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ABSTRACT 

 

 

 

During the operation of induction motor, stator resistance changes 

incessantly with the temperature of the working machine. This situation may 

cause an error in rotor resistance estimation of the same magnitude and will 

produce an error between the actual and estimated motor torque which can 

leads to motor breakdown in worst cases. Therefore, this project will propose 

an approach to estimate stator resistance of induction motor using neural 

network. Then, a correction will be made to ensure the stabilization of the 

system. 

 

             This work has been motivated by the recent use of neural networks in 

different industry applications, and by their several advantages over the 

conventional controllers, such as stability, reliability, speed, and robustness. 
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ABSTRAK 

 

 

 

Selama operasi motor induksi, perubahan rintangan stator berkadar terus 

dengan suhu mesin beroperasi . Situasi ini boleh menyebabkan kesalahan dalam 

aggaran ketahanan dengan nilai parameter yg sama dan akan menghasilkan 

kesalahan antara tujahan motor sebenar dan motor anggaran yang boleh 

menyebabkan kerosakan yang teruk pada motor. Oleh kerana itu, projek ini akan 

mencadangkan suatu pendekatan untuk memprediksi ketahanan stator motor induksi 

menggunakan rangkaian saraf tiruan. Kemudian, pembetulan akan dilakukan untuk 

memastikan kestabilan sistem. 

 Operasi  ini telah didorong oleh penggunaan  rangkaian saraf dalam aplikasi 

industri yang berbeza dengan beberapa kelebihan dalam pengawalan konvensional, 

seperti kestabilan, kebolehpercayaan, kelajuan, dan ketahanan. 
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Chapter I 

 

 

INTRODUCTION 

 

1.0 Background 

  For induction motor drives controlled by the indirect rotor flux 

oriented control (IRFOC), the rotor resistance variation results in an 

undesirable coupling between the flux and the torque of the machine, and loss 

of dynamic performance. This paper presents a scheme for the estimation of 

rotor resistance using a neural networks (NN) block. In this system the flux 

and torque have been estimated by using stator voltages and currents. A back-

propagation NN receives the flux and torque errors and a supposed rotor 

resistance at the input and estimates the actual rotor resistance at the output, 

which is used in the control of an indirect vector-controlled drive system. 

  The neural network has been trained off line with the mathematical 

model of the control scheme in detuning operations. IRFOC control, used 

with the NN estimator, has been studied in the detuning condition. The 

performance of the controller is good, even when the rotor time constant is 

increased from nominal rate to twice the nominal value, as well as torque 

variations. In this method, estimation is done quickly and accurately, and its 

design is simple.  

Correction for the  resistance value will make during the detuning 

process. The induction motor will operate at normal condition when the 

process finish.  
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1.1 Problem statement 

 

The increased in demand has greatly improved the approach of fault 

detection in induction motor. During the operation of induction motor, stator 

resistance changes incessantly with the temperature of the working machine. 

This situation may cause an error in rotor resistance estimation of the same 

magnitude and will produce an error between the actual and estimated motor 

torque which can leads to motor breakdown in worst cases. Nowadays 

artificial intelligence is implemented to improve traditional techniques, where 

the results can be obtained instantaneously after it analyzes the input data of 

the motor. 

 

1.2 Objectives of the project 

 

The main objective of this project is to estimate the changes of 

induction motor stator resistance using neural network from the simulation 

result that is use to make a correction to ensure the stabilization of the system. 

This simulation can make motor run smooth and easier to make correction for 

the real application. 

 

1.3         Scope of the project 

 

This project will focus on construction the induction motor, estimation 

the stator resistance using neural network and make the correction from the 

data that have been taken. However this project is using software only and 

application for the real motor are out of this project. The function of neural 

network is estimate the Rs value only not controlling or to make another 

function. The correction then will be made by using the Neural Network 

software to ensure the stabilization of the system. 

 

2 
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1.4 Thesis outline 

 

This thesis consists of five chapters. In the first chapter, this chapter 

discussed the overall idea of this project including background, objectives of 

project, the scope of this project and summary of this thesis. 

 

Chapter 2 discussed more on theory and literature review that have 

been done. It is well discusses about the Artificial Intelligence (AI), basic 

concept of the fault in induction motor related to this project. 

