this project.  

In Chapter 2, the reviews about the information find on all the material or data used 

include the software in the development of this project will be shown. 

Chapter 3 will explain about all the methods use in development of this system and also 

step by step on develop the module for training purpose and lastly described about the 

execution part.  

Chapter 4 will show all the results followed by the explanation and discussion about the 

results from the beginning step until the end of development module. 

Last chapter of Chapter 5 will have a summary to describe the overall part of this 

project and come up with some recommendations and improvement. 



4 
 

 

 

 

Chapter 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

This chapter will review on the information gathered in developing the simple 

system or module for object detection and color recognition. The information is the 

entire basic introduction to develop that system for learning purpose including the basic 

knowledge about the image processing, creating standalone file and also interfacing 

MATLAB with GUI. 

 

 

 

 

2.1  Image processing 

 

 

Image processing is the analysis of a picture using techniques that can identify 

shades, color and relationships that cannot be perceived by the human eye. Image 

processing is used to solve identification problems, such as in forensic medicine or in 

creating weather maps from satellite pictures. [1] It deals with images in bitmapped 

graphics format that have been scanned in or captured with digital cameras.  



5 
 

Image processing typically attempts to accomplish into three parts that is 

restoring images, enhancing images and understanding images. Restoration process 

takes a corrupted image and attempts to recreate a clean original image which removing 

sensor noise and restoring old, archived film and images. [1] 

 

         

 

Figure 2.1: Example of restoration image 

 

 

Enhancement process alters an image to make its meaning clearer to human observers 

which often user used to increase the contrast in images that are overly dark or light. 

 

      

Figure 2.2: Example of enhancement image 

 

 

 

 



6 
 

 Understanding process usually attempts to mimic the human visual system in 

extracting meaning from an image which includes many different tasks like 

segmentation, classification and interpretation. The process begin by identifying object 

in an image, then assigns labels to individual pixels and extract some meaning from the 

image as a whole. 

                 

Figure 2.3: Example of understanding images 

 

 

 

 

 

 

 

 

 

 



7 
 

2.1.1  Threshold image 

 

 

 In many vision applications, it is useful to be able to separate out the regions of 

the image corresponding to objects in which we are interested, from the regions of the 

image that correspond to background. Thresholding often provides an easy and 

convenient way to perform this segmentation on the basis of the different intensities or 

colors in the foreground and background regions of an image.  

 

 

 Threshold converts each pixel into black, white or unchanged depending on 

whether the original color value is within the threshold range. Threshold is a very 

important command that is often used to prepare scanned RGB or RGBa images for 

vectorization or use as guide layers in the creation of drawings. It can be used with raster 

data images to set off ranges of values that may then be used for subsequent analysis or 

as selection masks. [4] 

 

 

  In addition, it is often useful to be able to see what areas of an image consist of 

pixels whose values lie within a specified range, or band of intensities (or colors). 

Thresholding can be used for this as well. Thresholding is the simplest method of image 

segmentation. From a grayscale image, thresholding can be used to create binary images. 

 

 

 The input to a thresholding operation is typically a grayscale or color image. In 

the simplest implementation, the output is a binary image representing the segmentation. 

Black pixels correspond to background and white pixels correspond to foreground (or 

vice versa). In simple implementations, the segmentation is determined by a single 

parameter known as the intensity threshold. In a single pass, each pixel in the image is 

compared with this threshold. If the pixel's intensity is higher than the threshold, the 

http://en.wikipedia.org/wiki/Segmentation_%28image_processing%29
http://en.wikipedia.org/wiki/Grayscale
http://en.wikipedia.org/wiki/Binary_image
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm


8 
 

pixel is set to, say, white in the output. If it is less than the threshold, it is set to black. 

[4] 

 

   

Figure 2.4: Original image    Figure 2.5: RGB to gray scale  

 

 

   

        Figure 2.6: Threshold to binary image  Figure 2.7: Inverse binary image 

 

 

In more sophisticated implementations, multiple thresholds can be specified, so 

that a band of intensity values can be set to white while everything else is set to black. 

For color or multi-spectral images, it may be possible to set different thresholds for each 

color channel, and so select just those pixels within specified cuboids in RGB space. 

Another common variant is to set to black all those pixels corresponding to background, 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/mulimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm


9 
 

but leave foreground pixels at their original color/intensity (as opposed to forcing them 

to white), so that that information is not lost. 

 

There are categorizing the thresholding methods in six groups: 

 

1. Histogram shape-based methods, where, for example, the peaks, valleys and 

curvatures of the smoothed histogram are analyzed. 

2. Clustering-based methods, where the gray-level samples are clustered in two 

parts as background and foreground ~object! Or alternately are modeled as a 

mixture of two Gaussians. 

3. Entropy-based methods result in algorithms that use the entropy of the 

foreground and background regions, the cross-entropy between the original and 

binaries image, etc. 

4. Object attribute-based methods search a measure of similarity between the gray-

level and the binaries images, such as fuzzy shape similarity, edge coincidence, 

etc. 

5. The spatial methods use higher-order probability distribution and/or correlation 

between pixels 

6. Local methods adapt the threshold value on each pixel to the local image 

characteristics. 

 

 

 

 

 

 

 

 

 

 

 



10 
 

2.1.2  Edge Detection 

 

 

Edge detection is a fundamental tool used in most image processing 

applications to obtain information rum the frames as a precursor step to feature 

extraction and object segmentation. This process detects outlines of an object and 

boundaries between objects and the background in the image. An edge-detection 

filter can also be used to improve the appearance of blurred or anti-aliased video 

streams. 

 

 

The basic edge-detection operator is a matrix area gradient operation that 

determines the level of variance between different pixels. The edge-detection 

operator is calculated by forming a matrix entered on a pixel chosen as the center of 

the matrix area. If the value of this matrix area is above a given threshold, then the 

middle pixel is classified as an edge. [6] 

 

 

Among the gradient-based detector are Sobel, Prewitt, and Roberts. By 

default, edge uses the Sobel method to detect edges but the following provides a 

complete list of all the edge-finding methods supported by this function [6]: 

 The Sobel method finds edges using the Sobel approximation to the derivative. It 

returns edges at those points where the gradient of I is maximum. 

 The Prewitt method finds edges using the Prewitt approximation to the 

derivative. It returns edges at those points where the gradient of I is maximum. 

 The Roberts method finds edges using the Roberts approximation to the 

derivative. It returns edges at those points where the gradient of I is maximum. 

 The Laplacian of Gaussian method finds edges by looking for zero crossings 

after filtering I with a Laplacian of Gaussian filter. 

 The zero-cross method finds edges by looking for zero crossings after filtering I 

with a filter you specify. 



11 
 

 The Canny method finds edges by looking for local maxima of the gradient of I. 

The gradient is calculated using the derivative of a Gaussian filter. The method 

uses two thresholds, to detect strong and weak edges, and includes the weak 

edges in the output only if they are connected to strong edges. This method is 

therefore less likely than the others to be fooled by noise, and more likely to 

detect true weak edges. 

 

 

The Prewitt operator measures two components. The vertical edge 

component is calculated with kernel Kx and the horizontal edge component is 

calculated with kernel Ky. |Kx| + |Ky| gives an indication of the intensity of the 

gradient in the current pixel. 

