STUDIES ON CORRELATION BETWEEN ELECTRONIC STRUCTURE AND ELECTRONIC CONDUCTIVITY IN MoX₂ (X = S, Se and Te)

MUHAMAD HAikal HAZAZI BIN MOHD RUSLAND

UNIVERSITI MALAYSIA PAHANG
STUDIES ON CORRELATION BETWEEN ELECTRONIC STRUCTURE AND ELECTRONIC CONDUCTIVITY IN MoX₂ (X = S, Se and Te)

MUHAMAD HAIKAL HAZAZI BIN MOHD RUSLAND

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Applied Science (Honor) Material Technology

Faculty of Industrial Sciences & Technology
UNIVERSITI MALAYSIA PAHANG

DECEMBER 2016
SUPERVISORS’ DECLARATION

I hereby declare that I have checked the thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Applied Science (Honor) Material Technology.

Signature :
Name of Supervisor : DR. SAIFFUL KAMALUDDIN BIN MUZAKIR
Position : SUPERVISOR
Date :

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : MUHAMAD HAIKAL HAZAZI BIN MOHD RUSLAND
ID Number : SC13001
Date :

iii
DEDICATION

Special Dedication to my supervisor, my family members, my friends and all faculty members for all your care, support and believe in me.
ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my supervisor, Dr Saifful Kamaluddin Bin Muzakir for his great ideas, invaluable guidance, continuous encouragement and constant support in making this final year project research possible. I am truly grateful to have a supervisor like him. The way he guide me not really stressful and forcing but more to independent work. It make me manage to schedule my lab work and other work properly and perfectly. I sincerely thanks for the time spent proofreading and correcting my many mistakes.

In addition, my sincere thanks go to all my lab mates and members of the material technology classes, who helped me in many ways to solve some problems and also giving some good opinion ideas about my research project. Their support during my weak time never ending and always continuous.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream, support, and sacrifice throughout my life. They act as my backbone to finish this research with patiently. Their prayers really meaningful to make me success. The positive aura from them really make me be a person with full responsibilities like who I am today.
TABLE OF CONTENTS

i
SUPERVISORS’ DECLARATION ii
STUDENT’S DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENTS v
ABSTRACT vi
ABSTRAK vii
TABLE OF CONTENTS viii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF SYMBOLS xiii
LIST OF ABBREVIATIONS xiv
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND OF THE PROBLEM 1
1.2 PROBLEM STATEMENT 3
1.3 OBJECTIVES OF RESEARCH 3
1.4 SCOPE OF THE STUDY 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 SUPERCAPACITORS 5
2.2 GRAPHENE 6
2.3 TRANSITION METAL DICHALCOGENIDES 6
2.4 DENSITY FUNCTIONAL THEORY METHOD 7
2.5 GEOMETRY OPTIMIZATION CALCULATION 7
2.6 SINGLE POINT ENERGY CALCULATION 7
2.7 FREQUENCY CALCULATION 8
2.8 POPULATION ANALYSIS 9
CHAPTER 3 METHODOLOGY 10
3.1 INTRODUCTION 10
3.2 REALISTIC CLUSTER MODELLING 10
3.3 DFT CALCULATIONS: OPTIMIZATION OF MODEL 14
3.4 DFT CALCULATIONS: SINGLE POINT ENERGY CALCULATION 15
3.5 DFT CALCULATIONS: HARMONIC FREQUENCY CALCULATION 16
3.6 DFT CALCULATIONS: FULL POPULATION CALCULATION 16
3.7 REALISTIC CLUSTER MODEL EVALUATION 17
3.8 OVERLAPPING SITE OBSERVATION 18
CHAPTER 4 RESULT AND DISCUSSION 21
4.1 MODELS OF BASIC CRYSTAL 21
4.2 REALISTIC CLUSTER MODEL IDENTIFICATION 22
4.3 OVERLAPPING SITE OF THE REALISTIC MODELS OF MoX2 (X = S, Se and Te). 23

CHAPTER 5 CONCLUSION AND RECOMMENDATION 26
5.1 CONCLUSION 26
5.2 RECOMMENDATIONS 27

REFERENCE 28
LIST OF TABLES

Table 3.1: Command lines used for DFT calculations

Table 4.1: Crystallographic profiles of basic crystal models of the TMDs.

