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Abstract. Enzymatic hydrolysis becomes a prominent technology for conversion of cellulosic 

biomass to its glucose monomers that requires an action of cellulolytic enzymes in a sequential 

and synergistic manner. In this study, the effect of agitation speed, glucan loading, enzyme 

loading, temperature and reaction time on the production of glucose from fibre pressed oil palm 

frond (FPOPF) during enzymatic hydrolysis was screened by a half factorial design 25-1 using 

Response Surface Methodology (RSM). The FPOPF sample was first delignified by alkaline 

pretreatment at 4.42 % (w/v) sodium hydroxide for an hour prior to enzymatic hydrolysis using 

commercial cellulase enzyme, Sacchariseb C6. The effect of enzymatic hydrolysis on the 

structural of FPOPF has been evaluated by Scanning Electron Microscopy (SEM) analysis. 

Characterization of raw FPOPF comprised of 4.5 % extractives, 40.7 % glucan, 26.1 % xylan, 

26.2 % lignin and 1.8 % ash, whereas for pretreated FPOPF gave 0.3 % extractives, 61.4 % 

glucan, 20.4 % xylan, 13.3 % lignin and 1.3 % ash. From this study, it was found that the best 

enzymatic hydrolysis condition yielded 33.01 ± 0.73 g/L of glucose when performed at 200 rpm 

of agitation speed, 60 FPU/mL of enzyme loading, 4 % (w/w) of glucan loading, temperature at 

55 � and 72 hours of reaction time. The model obtained was significant with p-value <0.0001 

as verified by the analysis of variance (ANOVA). The coefficient of determination (R2) from 

ANOVA study was 0.9959. Overall, it can be concluded that addition of Sacchariseb C6 during 

enzymatic hydrolysis from pretreated FPOPF produce high amount of glucose that enhances it 

potential for industrial application. This glucose can be further used to produce high-value 

products. 

1.  Introduction 

Lignocellulosic biomass (LCB) is the most abundant renewable biomass that usually can be obtained 

from agricultural and forest residues [1][2][3]. It comprise of three major components which are 

cellulose, hemicellulose and lignin [4]. Cellulose and hemicellulose can be converted into fermentable 

sugars such as glucose and xylose. 

Bioconversion of LCB into fermentable sugars indicates high potential as a promising renewable 

feedstock in biorefining area. The first step in fermentable sugar production is pretreatment in order to 

disrupt the lignin and expose the cellulose fraction followed by enzymatic hydrolysis. The hydrolysis of 

LCB into fermentable sugar is a crucial stage, which mainly determines the overall process efficiency. 

http://creativecommons.org/licenses/by/3.0
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Enzymatic hydrolysis is carried out by cellulase enzyme which is highly specific, and the products of 

the hydrolysis are usually reducing sugars such as glucose and xylose. There are various methods 

available for the fermentable sugars production, but the chemical and enzymatic methods have been 

proved to be more successful. Moreover, pretreatment and enzymatic hydrolysis are the most important 

steps in order to convert LCB contents into fermentable sugars which are currently known to have much 

more chance to reduce processing cost than other processes. 

In this study, FPOPF was introduced as a raw material where the hemicellulose and cellulose were 

converted into simple sugars concerning to maximize the utilization of OPF. In order to improve the 

accessibility of cellulase on FPOPF, the structure of lignocellulose must be broken down by alkaline 

pretreatment. FPOPF was treated with alkaline solution for delignification process before undergoes 

enzymatic hydrolysis [5]. Cellulase enzyme which is Sacchariseb C6 was used in enzymatic hydrolysis 

to promote the production of glucose by converting the cellulose.  

Therefore, this study aims at assessing the effects of five important parameters which are agitation 

speed, glucan loading, enzyme loading, temperature and hydrolysis time on the enzymatic hydrolysis 

using Sacchariseb C6 and thus finding the best conditions for enzymatic hydrolysis by using statistical 

approach of response surface methodology (RSM). 

2.  Materials and Methods 

2.1.  Materials 

Oil palm frond (OPF) was obtained from a local palm oil plantation at Kuantan, Pahang. The OPF was 

pressed by using sugarcane machine to remove the juices. The fibre pressed oil palm frond (FPOPF) 

was sun dried for 3 days before shredded into pieces and sieved into particle size less than 2 mm. Dried 

FPOPF was stored in sealed plastic bag at room temperature. Enzymatic hydrolysis was carried out 

using Sacchariseb C6, a commercial enzyme preparation kindly obtained from Advanced Enzyme 

Technology (India).  

