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Abstract — This paper presents the convergence analysis of the newly-developed African Buffalo Optimization algorithm. African 
Buffalo Optimization is a simulation of the organizational skills of the African buffalos using two basic sounds: /waaa/ and /maaa/ 
as they transverse the African landscape in search of grazing pastures. The African Buffalo Optimization has proven to be quite 
successful since its development hence the need to examine its convergence behaviour. The analysis of the convergence of Nature-
inspired optimization algorithms is necessary to help researchers and practitioners understand the workings of the algorithms in 
the algorithms’ attempts at solutions. After a number of evaluations, this study discovered that the convergence of African Buffalo 
Optimization is a function of the population size, communication topology, parameter-set, landscape topology and the objective 
function being optimized. 
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I. INTRODUCTION 

 
The African Buffalo Optimization (ABO) is a 

recently-developed metaheuristic algorithm. It was 
developed strictly following the lean metaheuristic design 
ideology being recently propagated by a number of 
researchers [1]. Basically, the ABO is a simulation of the 
movement of the African buffalos from place to place 
within the African forests and savannahs in search of lush 
pastures to satisfy their large appetites. In their 
movements, the African buffalos use the /maaa/ 
vocalizations to mobilize the animals to exploit a 
particular location and the opposing /waaa/ sounds to 
motivate each other to explore other areas since their 
present location is either unsafe or no more lucrative. 
Using these sounds, the buffalos are able to organize 
themselves out of starving locations into fruitful regions 
of the search space [2]. 

So far, the ABO has been successfully applied to solve 
different benchmark numerical test cases [3], asymmetric 
and symmetric Travelling Salesman’s Problems as well as 
the tuning of Proportional, Integral and Derivative 
parameter-tuning of Automatic Voltage Regulators in 
Power generators [4]. 

In view of the huge success of the ABO in its areas of 
applications, our interest in this study is to investigate the 
Algorithms convergence behaviour. Earlier studies 
indicate that an algorithm’s success is a function of 
number of parameters, effective tuning of such 
parameters, calculation of fitness of function, convergence 
behaviour, implementation strategies etc. [5, 6]. 

The convergence rate of a stochastic optimization 
algorithm is an indicator of its efficiency or otherwise. 
Algorithm convergence is an examination of the 
distribution of steps needed to reach the optimal solution. 

The convergence analysis of the ABO is important since 
the novel algorithm is suitable not only for scientific 
investigations but also very useful in engineering 
applications. It is, therefore, necessary to provide the 
theoretical foundation of the novel algorithm in order to 
enable the research community appreciate its workings. 
This is the motivation for this study. 

The rest of the paper is organized thus: section two 
discusses related work; section three examines the ABO 
algorithm and convergence analysis; section four 
highlights the findings on ABO convergence and presents 
the conclusion to the study. This is followed by the 
acknowledgement of support for the study 

 
 

II. RELATED WORK 
 
In recent years, a number of scientific investigations 

into the convergence behaviour of optimization 
algorithms has been carried out. Prominent among those 
investigation was the work by Liu et al [7] on the 
convergence of the Particle Swarm Optimization 
algorithm. In their study, Liu et al opines that PSO 
deploys ‘the swarm intelligent model’ in achieving good 
convergence. Swarm Intelligence Model postulates that 
the individual particles in a swarm relates with one 
another using iterated function system thus converging 
with a probability of individual particles being attracted 
towards the location of the overall best particle as the 
algorithm progresses from iteration to iteration. The 
movement of the other particles to the overall best in a 
particular iteration enables the PSO algorithm to converge 
at the global optimum. 
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In another study on PSO convergence, Wei et al. 
opines that PSO achieves faster convergence using what 
they described as random global convergence theorem 
which is basically a simplification of the Swarm 
intelligence model described earlier [8]. Still in another 
study, Ren et al. used the Markov chain in analysing the 
global convergence characteristics of PSO [9]. Here, they 
established the relationship between the particles’ velocity 
and positions in the swarm’s movement from one location 
to the other as they move towards the global optima. In 
the study under reference, the researchers provided a 
theoretical relationship between the convergence time and 
convergence rate in addition to the relationship between 
the swarm size and convergence time. 

The main issue in these approaches is the embedded 

assumption that that the swarm moves in one dimension. 
Moreover, the PSO algorithm’s convergence’ time is 

calculated based on the particle interaction that depends 
on PSO’s social-only component [10]. From the foregoing 
discussion, one prominent observations is that most 
studies on algorithm convergence are based on some rigid 
assumptions in order to simplify the theoretical 
foundations of the algorithm’s convergence. 
 

