

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters

Osaze Omoregbe ^a, Huong T. Danh ^b, Chinh Nguyen-Huy ^c, H.D. Setiabudi ^a, S.Z. Abidin ^a, Quang Duc Truong ^d, Dai-Viet N. Vo ^{a,e,*}

^a Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia

^b Clean Energy and Chemical Engineering, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea

^c School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST),

50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea

^d Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai, 980-8577, Japan

^e Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia

ARTICLE INFO

Article history: Received 4 January 2017 Received in revised form 25 February 2017 Accepted 21 March 2017 Available online 7 April 2017

Keywords: Methane dry reforming Syngas Hydrogen SBA-15 support Ni-based catalysts

ABSTRACT

The influence of operating conditions including reactant partial pressure and reaction temperature on the catalytic performance of 10%Ni/SBA-15 catalyst for methane dry reforming (MDR) reaction has been investigated in this study. MDR reaction was carried out under atmospheric pressure at varying CH₄/CO₂ volume ratios of 3:1 to 1:3 and 923–1023 K in a tubular fixed-bed reactor. SBA-15 supported Ni catalyst exhibited high specific surface area of 444.96 m² g⁻¹ and NiO phase with average crystallite size of 27 nm was detected on catalyst surface by X-ray diffraction and Raman measurements. H₂ temperatureprogrammed reaction shows that NiO particles were reduced to metallic Ni⁰ phase with degree of reduction of about 90.1% and the reduction temperature depended on the extent of metal-support interaction and confinement effect of mesoporous silica support. Catalytic activity appeared to be stable for 4 h on-stream at 973–1023 K whilst a slight drop in activity was observed at 923 K probably due to deposited carbon formed by thermodynamically favored CH₄ decomposition reaction. Both CH₄ and CO₂ conversions increased with rising reaction temperature and reaching about 91% and 94%, respectively at 1023 K with CO₂ and CH₄ partial pressure of 20 kPa. CH₄ conversion improved with increasing CO₂ partial pressure, P_{CO_2} and exhibited an optimum at P_{CO_2} of 30–50 kPa depending on reaction temperature whilst a substantial decline in CO₂ conversion was observed with growing P_{CO_2} . Additionally, CH₄ and CO₂ conversions decreased significantly with rising CH₄ partial pressure because of increasing carbon formation rate via CH₄ cracking in CH₄-rich feed.

E-mail address: vietvo@ump.edu.my (D.-V.N. Vo).

http://dx.doi.org/10.1016/j.ijhydene.2017.03.146

^{*} Corresponding author. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia. Fax: +60 9 549 2889.

^{0360-3199/© 2017} Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.