 

 

Kx =  

-1 0 1 

-1 0 1 

-1 0 1 

 

Ky = 

1 1 1 

0 0 0 

-1 -1 -1 

Figure 2.8: Prewitt horizontal and vertical operators 

 

 

Depending on the noise characteristics of the image or streaming video, edge 

detection results can vary. Gradient-based algorithms such as the Prewitt filter have a 

major drawback of being very sensitive to noise. The size of the kernel filter and 

coefficients are fixed and cannot be adapted to a given image. An adaptive edge-detection 

algorithm is necessary to provide a robust solution that is adaptable to the varying noise 

levels of these images to help distinguish valid image content from visual artifacts 

introduced by noise. 

 



12 
 

 The Canny algorithm uses an optimal edge detector based on a set of criteria 

which include finding the most edges by minimizing the error rate, marking edges as 

closely as possible to the actual edges to maximize localization, and marking edges only 

once when a single edge exists for minimal response [5]. According to Canny, the 

optimal filter that meets all three criteria above can be efficiently approximated using the 

first derivative of a Gaussian function. 

 

 

 The first stage involves smoothing the image by convolving with a Gaussian 

filter. This is followed by finding the gradient of the image by feeding the smoothed 

image through a convolution operation with the derivative of the Gaussian in both the 

vertical and horizontal directions. 

 

 

 

 

2.1.3  Histogram Method 

 

 

 In an image processing context, the histogram of an image normally refers to a 

histogram of the pixel intensity values. This histogram is a graph showing the number of 

pixels in an image at each different intensity value found in that image. For an 8-bit 

grayscale image there are 256 different possible intensities, and so the histogram will 

graphically display 256 numbers showing the distribution of pixels amongst those 

grayscale values. Histograms can also be taken of color images --- either individual 

histogram of red, green and blue channels can be taken, or a 3-D histogram can be 

produced, with the three axes representing the red, blue and green channels, and 

brightness at each point representing the pixel count. The exact output from the operation 

depends upon the implementation --- it may simply be a picture of the required histogram 

in a suitable image format, or it may be a data file of some sort representing the 

histogram statistics. 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixel.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm


13 
 

 

Figure 2.9: Example of image histogram 

 

 

 Digital image pixel tonality for 24 bit RGB color is expressed as a number 

between 0 and 255. 0 equals pure black and 255 equals pure white. The midpoint at about 

127 would be the equivalent of middle gray in density. Digital image histograms are 

presented as a bar chart with the horizontal axis being the tonal range of your. The left 

side of the graph is 0 (zero) and the right side of the graph is 255. The vertical axis is the 

relative number of pixels at each of the 255 tonal values. The taller the hump in the 

graph, the more pixels resides at that particular tonal range. 

 

 

 

Figure 2.10: Example of histogram show pixel value 

 



14 
 

 Histograms can be quite different looking depends to the content of the image. A 

histogram of a high key image with a majority of the content being very bright will 

produce a histogram that has most of the histogram graph located from the center to the 

right of center. A low key image with lots of dark and shadow areas will produce a 

histogram graph that is mostly center and left of center. A low key image with lots of 

dark and shadow areas will produce a histogram graph that is mostly center and left of 

center. There really isn't just one proper histogram for any given image. You can shift the 

tonal range (the histogram) around to lighten, darken or adjust the contrast in an image. 

To take advantage of the information supplied by an image's histogram you have to be 

able to visually interpret the image content, taking into consideration the location and 

approximate percentage of highlight, shadow and midtone pixels in the image itself. 

 

 

  

Figure 2.11: Low key image with the majority of pixels to the left of center of the graph 

 

 

  

Figure 2.12: High key images with the majority of the pixels to the right of center of the 

graph 

 



15 
 

2.2  RGB 

 

 

 For sciences communications, there are two main color spaces which are RGB 

and CMYK. RGB uses additive color mixing and is the basic color model used in 

television, computers and for web graphics or others medium that projects color with 

light.  

 

 

 The secondary colors of RGB divides to three parts which is cyan, magenta and 

yellow formed by mixing two primary color of RGB (red, green and blue). The 

combination of  red and blue become magenta, combination of yellow and green become 

yellow, combination blue and green become cyan and all of the primary color in full 

intensity makes white. [3] 

 

 

 

Figure 2.13: Result of combination primary color 

 

 



16 
 

2.3  MATLAB 2008 

 

 

 MATLAB is a high-level language and interactive environment that enables you to 

perform computationally intensive tasks faster than with traditional programming languages such 

as C, C++, and FORTRAN. This software gives us greatly function for the basic image 

processing and shape detection which have more application including signal processing, 

communications, control design, test and measurement, financial modeling and analysis and 

computational biology. Therefore, MATLAB can use for create our own algorithm and distribute 

it to other MATLAB users directly as MATLAB code. 

 

 

 

Figure 2.14: The application, developed in MATLAB, directly acquires signals from 

measurement hardware, performs analysis and plotting, and includes GUI controls. 

 

 



17 
 

2.4  Graphical User Interface (GUI) 

 

 

 

 

2.4.1  GUI definition  

 

 

 Graphical user interface (GUI) is a type of user interface that takes advantage of the 

computer's graphics capabilities to make the program easier to use and also interface item that 

allows people to interact with programs in more ways the typing such as computers or others 

devices and household appliances and office commands with images rather than just have the 

text commands. A GUI give graphical icons and visual indicators to represent text based 

interfaces to fully present the information and actions available to a user.  

 

 

Therefore, an icon is a small picture or symbol in a GUI that represents a program (or 

command), a file, a directory or a device (such as a hard disk or floppy). Icons are used both on 

the desktop and within application programs. Examples include small rectangles (to represent 

files), file folders (to represent directories), a trash can (to indicate a place to dispose of 

unwanted files and directories) and buttons on web browsers (for navigating to previous pages, 

for reloading the current page, etc.). 

 

 

A major advantage of GUIs is that they make computer operation more intuitive, and thus 

easier to learn and use. Adding to this intuitiveness of operation is the fact that GUIs generally 

provide users with immediate, visual feedback about the effect of each action. In addition, GUIs 

allow users to take full advantage of the powerful multitasking (the ability for multiple programs 

and/or multiple instances of single programs to run simultaneously) capabilities of modern 

operating systems by allowing such multiple programs and/or instances to be displayed 

simultaneously. 

http://www.webopedia.com/TERM/G/computer.html
http://www.webopedia.com/TERM/G/graphics.html
http://www.linfo.org/command.html
http://www.linfo.org/multitasking.html
http://www.linfo.org/operating_systems_list.html


18 
 

2.4.2  MATLAB GUI 

 

 

 A graphic user interface (GUI) enables a user to perform interactive tasks which GUI is a 

graphical display that contains devices or components. To perform these tasks, user does not 

have to create a script or type commands at the command line. 

 

 

The GUI elements are treated as objects such as pushbutton, checkbox, radio buttons, list 

boxes, slider (scroll bar) and popup menu just to name a few. They encapsulate data and method. 

In MATLAB, a GUI can also display in tabular form or as plot and can group related 

components. 

 

 

 

 

Figure 2.15: Example of GUI elements 

 

 



19 
 

These are the two basic tasks in process to implement the GUI: 

 

 

i) Laying out the GUI where MATLAB implements GUIs as figure windows 

containing various styles of uicontrol (user interface) objects. 

ii) Programming the GUI, where each object must be program to perform the 

intended action when activated by user of GUI. 