III. THE ABO ALGORITHM 
 

To analyse the ABO convergence, it is necessary to 
take a look at the ABO algorithm as well as the workings 
of the algorithm. The ABO algorithm is presented in 
Figure 1 below. 

 
Step1. Initialization: randomly place buffalos to nodes at the solution space;
Step2.Update the buffalos’ exploitation using Eq. (1) 
 

 
 
where  mk and wk represent the exploitation and exploration moves respectively of 

the kth buffalo (k=1,2...N);  lp1 and lp2 are learning factors; bg is the herd’s best 
fitness and bp the individual buffalo’s best location   
Step3.   Update the location of buffalos using Eq. (2): 
 

 
Step4. Is   updating? Yes, go to 6. If No, go to 1 
Step5. If the stopping criteria is not met, go back to algorithm step 2, else go to 6 
Step6. Output best solution. 

 
Figure 1: ABO algorithm 

 
The ABO algorithm is basically a simulation of the 

three major characteristics of the African buffalos: regular 
communication, excellent memory capacity and collective 
intelligence borne out of regular consultations. The 
buffalos’ communication is usually done through two 
vocalizations: the /waaa/ and the /maaa/. The   calls 
(represented by  in Fig. 1) are used to mobilize the herd to 
explore other grazing locations because the present 
location could be unsafe or lacks sufficient pasture. The 
other buffalo vocalization is the /  call (represented by  in 
Fig. 1) which summons the buffalos to stay on to exploit 
the present location since it has sufficient pasture and is 
safe. Mathematically, the democratic equation which 
simulates the cooperative interactions among the buffalos 
and determines their movement is: 

 
  (1) 

 
As can be seen, Eq. (1) has three main parts: the first 

being the memory part (   ) which is an indication that 
the buffalos are aware that they have relocated from their 
locations, mk to the present one. This part of the Equation 
portrays the animals’ extensive memory capacity which is 
an indispensable asset in their migrant lifestyle. The 
second part of Eq. (1) is a representation of the 

cooperative characteristics of the buffalos 
. The buffalos are excellent 

communicators and so, in each iteration, are able to 
ascertain the location of the best buffalo which serves as a 
compass to the other buffalos in the search process. The 

last part of this equation  models the 
exceptional intelligence of the animals. They are able to 
tell their previous best fruitful location in comparison with 
the present position. The entire Eq. (1), therefore, 
highlights the buffalos’ ability to harness the herd’s 
collective intelligence in making informed decisions in 
their search for grazing lands [11]. 

It may be necessary to emphasize that the new 
exploitation location of the herd mk' which will 
eventually determine the need for relocating to a new 
location wk' is a function of the previous exploitation 
location wk in addition to the knowledge-based 
parameters lp1 and lp2 helping the buffalos in deciding 
the need for relocation after subtracting the present 
exploration location wk from their overall best bg and 
personal best bp.k. Also note that bg is derived by: 
    

bg = w * (t)             (1.1) 
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where  represents the best waaa (exploration) 
location and t the iteration. Similarly, bp.k  is obtained 
by: 

 
bp.k = wk (t)                  (1.2) 

 
Here bp.k is the best exploration location ever found 

by a particular buffalo k and t represents the iteration. 
At this juncture, it is necessary to emphasize that the 

ABO algorithm subtracts the dimensional element Wb 
from the two maximum vectors (bg and bp.k) and then 

multiplies the outcome by the learning parameters lp1, 
lp2 which is usually between 0.3 and 0.7. The output of 
these products is then used to determine the given fitness 
dimension (x or v) of the buffalos. At this point, Eq. 2 is 
then used to propel the buffalos to a new location: 

 

       (2) 
 

Here wk’ represents the movement to a new location, 

wk is the present exploration values while mk is the 
present exploitation values;  represents exploitation 
driver is a random between 0 and 1. The Algorithm 
flowchart is presented in Figure 2. 

 
Figure 2: The flowchart of ABO 

 
 
A. The Working of the ABO. 
 

As can be seen from Fig. 1, the ABO algorithm starts 
by randomly initializing the population of buffalos. This 

is done by assigning random locations to each buffalo 
within the search space. After this, it updates each 
buffalo’s exploitation and exploration fitness in relation to 
the target goal. This way it ascertains the herd’s best 
animal ( and each buffalos personal best ( ). Please note 
that in each step, each animal keeps a memory of its own 
coordinates. If the present fitness is better than the 
individual buffalo’s maximum fitness ( ), the algorithm 
saves that location vector for the particular buffalo. If the 
fitness is better than the herd’s maximum, it saves it as the 
herd’s global best ( ).. 