2.2.  Compositional analysis of FPOPF 

Characterization of FPOFF was carried out according to National Renewable Energy Laboratory 

(NREL) methods in order to determine the composition of glucan, xylan, lignin, ashes and extractives 

contents in untreated and alkaline pretreated FPOPF. The moisture content of the raw FPOPF was 

determined using a moisture analyzer (DSC, A&D MS70). The extractives content was measured using 

DIONEX ASE 350 (Thermo Scientific, USA) with water and ethanol as solvents for 30 minutes prior 

to an autoclaved-based acid hydrolysis step [6]. The recovered water extract was analyzed for soluble 

sugar monomers. The carbohydrates and lignin content in FPOPF were determined using two-step acid 

hydrolysis procedure by NREL [7]. The acid insoluble material was determined using gravimetric 

analysis while UV–Vis spectroscopy was used to measure acid soluble lignin in FPOPF [8]. 

2.3.  Alkaline pretreatment 

FPOPF sample was soaked in 4.42 % (w/v) sodium hydroxide (NaOH) solution. The sample was treated 

at 100 °C about 58.31 minutes [5]. After that, the treated FPOPF was washed thoroughly with de-ionized 

water until neutral. The sample was oven dried at 105 °C and stored prior to enzymatic hydrolysis. 

2.4.  Two-level factorial analysis experimental setup 

The experimental design for factorial analysis was performed using Design Expert 7.0.0 (Stat-Ease Inc., 

USA) software. The effect of five independent variables as shown in Table 1 were analysed using 

Response Surface Methodology (RSM). The condition ranges chosen were based on the other 

researcher’s previous work [9][10][11][12]. The factors were constructed in factorial designs of 25-1 to 

screen their effect on the response of glucose production. All experiments consist of 16 run listed in 

Table 2 were carried out in triplicate and the averages were taken as responses. 
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Table 1. Parameters and their designated low and high value. 

Factor Units 
Low value  

(-1) 

High value  

(+1) 

A: Agitation speed Rpm 50 200 

B: Enzyme loading FPU/mL 20 60 

C: Glucan loading % 1 4 

D: Temperature °C 35 55 

E: Reaction time Hours 3 72 

 

Table 2. Experimental design for screening. 

Std. 

Order 

Agitation speed 

(rpm) 

Enzyme loading 

(FPU/mL) 

Glucan 

loading (%) 

Temperature 

(°C) 

Reaction time 

(hours) 

1 -1 -1 -1 -1 +1 

2 +1 -1 -1 -1 -1 

3 -1 +1 -1 -1 -1 

4 +1 +1 -1 -1 +1 

5 -1 -1 +1 -1 -1 

6 +1 -1 +1 -1 +1 

7 -1 +1 +1 -1 +1 

8 +1 +1 +1 -1 -1 

9 -1 -1 -1 +1 -1 

10 +1 -1 -1 +1 +1 

11 -1 +1 -1 +1 +1 

12 +1 +1 -1 +1 -1 

13 -1 -1 +1 +1 +1 

14 +1 -1 +1 +1 -1 

15 -1 +1 +1 +1 -1 

16 +1 +1 +1 +1 +1 

 

The validation run for factorial analysis was done to validate the experimental values synchronise 

with the predicted model generated by Design Expert software. The condition for the validation run was 

obtained from the predicted best condition developed from 25-1 factorial design. The validation model 

was determined by comparing the predicted and experimental values. The percentage errors between 

these values were calculated using Equation (1). 

 

                       Error (%) =  | Calculated value – Experimental value | × 100 %   (1) 

Experimental value 

 

2.5.  Enzymatic hydrolysis 

Enzymatic hydrolysis was carried out using Sacchariseb C6 and Novozyme 188 (64 pNPGu/mL). 

Pretreated FPOPF (1 - 4 %) was mixed with 0.02 % (w/v) sodium azide to prevent microbial growth in 

the presence of 0.05 M citrate buffer at pH 4.8. The mixture was pre-incubated at certain temperature 

(35 - 55 °C) prior to the addition of enzymes. The enzymatic hydrolysis was then initiated by adding 

Sacchariseb C6 (20 - 60 FPU/ml) and Novozyme 188. The shaker started to agitate (50 - 200 rpm). At 

the end of the hydrolysis (3 - 72 hours) the samples were filtered and their residues were collected for 

further analysis. Each experiment was carried out in triplicate. 
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2.6.  HPLC analysis 

The hydrolysate was analysed by using Agilent 1200 HPLC (USA) system equipped with refractive 

index (RI) detector. The separation was performed using RHM Monosaccharide H+ column. The mobile 

phase was prepared using Milli-Q ultrapure water (Millipore, USA). The column temperature was 

maintained at 60 °C. The flow rate and injection volume were at 0.4 mL/min and 5 µL, respectively. 