 

 

 

 

2.4.3 MATLAB GUIDE 

 

 

 GUIDE, the MATLAB graphical user interface development environment provides a set 

of tools for creating graphical user interface (GUI). These tools simplify the process of lying out 

and programming GUIs. GUIDE primarily is a set of layout tools. However, GUIDE also 

generates an M-file that contains code to handle the initialization and launching of the GUI. This 

M-file provides a framework for the implementation of the callbacks -- the functions that execute 

when users activate components in the GUI. 

 

 

 

 

2.4.4 GUI operation 

 

 

The GUI is already associated with one or more user written routines known as callback.  

A callback is a function that you write and associate with a specific component in the GUI or 

with the GUI figure itself. The callbacks control GUI or component behavior by performing 

some action in response to an event for its component. The event can be a mouse click on a push 

http://www.mathworks.nl/access/helpdesk_r13/help/techdoc/creating_guis/ch_tools.html#gui_building_tools


20 
 

button, menu selection, key press, etc. This kind of programming is often called event-driven 

programming. 

 

 

The callback functions you provide control how the GUI responds to events such as 

button clicks, slider movement, menu item selection, or the creation and deletion of components. 

There is a set of callbacks for each component and for the GUI figure itself.  

 

 

The callback routines usually appear in a GUI code file following the initialization code 

and the creation of the components. When an event occurs for a component, MATLAB software 

invokes the component callback that is associated with that event. As an example, suppose a GUI 

has a push button that triggers the plotting of some data. When the user clicks the button, the 

software calls the callback you associated with clicking that button, and then the callback, which 

you have programmed, gets the data and plots it. 

 

 

A component can be any control device such as an axes, push button, list box, or slider. 

For purposes of programming, it can also be a menu, toolbar tool, or a container such as a panel 

or button group.  

 

 

Callbacks: 

 

i) Routine that execute whenever you activate the uicontrol object. 

ii) Define this routine as a string that is a valid MATLAB expression or the name of 

an M-file. 

iii) The expression executes in the MATLAB workspace. 

 

 



21 
 

 

 

 

Chapter 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Introduction 

 

 

This chapter will present the whole methodology of this project and all the details of each 

part of software that use in this project. It will describe on how the project is organized and the 

flows of step by step in complete this project. The methodology is divided into two parts, which 

is developing the software using MATLAB. The other is developing the programming in offline 

time using MATLAB GUI.  

 

 

The block diagram below shown that the basic information about this project which 

explain about the flow to carry out this project. 

 

 

 

 



22 
 

 

 

 

 

 

 

 

 

Figure 3.1: Block diagram for the flow of the project 

 

 

i) Collecting data which the images consist of different type of shape that is circle, 

square and rectangular and several color red, green and blue. 

ii) Identify some method that more suitable to use in the application of shape 

detection and color recognition like edge detection and histogram. 

iii) Image analysis by getting the result to identify the color or shape by development 

the module of that by using the method that decides. 

 

 

 

 

 

 

Data collection  

Image acquisition 

Image processing 

Classification 

Decision 



23 
 

3.2 Software Development  

 

 

 There are two mains method in order to develop this project. Before the project is 

developing using MATLAB, it is needed to do the study on MATLAB GUIDE. The flowchart in 

Figure 3.1 illustrated the sequence of steps for this project. The first method is designing the 

programming for two tasks that is shape detection and color recognition. Secondly, developing 

the GUI in MATLAB and programs every GUI component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Flow Chart 

 

Start 

Case study 

Determine of 

software 

MATLAB 

Software Study 

Programming 

Design 

 

MATLAB GUI 

Study 

GUI Design 

Program 

Development 

Analysis and test 

module 

Testing 

OK 

Demo 

END 



25 
 

3.2.1 Development MATLAB GUI using MATLAB GUIDE 

 

 

 The MATLAB graphical user interface (GUI) development environment provides a set of 

tools for creating graphical user interfaces (GUIs). These tools simplify the process of lying out 

and programming GUIs 

 

 

 There are 5 steps in build the MATLAB GUI. First, use a MATLAB tool called guide 

(GUI Development Environment) to layout the components that show in Figure 3.2. This tool 

allows a programmer to layout the GUI, selecting and aligning the GUI component to be placed 

in it. The basic component of the MATLAB GUI is shown in Table 3.1. 

 

 

Table 3.1:  Basic Matlab GUI component 

Element Created By Description 

Pushbutton uicontrol A graphical component that implements a 

pushbutton. It triggers a callback when click 

with a mouse 

Toggle button uicontrol A graphical component that implements a 

toggle button. A toggle button is either on or 

off and its changes state each time that it is 

clicked. Each mouse button click also triggers 

a callback. 

Text field uicontrol  Creates a label which is a text string located at 

a point on the figure. Text fields never trigger 

callbacks. 

Menu items uimenu  Creates a menu item. Menu item trigger a 

callback when a mouse button is released over 

them 

Context menus uicontextmenu Creates a context menu, which is a menu that 

appears over a graphical object when a user 

right clicks the mouse on that object. 



26 
 

Axes axes Creates a new set of axes to display data on. 

Axes never trigger callbacks. 

 

 

 

Figure 3.3: MATLAB GUIDE Layouts 

 

 

Use a MATLAB tool called the Property Inspector (built into guide) to give each 

component a name (a “tag”) and to set the characteristics of each component, such as its color, 

the text it displays, the font size of the displays words and so on. After that, we save the figure to 

the file. When the figure is saved, two files will be created on disk with the same name but 

difference extents. The fig file contains the actual GUI that has been created and the M-file  

 

 



27 
 

contains the code to load the figure and skeleton call backs for each GUI element. These two file 

usually reside in the same directory. They correspond to the tasks of lying out and programming 

the GUI. When you lay out the GUI in the Layout Editor, your work is stored in the FIG-file. 

When you program the GUI, your work is stored in the corresponding M-file. 

 

 

 

Figure 3.4: Property Inspector 

 

 

After laying out the GUI component and set the property, the GUI will be look like in 

Figure 3.4 for example according to the user creativity. 

 



28 
 

 

Figure 3.5: Example GUI 

 

 

Finally, Figure 3.5 shown that the coding use to implement the behavior associated with 

each callback function in m-files. A callback is a function that writes and associates with the 

specifies GUI component or with GUI figure. It controls GUI by performing some action in 

response to an event for its component. Thus kind of programming is often called event-driven 

programming. The last step is the difficult part and has to make an extra reading on how to write 

the coding before the GUI component can perform some task that we need. 

 

 



29 
 

 

Figure 3.6: Example m-files for GUI 

 

 

 

 

 



30 
 

3.2.2  Build MATLAB Programming 

 

 

 After layout the GUI, it needs to program its behavior. The coding is writing to controls 

how the GUI responds to events such as push button, slider movement, menu item selection, axes 

or the creation and deletion components. This programming takes the form of set functions, 

called callbacks, for each of the components and for the GUI figure itself. 

 

 

 A callback is a function that writes and associates with a specific component in the GUI 

or with the GUI figure itself. The callbacks control GUI or component behavior by performing 

some action in response to an event for its component. The event can be a mouse click on a push 

button, menu selection, key press, etc. This kind of programming is often called event-driven 

programming. 