After this, the algorithm updates the location of the 
buffalos using Eq.2. Moreover, it confirms the 
improvement or otherwise of the best buffalo ( ). If there 
is no improvement in the status of the best buffalo in a 
number of iterations, the algorithm re-initializes the entire 
buffalo herd. If the best buffalo is improving its locations, 
the algorithm checks to see if the stopping criteria has 
been reached. If the best buffalo fitness ( meets our exit 
criteria, it terminates the run and provides the location 
vector as the solution to the given problem. The stopping 
criteria could be a specified number of iterations without  
improvement of the best buffalo, a specified number of 
iterations etc. Some of the advantages of this new 
algorithm are its ease of implementation, ability to search 
both locally and globally simultaneously, the algorithm’s 
flexibility, the use of relatively few parameters and fast 
convergence rate. 

 
B. ABO Convergence Analysis. 
 

There exists a relationship between the exploitation 
driver of the population and the algorithm convergence. 
Equation 3 below defines the population’s fitness in terms 
of since   which represents the exploitation driver is a 
major determinant of the buffalos’ movement. A higher 
value of   means more exploitation, less exploration and 
vice-versa: 
 

               (3) 
Here N stands for the population of buffalos; wk is the 

/waaa/ (exploration) fitness of buffalo k, k = 1, 2, 3, ..n ; 
wavg, the present average (exploration) fitness of the 
herd; while  wj is the normalized calibration factor of the 
exploitation driver. The value of w is obtainable from: 

 

 (4) 
 
The way is defined is an indication that being the 

exploitation driver it presents the convergence degree of 
all the buffalos in the herd. It follows, therefore, that a 
bigger  presents a better convergence. Otherwise, the 
buffalos are still in the random searching mode. Another 
way to describe the buffalos’ convergence is: 
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                   (5) 
 
In this Equation, k(t) represents the /waaa/ values of 

the buffalo k at iteration t and i  the herd’s location in the 
searching space. This shows that the buffalos will settle at 
some fixed point i in the search space. Mathematically, 
this can be represented as: 

 

     (6) 
 

Here,  lp1 and lp2 and are 

learning parameters in equation (1), and bn is the 

individual best location while ba is the global best of the 
herd. 

In summary, therefore, ABO arrives at convergence in 
a local or global extremum: the entire buffalos 
aggregating in a location, with the variance of the 
population’s fitness being zero. Practical application of 
the ABO convergence in parameter-tuning is found in the 
Appendix. The best parameter tuple is in green colour 
while the next best is in red.  
 
C. Communication Issues in ABO Convergence.  
 

Different optimization algorithms employ diverse 
strategies in searching for solutions to optimization 
problems. For example, the Ant Colony Optimization 
(ACO) uses the path construction method in its search 
while the Particle Swarm Optimization (PSO), Artificial 
Bee Colony (ABC) and the ABO use the path 
improvement mechanism. 

However, while the ACO’s best information 
propagation method is the ring topology [12], the PSO’s 
best communication topology is the Von Neumann 
architecture [13], while the ABO employs the star 
topology which connects all the buffalos together since 
the entire herd works as a unit in search of solutions for its 
information propagation [14]. A diagrammatic 
representation of the different communication topologies 
are presented in Figure 3 below. 
 

   
                   Star                                  Ring                       Von-Neumann  

Figure 3: Information Propagation Architecture, Topologies 
 
 

IV. FINDINGS AND CONCLUSIONS 
 

Convergence basically is the trade-off between 
exploration and exploitation. In order to obtain a good 

convergence of the ABO, it is necessary to select the 
appropriate parameters. The algorithm’s convergence is a 
function of the population of the buffalos engaged in the 
search, the communication topology, size of the search 
space, the function being optimized in terms of the 
number of local optima and their distance to the global 
optimum, the position of the global optimum etc. This is 
in agreement with previous studies [15, 16] 

Experimental procedures indicate that larger 
population sizes demand that the algorithm embarks on 
several evaluations per iteration and this impedes on the 
convergence speed. Similarly, the communication 
topology adopted whether the star, ring or Von Neumann 
influences the algorithm’s convergence. The star 
topology, for instance, ensures fast communication and 
consequently fast convergence; the ring or Von Neumann 
are slower communication models and, therefore, slower 
convergence. 