The calibration curve was generated from binary standard consists of pure glucose and pure xylose with 

the ranges of 1 g/L to 40 g/L. 

2.7.  Scanning electron microscopy (SEM) morphology 

Morphological structure of FPOPF was carried out using EVO 50 SEM (Carl Zeiss, Germany). Three 

FPOPF samples were collected which are untreated FPOPF, pretreated FPOPF and pretreatment with 

enzymatic hydrolysis FPOPF. Prior to SEM analysis, the samples were oven dried (55 ± 5 °C) for 

overnight. The samples were fixed on the aluminium stubs and coated with carbon layer. The samples 

were observed at 1000x magnification power and 5 kV of working voltage. 

3.  Results and Discussion 

3.1.  Characterization of FPOPF 

As a natural product, the FPOPF has various compositions in terms of glucan, xylan and lignin as 

reported by Zahari et al. [13] and Tan et al. [14]. This different in composition was due to the several 

factors such as geographic locations, plant ages, climate, and soil conditions. The FPOPF used in this 

study composed of 4.5 % extractives, 40.7 % glucan, 26.1 % xylan, 26.2 % lignin and 1.8 % ash for raw 

FPOPF. Meanwhile, pretreated FPOPF comprised of 0.3 % extractives, 61.4 % glucan, 20.4 % xylan, 

13.3 % lignin and 1.3 % ash.  

3.2.  Scanning electron microscopy ((SEM) analysis 

Untreated, pretreated and pretreated with hydrolysis FPOPF were observed using SEM under 

magnification at 1000x in order to evaluate the effect of alkaline pretreatment and enzymatic hydrolysis 

on the morphology of the FPOPF as shown in Figure 1. Surface of untreated FPOPF (Figure 1a) was 

smooth, flat and rigid structure with presence of undamaged surface which comparable with previous 

study reported in rice straw [15], empty fruit bunch (EFB) [16], and wheat straw [17]. Meanwhile, after 

alkaline pretreatment, the outer surface layer was destroyed and the cell wall was distorted resulting the 

internal structure was exposed as shown in Figure 1b. This proved that the delignification occurred 

during alkaline pretreatment. This structure alteration could be expected that the accessibility of enzyme 

increased to the cellulose in the enzymatic hydrolysis later. Meanwhile, structure of FPOPF after 

enzymatic hydrolysis as in Figure 1c described that structures become disrupted by the enzymatic 

hydrolysis.  

 

         
 

(b) (a) 
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Figure 1. SEM images of FPOPF: a) untreated FPOPF, b) pretreated FPOPF, and c) FPOPF after 

enzymatic hydrolysis. 

3.3.  Factors affecting enzymatic hydrolysis 

The highest production of glucose was obtained at 33.01 ± 0.73 g/L where the hydrolysis conditions at 

200 rpm of agitation speed with temperature of 55 °C, 4 % of glucan loading, and 60 FPU/mL of enzyme 

loading for 72 hours of hydrolysis time as shown in Table 3. 

 

Table 3. Experimental design of factor screening process using 25-1 factorial design with their 

response. 

Std. 

Order 

Factors Response 

Agitation 

speed (rpm) 

Enzyme 

loading 

(FPU/mL) 

Glucan 

loading 

(%) 

Temp. 

(°C) 

Reaction 

time (hours) 

Glucose 

Concentration 

(g/L) 

1 50 20 1 35 72 7.71 

2 200 20 1 35 3 3.23 

3 50 60 1 35 3 3.08 

4 200 60 1 35 72 8.91 

5 50 20 4 35 3 11.39 

6 200 20 4 35 72 30.76 

7 50 60 4 35 72 26.55 

8 200 60 4 35 3 14.04 

9 50 20 1 55 3 3.16 

10 200 20 1 55 72 7.47 

11 50 60 1 55 72 9.92 

12 200 60 1 55 3 3.76 

13 50 20 4 55 72 30.32 

14 200 20 4 55 3 14.63 

15 50 60 4 55 3 13.99 

16 200 60 4 55 72 33.01 

 

In factorial analysis, contribution of the main factor gives an important effect in the optimization part 

later. Two to three highest contributed factors will be selected from this factorial analysis. From Table 

4 and Figure 2, factor C (glucan loading) gives the most contributing factor with 52.42 % to the 

enzymatic hydrolysis. Glucan loading indicates the availability of more cellulose can be hydrolysed to 

glucose. Similar results reported by Tan and Lee [12] and Nieves et al. [18] where the glucose yield was 

(c) 
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gradually increased as the substrate loading increased. Furthermore, Sun and Chen [19] reported that 

substrate loading is one of the main factors that contribute to the rate of enzymatic hydrolysis. Next, the 

second most contribution factor followed by 31.73 % of E (hydrolysis time). Glucose production 

increased with longer hydrolysis time because its allowed the enzyme to hydrolyse the cellulose into 

glucose. Similar trend was obtained by Tan and Lee [12] and Zheng et al. [9]. 