 

 

 The GUI figure and each type of component have specific kinds of callbacks with which 

you can associate it. The callbacks that are available for each component are defined as 

properties of that component. For example, a push button has five callback properties: 

ButtonDownFcn, Callback, CreateFcn, DeleteFcn, and KeyPressFcn. A panel has four callback 

properties: ButtonDownFcn, CreateFcn, DeleteFcn, and ResizeFcn. It are not required to, create 

a callback function for each of these properties. The GUI itself, which is a figure, also has certain 

kinds of callbacks with which it can be associated. 

 

 

 Each kind of callback has a triggering mechanism or event that causes it to be called. The 

following Table 3.2 lists the callback properties that are available, their triggering events, and the 

components to which they apply. 

 

 



31 
 

Table 3.2: Various kind of Callbacks 

Callback Property Triggering Event Components 

ButtonDownFcn Executes when the user 

presses a mouse button while 

the pointer is on or within five 

pixels of a component or 

figure. 

Axes, figure, button group, 

panel, user interface controls 

Callback Control action. Executes, for 

example, when a user clicks a 

push button or selects a menu 

item. 

Context menu, menu user 

interface controls 

CellEditCallback Reports any edit made to a 

value in a table with editable 

cells; uses event data. 

uitable 

CellSelectionCallback Reports indices of cells 

selected by mouse gesture in a 

table; uses event data. 

uitable 

ClickedCallback Control action. Executes when 

the push tool or toggle tool is 

clicked. For the toggle tool, 

this is independent of its state. 

Push tool, toggle tool 

CloseRequestFcn Executes when the figure 

closes. 

Figure 

CreateFcn Initializes the component 

when it is created. It executes 

after the component or figure 

is created, but before it is 

displayed. 

Axes, button group, context 

menu, figure, menu, panel, 

push tool, toggle tool, toolbar, 

user interface controls 

DeleteFcn Performs cleanup operations 

just before the component or 

Axes, button group, context 

menu, figure, menu, panel, 

http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__157.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__158.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__159.html
http://www.mathworks.com/help/techdoc/creating_guis/f10-1000947.html#brp3wri
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__160.html
http://www.mathworks.com/help/techdoc/creating_guis/f10-1000947.html#brp3wri
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__161.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__162.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__163.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__164.html


32 
 

figure is destroyed. push tool, toggle tool, toolbar, 

user interface controls 

KeyPressFcn Executes when the user 

presses a keyboard key and 

the callback's component or 

figure has focus. 

Figure, user interface controls 

KeyReleaseFcn Executes when the user 

releases a keyboard key and 

the figure has focus. 

Figure 

OffCallback Control action. Executes when 

the State of a toggle tool is 

changed to off. 

Toggle tool 

OnCallback Control action. Executes when 

the State of a toggle tool is 

changed to on. 

Toggle tool 

 

ResizeFcn Executes when a user resizes a 

panel, button group, or figure 

whose figure Resize property 

is set to On. 

Figure, button group, panel 

 

 

SelectionChangeFcn Executes when a user selects a 

different radio button or toggle 

button in a button group 

component. 

Button group 

 

WindowButtonDownFcn Executes when you press a 

mouse button while the 

pointer is in the figure 

window. 

Figure 

 

 

WindowButtonMotionFcn Executes when you move the 

pointer within the figure 

window. 

Figure 

http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__165.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__166.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__167.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__168.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__169.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__170.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__171.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__172.html


33 
 

WindowButtonUpFcn Executes when you release a 

mouse button. 

Figure 

WindowKeyPressFcn Executes when you press a 

key when the figure or any of 

its child objects has focus. 

Figure 

WindowKeyReleaseFcn Executes when you release a 

key when the figure or any of 

its child objects has focus. 

Figure 

WindowScrollWheelFcn Executes when the mouse 

wheel is scrolled while the 

figure has focus. 

Figure 

 

  

 The GUI M-files that GUIDE generates is a function file. The name of the main function 

is the same as the name of the M-files. Each callback in the file is a sub function of the main 

function. When GUIDE generates as M-files, it automatically includes templates for the most 

commonly used callbacks for each component. The major sections of the GUI M-file are shown 

in Table 3.3 below. 

 

 

 

 

 

 

 

 

 

http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__173.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__174.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__175.html
http://www.mathworks.com/help/techdoc/creating_guis/rmvd_matlablink__176.html


34 
 

Table 3.3: Major Sections of the GUI M-file 

Section Description 

Comments Displayed at the command line in response to the help 

command. Edit these as necessary for GUI 

Initialization GUIDE initialization tasks. Do not edit this code 

Opening function Perform the initialization tasks before the user has access to 

the GUI 

Output function Returns outputs to the MATLAB command line after the 

opening function returns control and before control returns to 

the command lines. 

Component and figure 

callbacks 

Control the behavior of the GUI figures and of individual 

components. MATLAB calls a callback in response to a 

particular event for a component or for the figure itself. 

Utility/helper functions Performs miscellaneous functions not directly associated 

with an event for the figure or a component. 

 

 

 GUIDE automatically includes two callbacks, the opening function and the output 

function, in every GUI M-file it creates.  

 

 

 

 

 



35 
 

 

 

 

Chapter 4 

 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

 

4.1 Introduction 

 

 

 The methodology had come out with some result in order to complete the development of 

shape detection and color recognitions module. These are the result of step by step methods done 

in the methodology development during the training and execution phase within its problems. 

 

 

i) Training phase 

 

 

Training phase will produce a development of shape detection and color recognitions 

coding which is in the m-file format. The purpose of produce the m-file in MATLAB is 

to avoid error in coding and determine the accurate coding for the two applications 

above. The most important part is the result had given the decision on screen. 

 

 



36 
 

ii) Execution phase 

 

 

Execution phase is the process to convert the coding in m-file MATLAB to the 

MATLAB GUI application for the two application of image processing which is the 

shape detection and color recognitions. The simple module for the trainers is developed 

by using MATLAB GUI. 

 

 

 

 

4.2  Training phase result 

 

 

 In the training phase, there are divided into two parts according to the two applications 

that need in this project. There are few methods taking part and the result of the methods can be 

explained as result below. The problem of some steps during the training phase is described. 

 

 

 

 

4.2.1  Result of shape detection development 

 

 

 For the development of shape detection coding, Sobel, Prewitt, and Roberts methods and 

also Laplacian of Gaussian, zero-cross and canny methods was used. Figure below show that the 

coding of sobel method completely design for the first step. Sobel is one of the edge-detection 

methods that use for the shape detection which it’s finds edges using the Sobel approximation to 

the derivative. It returns edges at those points where the gradient of I is maximum.  

 

 



37 
 

 

Figure 4.1: Coding for sobel method 

 

 

 After complete design the coding for the each methods that will be used in the 

application, its need to design the coding for the system can be detect the image that we load 

from the data to give the decision by calculate the centroid, area  and perimeter of the image 

which the result is circle, square or reactangle. 

 

 

 

 

 

 

 



38 
 

 

Figure 4.2: Coding shown decision of detect image 

 

 

 



39 
 

4.2.2  Result of color recognition development 

 

 

 For the development of color recognition, the method that used is histogram. For the 

beginning to design the coding the system must call the imaged from the data and check the 

image is color or monochrome so if the image is monochrome then it will be convert to color. 