 

 Chapter 3 described briefly the methodology of the estimated 

induction motor, neural network estimator and develops correction for this 

project. This part also includes flow chart, and circuit design of the system. 

 

Chapter 4 presents a discussion of the implementation, result and 

analysis of the whole project. 

 

Chapter 5 provides the conclusions of the project. There are also 

several suggestions that can be used for future implementation or 

recommendation for this project.  
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CHAPTER II 
 
 
 
 

LITERATURE REVIEW 
 
 
2.1 Introduction  

 

 This chapter includes all the paper works and related research as well as the 

studies regards to this project. The chapter includes all important studies which have 

been done previously by other research work. The related works have been referred 

carefully since some of the knowledge and suggestions from the previous work can 

be implemented for this project. 

 

 Literature review was an ongoing process throughout the whole process of 

the project. It is very essential to refer to the variety of sources in order to gain more 

knowledge and skills to complete this project. These sources include reference 

books, thesis, journals and also the materials obtained from internet. 

 

 At the beginning of the project, the basic concept of fault in induction motor 

has been well acquired. In addition, the function of all the components used in this 

project such as basic operation of MATLAB, Neural Network variations, and so on 

was explored first before starting the project. 

 
 
2.2  Condition Monitoring 
 
 

During the past twenty years, there has been a substantial amount of research 

into the creation of new condition monitoring techniques for electrical machine 

drives, with new methods being developed and implemented in commercial products 

for this purpose [1]. On-line condition monitoring involves taking measurements on 
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a machine while it is operating in order to detect faults with the aim of reducing both 

unexpected failures and maintenance costs. Artificial intelligence is used because of 

its abilities to do analysis where formal analysis would be difficult or impossible, 

such as pattern recognition and nonlinear system identification and control. [2] 

 

2.3 Induction Motor Fault 

 

Induction motors play an important role in manufacturing environments, 

therefore, this type of machine is mainly considered and many diagnostic procedures 

are proposed both from industry and from academia [3]. 

 

A fault in a component is usually defined as a condition of reduced capability 

related to specified minimal requirements and is the result of normal wear, poor 

specification or design, poor mounting (here also including poor alignment), wrong 

use, or a combination of these. If a fault is not detected or if it is allowed to develop 

further it may lead to a failure [4]. 

 

The major faults of electrical machines can broadly be classified as the following [3]: 

o Stator faults resulting in the opening or shorting of one or more of a 

stator phase winding. 

o Abnormal connection of the stator windings. 

o Broken rotor bar or cracked rotor end-rings. 

o Static and/or dynamic air-gap irregularities. 

o Shorted rotor field winding. 

o Bearing and gearbox failures. 

Induction machine failure surveys have found the most common failure 

mechanisms in induction machines [5]. These have been categorized according to the 

main components of a machine–stator related faults, rotor related faults, bearing 

related faults and other faults.  
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                    Figure 2.1:  Types of induction machine faults. 

 

2.3.1 Voltage Drop 

 

When line voltages applied to a uniphase induction motor are not exactly the 

same. The effect on the motor can be severe and the motor may overheat to the point 

of burnout. The voltages should be as closely as can be read on the usually available 

commercial voltmeter. 

 

2.3.2 Stator Winding Fault 

 

Almost 40% of all reported induction machine failures fall into this category. 

The stator winding consists of coils of insulated copper wire placed in the stator 

slots. 

 

Stator winding faults are often caused by insulation failure between two 

adjacent turns in a coil. This is called a turn-to-turn fault or shorted turn. The 

resultant induced currents produce extra heating and cause an imbalance in the 

magnetic field in the machine. If undetected, the local heating will cause further 

damage to the stator insulation until catastrophic failure occurs. The unbalanced 

magnetic field can also result in excessive vibration that can cause premature bearing 

failures [6]. 
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Some of the most frequent causes of stator winding failures are [5]: 

o High stator core or winding temperatures. 

o Slack core lamination, slot wedges, and joints. 

o Loose bracing for end winding. 

o Contamination caused by oil, moisture, and dirt. 

o Short circuits. 

o Starting stresses. 

o Electrical discharges. 