 

Table 4. Percentage of contribution of main factor in enzymatic hydrolysis. 

Factors Contribution (%) 

A 0.39 

B 0.087 

C 52.42 

D 0.47 

E 31.73 

 

From Pareto chart as shown in Figure 2, all five factors (A, B, C, D and E) gave a positive effect 

(refer to orange bar chart) to the enzymatic hydrolysis. It is suggested that the highest values will be 

used to favour the response. For example, an increase in the glucan loading (C) increases the glucose 

concentration. Meanwhile, the negative effect (blue bar chart) reveals that the use of the lowest range 

value of factor will increase conversion to glucose. 

 

 
Figure 2. Pareto chart for 25-1 factorial design. 

 

From the ANOVA of this experimental design as shown in Table 5, the model obtained was 

significant with p-value <0.0001. The coefficient of determination (R2) value obtained in this model was 

0.9959, which is in good agreement with the adjusted R2 value of 0.9912. The high R2 value of 0.9959 

indicates that the model was well adapted to the response.   
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Table 5. ANOVA table. 

Source Sum of square Degree of 

freedom 

Mean square F-value P-value  

Model 1648.46 8 206.06 212.19 <0.0001 Significant 

A 5.90 1 5.90 6.07 0.0432 

B 1.32 1 1.32 1.35 0.2827 

C 862.98 1 862.98 888.65 <0.0001 

D 6.99 1 6.99 7.20 0.0314 

E 476.94 1 476.94 491.12 <0.0001 

AC 7.11 1 7.11 7.32 0.0304 

CD 3.86 1 3.86 3.97 0.0865 

CE 131.16 1 131.16 135.06 <0.0001 

Residual 6.80 1 0.97   

 

Equation (2) shows the response surface quadratic model for glucose production which can be 

presented in terms of coded factors as in the following equation: 

 

Y = 14.20 + 0.61 X1 + 0.29 X2 +8.21 X3 + 0.99 X4 + 5.46 X5 + 0.67 X1X3 + 0.74 X3X4 + 2.86 X3X5      (2) 

 

where Y was concentration of glucose (g/L), X1 was the agitation speed, X2 was enzyme loading, X3 was 

glucan loading, X4 was the temperature and X5 was the hydrolysis. The unknowns X1, X2, X3, X4 and X5 

were referred to the main effects while X1X3, X3X4 and X3X5 were the interaction effects contributed in 

the enzymatic hydrolysis process. Based on the quadratic model, coefficients of X1 to X5 are small 

compared to constant. This gives an indicator that the model equation is good with small error and can 

be used for further analysis. 

3.4.  Validation run 

The validation experiments were conducted based on one suggested best condition from Design Expert 

7.0 in triplicate. The experiments were performed at 160 rpm of agitation speed, 20 FPU/mL of 

Sacchariseb C6, glucan loading at 4 %, temperature at 56 °C and hydrolysis time at 72 hours and the 

result is presented in Table 6. The error from these validations runs in between 1.85 % to 4.70 %. The 

model was found to be reliable and reproducible as the experimental values were in good agreement 

with the predicted values proposed by the model with an error less than 10 %. Thus, it was proved to be 

an adequate model. 

  

Table 6. Validation run for agitation speed at 160 rpm, enzyme loading at 20 FPU/ mL, 4 % of glucan 

loading, at 56 °C for 72 hours. 

Description 
Concentration of glucose (g/L) 

Run 1 Run 2 Run 3 

Predicted Value 34.024 34.024 34.024 

Experimental Value 33.393 32.423 33.382 

Error  1.85 % 4.70 % 1.88 % 

4.  Conclusion 
The results obtained from this study clearly indicate that the best condition for the enzymatic hydrolysis 

process of FPOPF by Sacchariseb C6 at 200 rpm of agitation speed, 60 FPU/mL of enzyme loading, 4 

% (w/v) of glucan loading, temperature at 55 � and 72 hours of reaction time which produced 33.01 ± 

0.73 g/L of glucose. In this production of glucose, there are two factors that mostly contributed in 

enzymatic hydrolysis which are glucan loading and temperature that will be used in the optimization 
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part later. Overall, it can be concluded that Sacchariseb C6 is a suitable candidate for enzymatic 

hydrolysis of pretreated FPOPF in order to achieve higher glucose production. 
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