 

 

 

Figure 4.3: Coding of read and check the image 

 



40 
 

 Then, display the original RGB image as the reference for the user which image have 

been choose for this application. After that, it will be extract out the color image to the individual 

color channels which in Red, Green and blue channel image. 

 

 

 

Figure 4.4: Coding of extract out the color image to the individual color channels 

 



41 
 

 To recognize the image we used histogram method which calculates the pixel value of 

each RGB color and then plot in the graph separately according to the RGB pixel value and plot 

all into one graph to compare the pixel value. By comparing the pixel value, which color pixel 

value is highest then that is the result color of the image. 

 

 

 

Figure 4.5: Coding of after calculate the pixel value and plot in a graph 

 



42 
 

 

 

Figure 4.6: Final result 

 

 



43 
 

4.3  Execution phase result 

 

 

The main menu of execution phase is the GUI in this project which contains two main 

buttons which link to the two application selection which the user of this module can choose one 

of the applications there. The main menu of the GUI and the functions of the applications are 

shown in Figure 4.7.  

 

 

 

Figure 4.7: Main Menu GUI 

 



44 
 

 When the user select the first button which is the shape detection, then there will pop-up 

the GUI application for that item. From there the user can start to learn the process of shape 

detection start from load image, select edge-detection methods and then analysis the image and 

finally get the result. 

 

 

   

Figure 4.8: Load image    Figure 4.9: Select edge-detection method  

 

 

 

Figure 4.10: Recognize and get result 



45 
 

 Besides, the user for this module can also select for the second button which contain the 

color recognition. The pop-up GUI will show to the user the explanation for the whole process to 

recognize the color by using calculating the histogram and the maximum of pixel value means 

that is the answer. The result will show in command window. 

 

 

 

Figure 4.11: GUI for the color recognition ( Part I ) 

 

 

 

 

 

 

 



46 
 

 

Figure 4.12: GUI for the color recognition ( Part II ) 

 

 

 

Figure 4.13: GUI for the color recognition ( Part III ) 

 



47 
 

4.4 Discussion 

 

 

 The MATLAB software function implemented is successfully developed the image 

processing application module. However, there are few aspects that need to be improved. When 

user need to load the image, the image use as the data must be very clear because of the method 

that used for the application is quite sensitive. So make sure when the collecting data process the 

image must try to avoid had shadow because shadow of image can affect the final result of the 

analysis. 

 

 

 Nevertheless, this problem can be overcome by not taking image under the lighting and 

also take the image frequently to get as much as possible for the data so that at the end of the 

project can get the accurately result. 

 

 

 Besides, the MATLAB software also can be categorized as sensitive software in the part 

of coding and also coding name. Be careful when save file make sure that the filename will not a 

number but use any word.  

 

   

 

 

 

 

 

 

 



48 
 

 

 

Chapter 5 

 

 

 

 

CONCLUSION AND RECOMMENTATION 

 

 

 

 

5.1 Conclusion 

 

 

 The GUI design and it implementation has fully develop to achieve the entire objectives. 

The development of image processing application which covers about the shape detection and 

color recognition using MATLAB GUI in MATLAB GUIDE was done after detail study and 

analysis the methods of those applications. Through the development of this project is has 

conclude that the MATLAB GUI can use for too many type of application for image processing 

but not just for these simple application. 

  

 

 The main objectives of this project are to create a module about the application of image 

processing which using the MATLAB software as the main tools and use the application 

Graphics User Integrated (GUI) skill is fully achieved. The benefits for the student which 

complete this project is which can more understand about the method and technique that can be 

used for image processing by study further and analysis it. 

 

 



49 
 

5.2 Future Recommendation 

 

 

 For the future recommendation, to improve this project, others technique or added more 

technique to the image processing application so that the user for the module can learn more than 

the current module. To make it more advance maybe this module use for the real time which the 

image not load from the file but taken directly from the webcam or camera. 

 

 

 For others recommendation, to learn more about the software that can be used for the 

image processing application these kind of project can try to replace MATLAB tool with others 

like Open CV and Visual Basic for the same purpose. The color recognition just only for RGB 

basic color can add to HSV color. Same to the shape detection can add on more difference type 

of shape like diamond or triangle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

 

 

REFERENCES 

 

 

[1] J.P. Wang, Y.T. Lin, Y.S. Tsai, Journal of Materials Processing Technology 68 (1997)  

246 -250 

[2] Jianping Fan, Walid G. Aref, Mohand-Said Hacid, Ahmed K.Elmagarmid, Pattern 

Recognition Letters 22 (2001) 1419 – 1429 

[3] G.D Finlayson, G.Y Tian, Color normalization for the color recognition, Internat J. Pattern 

Recog. ArtiDcial Intell. 13(8) (1999) 1271-1285 

[4] http://www.manifold.net/doc/image_threshold.htm 

[5] Canny, J., “A Computational Approach to Edge Detection”, IEEE Trans. Pattern Analysis 

and Machine Intelligence, 8:679-714, November 1986 

[6] http://www.mathworks.com/help/toolbox/vipblks/ref/edgedetection.html 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

APPENDIX A 

 

 

function varargout = chuongtrinhnhandang(varargin) 

% CHUONGTRINHNHANDANG M-file for chuongtrinhnhandang.fig 

%      CHUONGTRINHNHANDANG, by itself, creates a new CHUONGTRINHNHANDANG 

or raises the existing 

%      singleton*. 

% 

%      H = CHUONGTRINHNHANDANG returns the handle to a new 

CHUONGTRINHNHANDANG or the handle to 

%      the existing singleton*. 

% 

%      CHUONGTRINHNHANDANG('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in CHUONGTRINHNHANDANG.M with the given input 

arguments. 

% 

%      CHUONGTRINHNHANDANG('Property','Value',...) creates a new 

CHUONGTRINHNHANDANG or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before chuongtrinhnhandang_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to chuongtrinhnhandang_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help chuongtrinhnhandang 

  

% Last Modified by GUIDE v2.5 30-Sep-2010 15:52:28 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @chuongtrinhnhandang_OpeningFcn, ... 

                   'gui_OutputFcn',  @chuongtrinhnhandang_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 



52 
 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before chuongtrinhnhandang is made visible. 

function chuongtrinhnhandang_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to chuongtrinhnhandang (see VARARGIN) 

  

% Choose default command line output for chuongtrinhnhandang 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes chuongtrinhnhandang wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = chuongtrinhnhandang_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in Load_Image. 

function Load_Image_Callback(hObject, eventdata, handles) 

[filename, pathname] = uigetfile({'*.bmp';'*.jpg';'*.gif';'*.*'}, 'Pick an Image File'); 

S = imread([pathname,filename]); 

axes(handles.axes1); 

imshow(S); 

  



53 
 

handles.S = S; 

guidata(hObject, handles); 

% hObject    handle to Load_Image (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA)  

% --- Executes on button press in Edge_Detection. 

function Edge_Detection_Callback(hObject, eventdata, handles) 

b=get(handles.edit1,'String'); 

S = handles.S; 

axes(handles.axes2); 

a=rgb2gray(S); 

bw=edge(a,b); 

bw = bwareaopen(bw,30); 

se = strel('disk',2); 

bw = imclose(bw,se); 

bw = imfill(bw,'holes'); 

imshow(bw); 

handles.bw = bw; 