Another major factor in ABO convergence is the 
nature of the problem being solved. The function being 
optimized could be such that have several local optima or 
otherwise. It is easier to solve a problem with fewer local 
optima starched together than a function that has several 
local optima spread all over the search landscape. Closely 
related to this is the position of the local optima in relation 
to the global optimum. The distance of the global 
optimum in relation to the local optima is a major 
consideration affecting the rate of ABO’s convergence. 
The algorithm is most likely to converge faster in a 
situation where the global optimum is close to the local 
optima. Still on the issue of the global optimum location 
is its position whether in the centre of the search space or 
nearer to the borders. Experimental investigation shows 
that global optimum at the centre of the search space is 
easier to locate, thus ensuring faster convergence than 
those near the borders. This finding is consistent with 
earlier results [17, 18].  

Moreover, it is pertinent to note that the size of the 
search space is a major consideration in ABO 
convergence processes: the larger the search space, the 
more time and computer resources taken by the buffalos 
in their search before convergence than in smaller search 
spaces. Also noteworthy is the search spaces with 
deceptive surfaces. Very smooth search spaces as in 
Rosenbrock test function poses a great challenge to the 
ABO as it gives insufficient information to the algorithm 
in its search effort. 

In the light of the above discussion, it is advisable to 
start with a particular parameter set and observe the 
convergence outcome. In a situation where different 
results are obtained in most runs, this is an indication that 
the algorithm convergence is rather too fast. In such a 
situation, the population of buffalos should be increased 
or the communication topology be loosened. That is to 
say, that if one is using the star topology, there could be 
need to deploy the Von Neumann communication strategy 
or even the ring topology. 

Conversely, if the runs produce the same outcomes 
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consistently, yet no improvement is made during a good 
proportion of the run, especially, when the outcome is not 
the expected global optimum then it is a case of sluggish 
convergence. However, if the outcomes of most runs are 
consistent with noticeable improvements per iterations, 
then it is a case of proper convergence speed. In all of 
these cases, it can be deduced that the lambda helps the 
ABO to determine the steps of the buffalos in their quest 
for solutions. 

In closing, it is obvious from the fore-going analysis 
that the effectiveness and efficiency of the ABO is a 
function of its convergence behaviour. Also, the 
convergence characteristics of the ABO algorithm is a 
function of the population size being deployed for each 
problem, the communication topology employed to solve 
a problem, the parameter-set being used in the search, the 
landscape topology of the problem being solved and the 
objective function being optimized. 
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APPENDIX 
 

 lp1 lp2 Best result Mean score 
  0.3 -10.3923 -10.3144 
  0.4 -10.3923 -10.3124 
  0.5 -10.3922 -10.3380 
  0.6 -10.3911 -10.2235 
  0.7 -10.3923 -10.3448 
  0.8 -10.3923 -10.3547 
  0.9 -10.3923 -10.1674 

1.8 0.7 0.1 -10.3917 -10.3562 
  0.2 -10.3905 -10.2924 
  0.3 -10.3923 -10.3779 
  0.4 10.3912 -10.1720 
  0.5 -10.3923 -10.3576 
  0.6 -10.3923 -10.3012 
  0.7 -10.3923 -10.1275 
  0.8 -10.3923 -10.3422 
  0.9 -10.3923 10.3825 
 0.8 0.1 -10.3912 -10.2523 
  0.2 -10.3923 -10.3553 
  0.3 -10.3923 -10.3470 
  0.4 -10.3923 -10.3757 
  0.5 -10.3922 -10.1728 
  0.6 -10.3921 -10.1681 
  0.7 -10.3916 -10.3168 
  0.8 -10.3923 -10.2993 
  0.9 -10.3923 -10.3814 
 0.9 0.1 -10.3923 -10.2956 
  0.2 -10.3922 -10.3205 
  0.3 -10.3923 -10.3503 
  0.4 -10.3923 -10.2918 
  0.5 -10.3923 -10.2893 
  0.6 -10.3923 -10.3609 
  0.7 -10.3923 -10.3730 
  0.8 -10.3923 -10.3852 
  0.9 -10.3923 -10.3553 

1.6 0.1 0.1 -10.3912 -10.2627 
  0.2 -10.3923 -10.2407 
  0.3 -10.3918 -10.1043 
  0.4 -10.3921 -10.1112 
  0.5 -10.3923 -9.7980 
  0.6 -10.3907 -10.1446 
  0.7 -10.3921 -10.1703 
  0.8 -10.3921 -10.0376 
  0.9 -10.3923 -10.1564 
 0.2 0.1 -10.3923 -10.3180 

 
 

 
 