Table 4.2: Comparison between overlapped orbitals of (MoS$_2$)$_3$, (MoSe$_2$)$_3$, and (MoTe$_2$)$_3$

Table 5.1: Exciton Bohr radius (a_0), monolayer thickness (t_{-ML}), thickness offset (t-Offset), monolayer bandgap (E_g-ML), bulk bandgap (E_g-bulk), bandgap offset (E_g-Offset), and conductivity (σ) of MoS$_2$, MoSe$_2$, and MoTe$_2$.
LIST OF FIGURES

Figure 1.1: Symmetric supercapacitor (a), and asymmetric supercapacitor (b)

Figure 3.1: The search engine for CIF provided by www.crystallography.net.

Figure 3.2: List of the chosen crystallographic information file (CIF); (a) MoSe$_2$, (b) MoS$_2$, and (c) MoTe$_2$

Figure 3.3: Periodic Boundary Conditions (PBC) in Edit tab. The numbers of cell replication is exactly as stated in the figure

Figure 3.4: The replication of basic crystal structure to build the first smallest nanocrystal structure

Figure 3.5: The smallest nanocrystal structure of MoX$_2$ (X = S, Se and Te)

Figure 3.6: Deleting the unwanted script in atoms’ description of nanocrystal structure.

Figure 3.7: Setting of (a) Job Type, (b) Method, (c) Link 0, and (d) General fields.

Figure 3.8: A pop up menu of Gaussian 09W software

Figure 3.9: Frequency check to determine a realistic mode

Figure 3.10: (a) Excited state electron density, and (b) Ground state electron density

Figure 3.11: Superimposed of ground state electron density and the excited state electron density of (MoSe$_2$)$_3$.

Figure 3.12: The Opacity option in the top right corner.

Figure 3.13: Clear picture of overlapping site of excited state electron density and Ground state electron density of (MoSe$_2$)$_3$.
Figure 4.1: Positive frequencies of simulated IR spectrum of (a) (MoS$_2$)$_3$, (b) (MoSe$_2$)$_3$, and (c) (MoTe$_2$)$_3$ indicate realistic optimized structures (insets).

Figure 4.2: Insets of simulated absorption spectra of (a) (MoS$_2$)$_3$, (b) (MoSe$_2$)$_3$, and (c) (MoTe$_2$)$_3$

Figure 4.3: Overlapped orbitals of (a) (MoS$_2$)$_3$, (b) (MoSe$_2$)$_3$, and (c) (MoTe$_2$)
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>approximately</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>a_0</td>
<td>Exciton Bohr radius</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom (10^{-10})</td>
</tr>
<tr>
<td>Å3</td>
<td>volume</td>
</tr>
<tr>
<td>t-ML</td>
<td>monolayer thickness</td>
</tr>
<tr>
<td>t-Offset</td>
<td>thickness offset</td>
</tr>
<tr>
<td>E_g-ML</td>
<td>monolayer bandgap</td>
</tr>
<tr>
<td>E_g-Offset</td>
<td>bandgap offset</td>
</tr>
<tr>
<td>σ</td>
<td>conductivity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>EC</td>
<td>electrochemical capacitor</td>
</tr>
<tr>
<td>PC</td>
<td>pseudocapacitor</td>
</tr>
<tr>
<td>EDLC</td>
<td>electrochemical double layer capacitance</td>
</tr>
<tr>
<td>SSC</td>
<td>symmetric supercapacitor</td>
</tr>
<tr>
<td>ASC</td>
<td>asymmetric supercapacitor</td>
</tr>
<tr>
<td>AC</td>
<td>activated carbon</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree-Fock</td>
</tr>
<tr>
<td>B3LYP</td>
<td>Becke, 3-parameter, Lee-Yang-Parr.</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>CIF</td>
<td>Crystallographic information file</td>
</tr>
<tr>
<td>PBC</td>
<td>Periodic Boundary Conditions</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
</tbody>
</table>