  

% hObject    handle to Edge_Detection (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA)  

% --- Executes on button press in Recognize. 

function Recognize_Callback(hObject, eventdata, handles) 

global i; 

b=get(handles.edit1,'String'); 

S = handles.S; 

axes(handles.axes3); 

format long; 

a=rgb2gray(S); 

bw=edge(a,b); 

bw = bwareaopen(bw,30); 

se = strel('disk',2); 

bw = imclose(bw,se); 

bw = imfill(bw,'holes'); 

L = bwlabel(bw); 

s  = regionprops(L, 'centroid'); 

dt  = regionprops(L, 'area'); 

dim = size(s); 

BW_filled = imfill(bw,'holes'); 

boundaries = bwboundaries(BW_filled); 

imshow(S); 

hold on; 

for k=1:dim(1) 

    b= boundaries{k}; 

    dim = size(b); 



54 
 

    for i=1:dim(1) 

        khoangcach{k}(1,i) = sqrt ( ( b(i,2) - s(k).Centroid(1) )^2 + ( b(i,1) - s(k).Centroid(2) )^2 ); 

    end  

    a=max(khoangcach{k}); 

    b=min(khoangcach{k}); 

    c=dt(k).Area; 

    dolech=a-b; 

    vuong = c/(4*b^2); 

    chunhat=c/(4*b*(a^2-b^2)^0.5); 

    tamgiacdeu=(c*3^0.5)/((a+b)^2); 

    elip =c/(a*b*pi); 

    thoi= (c*( a^2 - b^2 )^0.5) / (2*a^2*b); 

    if dolech < 10 

            text(s(k).Centroid(1)-20,s(k).Centroid(2),'circle'); 

    elseif (vuong < 1.05 ) & (vuong > 0.95 ) 

            text(s(k).Centroid(1)-20,s(k).Centroid(2),'square'); 

    elseif (elip < 1.05 ) & (elip > 0.95 ) 

            text(s(k).Centroid(1)-20,s(k).Centroid(2),'ellipse'); 

    elseif (thoi < 1.05 ) & (thoi > 0.95 ) 

            text(s(k).Centroid(1)-20,s(k).Centroid(2),'diamond'); 

    elseif ((chunhat <1.05) & (chunhat >0.95)) 

            text(s(k).Centroid(1)-20,s(k).Centroid(2),'rectangle'); 

    elseif  (tamgiacdeu < 1.05 ) & (tamgiacdeu > 0.95 ) 

            text(s(k).Centroid(1)-20,s(k).Centroid(2),'triangle'); 

    end 

end 

  

% hObject    handle to Recognize (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

   

function edit1_Callback(hObject, eventdata, handles) 

% hObject    handle to edit1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA)  

% Hints: get(hObject,'String') returns contents of edit1 as text 

%        str2double(get(hObject,'String')) returns contents of edit1 as a double  

% --- Executes during object creation, after setting all properties. 

function edit1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 



55 
 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

% --- Executes during object creation, after setting all properties. 

function axes1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to axes1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: place code in OpeningFcn to populate axes1 

  

  

% --- Executes on button press in pushbutton6. 

function pushbutton6_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

 

 

 

 

APPENDIX B 

 

 

%------------------------------------------------------------------------------------------------------------- 

% Calculates and displays histograms of a color image. 

% Each color channel (red, green, blue) is extracted and its histogram calculated and displayed. 

% Written by Image Analyst, Jan. 2010. 

  

clc; 

clear; 

close all; 

workspace; 

  

% Change the current folder to the folder of this m-file. 

% (The line of code below is from Brett Shoelson of The Mathworks.) 

if(~isdeployed) 

cd(fileparts(which(mfilename))); 

end 

  

% Set up sizes for the captions and text we will show on the figure. 

captionFontSize = 12; % Font size for headers/captions of images. 

axisFontSize = 14; % Font size for axes of the histogram plots. 

  

% Set the initial default directory to the one containing the 

% standard demo images for the MATLAB Image Processing Toolbox. 

folder = 'C:\Program Files\MATLAB\R2010a\toolbox\images\imdemos'; 

if ~exist(folder, 'dir') 

folder = pwd; 

end 

filePattern = fullfile(folder, '*.*'); 

  

% Ask user to browse for the image file. 

[baseFileName, folder] = uigetfile(filePattern, 'Specify an image file'); 

% Construct the full file name. 

fullImageFileName = fullfile(folder, baseFileName); 

  

  

%------------------------------------ 

% Read the image into an array. 

rgbImage = imread('C:\Users\Jason\Desktop\P.S.M\data baru\dataG.jpg'); 

%------------------------------------ 

  



57 
 

  

% Check to see if it is color or monochrome. 

[rows columns numberOfColorChannels] = size(rgbImage); 

if strcmpi(class(rgbImage), 'uint8') 

% Flag for 256 gray levels. 

eightBit = true; 

else 

eightBit = false; 

end 

% If it's monochrome, convert it to color. 

if numberOfColorChannels == 1 

rgbImage = cat(3, rgbImage, rgbImage, rgbImage); 

end 

  

% Display the original RGB image. 

subplot(3,4,1); 

imshow(rgbImage); 

% Maximize figure. 

set(gcf, 'Position', get(0, 'ScreenSize')); 

% drawnow; % Make it display immediately. 

if numberOfColorChannels > 1 

title('Original Color Image', 'FontSize', captionFontSize); 

else 

title('Original Monochrome Image (converted to color)', 'FontSize', captionFontSize); 

end 

  

% Extract out the individual color channels 

redChannel = rgbImage(:, :, 1); 

greenChannel = rgbImage(:, :, 2); 

blueChannel = rgbImage(:, :, 3); 

  

% Display the red channel image. 

subplot(3,4,2); 

imshow(redChannel); 

title('Red Channel Image', 'FontSize', captionFontSize); 

% Display the green channel image. 

subplot(3,4,3); 

imshow(greenChannel); 

title('Green Channel Image', 'FontSize', captionFontSize); 

% Display the blue channel image. 

subplot(3,4,4); 

imshow(blueChannel); 

title('Blue Channel Image', 'FontSize', captionFontSize); 

  

% Calculate the histogram of the red channel. 

hR = subplot(3, 4, 6); 



58 
 

[countsR, grayLevelsR] = imhist(redChannel); 

maxGLValueR = find(countsR > 0, 1, 'last'); 

maxCountR = max(countsR); 

% Plot the histogram of the red channel. 

bar(countsR, 'r'); 

grid on; 

xlabel('Red Gray Levels', 'FontSize', axisFontSize); 

ylabel('Red Pixel Count', 'FontSize', axisFontSize); 

title('Histogram of Red Channel', 'FontSize', captionFontSize); 

  

% Calculate the histogram of the green channel. 

hG = subplot(3, 4, 7); 

[countsG, grayLevelsG] = imhist(greenChannel); 

maxGLValueG = find(countsG > 0, 1, 'last'); 

maxCountG = max(countsG); 

% Plot the histogram of the green channel. 

bar(countsG, 'g'); 

grid on; 

xlabel('Green Gray Levels', 'FontSize', axisFontSize); 

ylabel('Green Pixel Count', 'FontSize', axisFontSize); 

title('Histogram of Green Channel', 'FontSize', captionFontSize); 

  

% Calculate the histogram of the blue channel. 

hB = subplot(3, 4, 8); 

[countsB, grayLevelsB] = imhist(blueChannel); 

maxGLValueB = find(countsB > 0, 1, 'last'); 

maxCountB = max(countsB); 

% Plot the histogram of the blue channel. 

bar(countsB, 'b'); 

grid on; 

xlabel('Blue Gray Levels', 'FontSize', axisFontSize); 

ylabel('Blue Pixel Count', 'FontSize', axisFontSize); 

title('Histogram of Blue Channel', 'FontSize', captionFontSize); 

  

% Set all axes to be the same height. 

maxCount = max([maxCountR, maxCountG, maxCountB]); 

% Set all axes to be the same width. 

maxGL = max([maxGLValueR, maxGLValueG, maxGLValueB]); 

if eightBit 

maxGL = 255; 

end 

% If there's a big spike at the last bin, it can be hard to see because 

% of the box around the axes, so make the box a few bins wider. 

% This will make it easier to see spikes in the last bin. 

maxGL = maxGL + 8; 

axis([hR hG hB], [0 maxGL 0 maxCount]); 



59 
 

  

% Plot all 

subplot(3, 1, 3); 

plot(grayLevelsR, countsR, 'r', 'LineWidth', 2); 

grid on; 

xlabel('Gray Level', 'FontSize', axisFontSize); 

ylabel('Pixel Count', 'FontSize', axisFontSize); 

hold on; 

plot(grayLevelsG, countsG, 'g', 'LineWidth', 2); 

plot(grayLevelsB, countsB, 'b', 'LineWidth', 2); 

title('Histograms of All Channels', 'FontSize', captionFontSize); 

maxGrayLevel = max([maxGLValueR, maxGLValueG, maxGLValueB]); 

% Trim x-axis to just the max gray level on the bright end. 

if eightBit 

xlim([0 255]); 

else 

xlim([0 maxGrayLevel]); 

end 

  

max_graph = max(max(maxCount)); 

if max_graph == maxCountR 

    disp ('Red'); 

elseif max_graph == maxCountG 

    disp ('Green'); 

else max_graph == maxCountB  

    disp ('Blue'); 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

APPENDIX C 

 

 

function varargout = main(varargin) 

% MAIN M-file for main.fig 

%      MAIN, by itself, creates a new MAIN or raises the existing 

%      singleton*. 

% 

%      H = MAIN returns the handle to a new MAIN or the handle to 

%      the existing singleton*. 

% 

%      MAIN('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in MAIN.M with the given input arguments. 

% 

%      MAIN('Property','Value',...) creates a new MAIN or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before main_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to main_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help main 

  

% Last Modified by GUIDE v2.5 23-Oct-2010 20:52:11 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @main_OpeningFcn, ... 

                   'gui_OutputFcn',  @main_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 



61 
 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before main is made visible. 

function main_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to main (see VARARGIN) 

  

% Choose default command line output for main 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes main wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = main_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

RUN chuongtrinhnhandang; 

  

  

% --- Executes on button press in pushbutton4. 

function pushbutton4_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

RUN new; 

 

  

 



62 
 

APPENDIX D 

 

 

function varargout = new_color(varargin) 

% NEW_COLOR M-file for new_color.fig 

%      NEW_COLOR, by itself, creates a new_color NEW_COLOR or raises the existing 

%      singleton*. 

% 

%      H = NEW_COLOR returns the handle to a new_color NEW_COLOR or the handle to 

%      the existing singleton*. 

% 

%      NEW_COLOR('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in NEW_COLOR.M with the given input arguments. 

% 

%      NEW_COLOR('Property','Value',...) creates a new_color NEW_COLOR or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before new_color_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to new_color_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help new_color 

  

% Last Modified by GUIDE v2.5 08-Nov-2010 15:48:00 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @new_color_OpeningFcn, ... 

                   'gui_OutputFcn',  @new_color_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 



63 
 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before new_color is made visible. 

function new_color_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to new_color (see VARARGIN) 

  

% Choose default command line output for new_color 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes new_color wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = new_color_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in plotAxes1_pushbutton. 

function plotAxes1_pushbutton_Callback(hObject, eventdata, handles) 

% hObject    handle to plotAxes1_pushbutton (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

RUN coloring; 

  

% --- If Enable == 'on', executes on mouse press in 5 pixel border. 

% --- Otherwise, executes on mouse press in 5 pixel border or over text1.  
  

  

 

 

 



 

 

 

 

 

 

 

“I hereby acknowledge that the scope and quality of this thesis is qualified for the 

award of Bachelor Degree of Electrical Engineering (Electronics)” 

 

Signature : _________________________________ 

 

Name  : _________________________________ 

 

Date  :  ________ 

 

 

 

 

 

 

 

 

 

 



I 

 

 

EDU_VISTEC: A SOFTWARE FOR COMPUTER VISION EDUCATIONAL 

TRAINER USING MATLAB 

 

 

LAW KOK SIN 

 

 

This thesis is submitted as partial fulfilment of the requirement for the award of 

the  

Bachelor Degree of Electrical Engineering (Electronic) 

 

 

Faculty of Electrical & Electronic Engineering 

Universiti Malaysia Pahang 

 

 

 

NOVEMBER 2010 

 



II 

 

 

 

 

 

“All the trademark and copyrights use herein are property of their respective 

owner. References of information from other sources are quoted accordingly; 

otherwise the information presented in this report is solely work of the author.” 

 

 

Signature : _________________________________ 

 

Name  : LAW KOK SIN 

 

Date  :  ________ 

 

 

 

 

 

 

 



III 

 

 

 

 

 

To 

My beloved parents 

and my siblings 

 

“who offered me unconditional love and support  

throughout the course of this thesis” 

 

 

 

 

 

 

 

 

 



IV 

 

 

Acknowledgement 

 

 

First and foremost, I am heartily thankful to my supervisor of this work, Dr. 

Kamarul Hawari bin Ghazali, whose encouragement, guidance and advice from the 

initial to the final level throughout the course of my graduate studies. He inspired me 

greatly to work in this project. This work would not be possible without his willingness 

to motivate me contributed tremendously to my work.  

 

 

Besides, I wish to express my gratitude to the authority of Faculty of Electrical 

and Electronic for providing me with the good environment and facilities to complete 

this work. I would like to extend my gratitude to those who gave me the possibilities for 

me to complete this work especially my beloved parents and my siblings for giving such 

a great motivation and financial support. 

 

 

Finally, an honourable mention goes to my graduate friends especially to those 

group members under Dr. Kamarul supervision whose sharing all the literature and 

skills. Special thanks to the administrator who help me to find the research material 

easily. 

 

 

 

 

 



V 

 

 

Abstract 

 

 

Nowadays, from time to time technologies become more advances that bring 

much advantage for our human life. But, it needs time for us to learn especially the 

knowledge about image processing because it uses for many field such as medical or 

aerospace. So, this project is a study that mains in the basic applications of image 

processing. It will introduce to the new learner about the image processing. MATLAB 

software is the main tools that will be use for the application of image processing. 

MATLAB software has been chosen because of this tool is a universal and all well 

known tool. Then, MATLAB GUI is one of the parts that use to create the module of 

those applications. The main outcome of this project is to create a module about the 

application of image processing for learning purpose. In this module which will cover 

two parts, which is shape detection and color recognition (RGB). The method that will 

be use for the shape detection is edge detection. A few edge-finding methods will be 

used for this application such as Sobel, Prewitt, Roberts, Laplacian of Gaussian (Log), 

zero-cross and also canny technique. Therefore, the user can learn much in this module. 

Then, for the application of color part used histogram to recognize the 3 basic colors, 

that are red, green and blue. To complete this project it need to further study about the 

MATLAB tools briefly and also all the technique that use to create that module. Finally, 

this module can give the benefit for the new learner of image processing to more 

understand about the useful applications. This module was designed to perform basic 

applications effectively.  

 

 

 



          VI 

 

 

Abstrak 

 

 

Pada masa kini, kemajuan teknologi dari semasa ke semasa telah membawa 

banyak manfaat dalam kehidupan harian manusia. Tapi, ia memerlukan masa bagi kita 

untuk belajar terutama pengetahuan tentang pemprosesan imej kerana kegunaannya 

dalam pelbagai bidang yang amat meluas seperti perubatan atau aerospace. Jadi, projek 

ini merupakan kajian yang berkaitan dengan aplikasi pemprosesan imej. Ini akan 

memperkenalkan kepada mereka yang baru belajar tentang pemprosesan imej. 

MATLAB adalah alat utama yang akan digunakan untuk aplikasi pemprosesan imej. 

MATLAB telah dipilih kerana alat ini adalah universal dan semua amat mengenalinya 

dalam bidang kejururteraan ini. Kemudian, MATLAB GUI merupakan salah satu 

bahagian yang digunakan untuk membuat modul dari aplikasi tersebut. Objektif utama 

dari projek ini adalah menghasilkan modul tentang aplikasi pemprosesan imej untuk 

tujuan belajar. Dalam modul ini akan merangkumi dua bahagian, iaitu pengenalpastian 

bentuk dan warna (RGB). Kaedah yang akan digunakan untuk pengesanan bentuk 

adalah pengesanan tepi. Teknik ini merangkumi beberapa kaedah yang akan digunakan 

untuk aplikasi seperti teknik Sobel, Prewitt, Roberts, Laplacian dari Gaussian (Log), 

zero-cross dan juga canny. Oleh kerana itu, pengguna boleh banyak belajar di dalam 

modul ini. Maka, untuk aplikasi bahagian warna yang digunakan adalah histogram untuk 

mengenali 3 warna iaitu merah, hijau dan biru. Demi menyiapkan projek ini perlu 

mempelajari lebih lanjut mengenai alat MATLAB terlebih dahulu dan juga semua teknik 

yang digunakan untuk membuat modul itu. Akhirnya, modul ini dapat memberikan 

manfaat bagi mereka baru ingin belajar pemprosesan imej untuk lebih memahami 

tentang aplikasi bermanfaat yang ada. Modul ini direka dengan tujuan mampu 

menonjolkan aplikasi asas  dengan berkesan. 

 

 



VII 

 

 

 

TABLE OF CONTENTS 

 

 

CHAPTER  TITLE      PAGE 

 

   ORGANIZATION OF THE THESIS 

   TITLE PAGE       I 

   DECLARATION      II 

DEDICATION      III 

ACKNOWLEDGEMENT     IV 

ABSTRACT       V 

ABSTRACK       VI 

TABLE OF CONTENTS     VII 

LIST OF FIGURE      VIII 

LIST OF TABLE      XI 

LIST OF ABBREVIATIONS     XII 

LIST OF APPENDICES     XIII 

 

1.    INTRODUCTION      1 

 

1.1 Problem Statements     2 

1.2 Objectives      2 

1.3 Scope of project     2 

1.4 Thesis Outline      3 



2.   LITERATURE REVIEW      

 

2.1 Image processing     4 

2.1.1 Threshold image    7 

2.1.2 Edge Detection    10 

2.1.3 Histogram Method    12 

2.2 RGB       15 

2.3 MATLAB 2008     16 

2.4 Graphical User Interface (GUI)   17 

 2.4.1 GUI definition     17 

 2.4.2 MATLAB GUI    18 

 2.4.3 MATLAB GUIDE    19 

 2.4.4 GUI operation     19 

 

 

3.   METHODOLOGY 

 

3.1 Introduction      21 

3.2 Software Development    23 

 3.2.1 Development MATLAB GUI   25 

Using MATLAB GUIDE 

3.2.2 Build MATLAB Programming  30 

 

 

 

4.   RESULT AND DISCUSSIONS 

 

4.1 Introduction       35 

4.2 Training phase result     36 

 4.2.1 Result of shape detection development 36 

 4.2.2 Result of color recognition development 39 

4.3 Execution phase result    43 

4.4 Discussion      47 



5.   CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion      48 

5.2 Future Recommendation    49 

 

 

REFERENCES      50 

 

APPENDICES      51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 

 

 

 

LIST OF FIGURES 

 

 

FIGURE   TITLE               PAGE 

2.1   Example of restoration image     5 

2.2   Example of enhancement image    5 

2.3   Example of understanding images    6 

2.4   Original image      8 

2.5   RGB to gray scale      8 

2.6   Threshold to binary image     8 

2.7   Inverse binary image      8 

2.8   Prewitt horizontal and vertical operators   11 

2.9   Example of image histogram     13 

2.10   Example of histogram show pixel value   13 

2.11   Low key image with the majority of pixels to the left 14 

   of center of the graph 

2.12   High key images with the majority of the pixels   14 

    to the right of center of the graph     

2.13   Result of combination primary color    15 

2.14   The application, developed in MATLAB,    16 

directly acquires signals from measurement hardware, 

performs analysis and plotting, and includes GUI controls. 

2.15   Example of GUI elements     18 

3.1   Block diagram for the flow of the project   22 

3.2   Flow Chart       24 



3.3   MATLAB GUIDE Layouts     26 

3.4   Property Inspector      27 

3.5   Example GUI       28 

3.6   Example m-files for GUI     29 

4.1   Coding for sobel method     37 

4.2   Coding shown decision of detect image   38 

4.3   Coding of read and check the image    39 

4.4   Coding of extract out the color image to the   40 

individual color channels 

4.5   Coding of after calculate the pixel value and    41 

plot in a graph  

4.6   Final result       42 

4.7   Main Menu GUI      43 

4.8   Load Image       44 

4.9   Select edge-detection method     44 

4.10   Recognize and get result     44 

4.11   GUI for the color recognition  ( Part I )   45 

4.12   GUI for the color recognition  ( Part II )   46 

4.13   GUI for the color recognition  ( Part III )   46 

 

 

 

 

 



XI 

 

 

LIST OF TABLE 

 

 

TABLE   TITLE      

 PAGE 

3.1   Basic Matlab GUI component    25 

3.2   Various kind of Callbacks     31 

3.3   Major Sections of the GUI M-file    34 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 



XII 

 

LIST OF ABBREVIATIONS 

 

 

GUI -  Graphical User Interface 

RGB - Red, Green and Blue 

HSV - hue, saturation, and value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIII 

 

 

LIST OF APPENDICES 

 

 

APPENDIX   TITLE      PAGE 

        A   Coding GUI Shape Detection    51 

B   Coding Color Recognition    56 

C   Coding Main GUI     60 

D   Coding Color GUI     62 

 

 

 

 

 

 

 

 

 

 