 

 

2.4 Artificial Intelligence 

 

            The essence of an expert system is the ability to manage knowledge-based 

production rules that model the physical system, while it is a main feature of NNs 

that they are general nonlinear function approximators. This function approximation 

is achieved by using an appropriate network built up from artificial neurons, which 

are connected by appropriate weights. However, the exact architecture of a NN is not 

known in advance; it is usually obtained after a trial and error procedure. Fuzzy logic 

systems are expert, rule-based systems, but they can also be considered to be general 

nonlinear function approximators. In contrast to NNs, they give a very clear physical 

description of how the function approximation is performed (since the rules show 

clearly the function approximation mechanism). On the other hand, fuzzy-NNs are 

basically NNs with fuzzy features, and it is one main advantage over “pure” NNs that 

their architecture is well defined [7]. Research trends show that AI techniques will 

have a greater role in electrical motor diagnostic system with advance practicability, 

sensitivity, reliability and automation. Diagnostic system based upon fuzzy neural 

will be very extensively used. Self- repairing electrical drives based upon genetic-

algorithm-assisted neural and fuzzy neural systems will also be widely used in the 

near future [8], [9]. The explored opportunities are to add intelligence to motors, 

providing a level of communication and diagnostic capability [2], [10]. 
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2.4.1 Fuzzy Neural Network 

 

Direct torque control (DTC) system has been extensively applied to the 

induction motor drive because of its advantages that has good static and dynamic 

performance. The control method takes torque and flux linkage as control object in 

stator coordinate. It removes complicated coordinate transformation and cannot be 

influenced by rotor parameters.  In DTC system, the stator resistance mainly 

influences observation of the stator flux linkage and torque. At high speed, the error 

of the flux linkage caused by stator resistance can be ignored. However, at low 

speed, the voltage drop caused by stator resistance current cannot be ignored.  

 

Accordingly, the accurate observation of stator resistance is the key to 

improving system performance at low speed. [11]and[12]  give  two  fuzzy resistance 

estimators that can carry  out  on-line estimation  of  the  stator resistance. Because it 

is influenced by artificial factors to select membership functions of input linguistic 

variable and establish control rules. If the selection is improper, experiment results 

will not satisfactory, even system performance will be completely destroyed. In 

[13]and[14],  the stator resistance estimator is composed  of  a  three-layer BP  neural 

network, but the neural net needs long training time and falls easily into local 

minimum. In the paper, a fuzzy-neural network (FNN) can optimize membership 

function and fuzzy rule by making use of its self-organizing learning.  In this way, 

the deficiencies that exist in fuzzy resistance estimators and neural network 

resistance estimators will be made up.  The performance at low speed of DTC system 

is efficiently improved. 
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2.4.2 Parameter Identification using GA (Genetic Algorithm) 

 

For parameter identification of induction motor, we used mathematical model 

of motor in stator coordinate system described in [15]. For this model we need to 

identify the values of stator and rotor resistance, stator and rotor inductance, 

magnetizing inductance and moment of inertia. The two parameters Ls and Lr are 

linearly dependent [16] and the differences between their values are small. Therefore 

we used simplification Lr = Ls , and so reduced the number of the searched 

parameters and thereby accelerated the research process. Searched motor parameters 

represent genes of GA and together create the chromosome, which has a form: 

 

 r = (Rs , Rr , Ls , Lm, J )  

 

  To represent these parameters we choose real number values. In using real 

number code in comparison with binary code the procedure of the respective solution 

is more stable, since the values of real numbers change continuously, proportionally 

to the required value of change. For each gene of the chromosome we must define 

the feasible values intervals, i.e. the search space of solution. The search space must 

be large enough to contain the global optimum, but if made too large, the GA might 

not be able to find the global optimum at the required parameter identification 

accuracy and in a reasonable period of time (the convergence will be slow). For this, 

we can start from catalogue values. The speed of convergence is also influenced by 

our choice of the population size. The population represents group of chromosomes, 

i.e. potential solutions in the time period. The size of it depends on a particular case. 

In most cases it is recommended to choose the size between 10 and 100, most 

frequently between 20 and 50[17].  

 

Small population does not provide enough space for diversity of genetic 

information, too big population does not provide better effect and the solution is 

much longer. The GA tests each candidate – chromosome by an objective function, 

which compare a set of measured values with simulated data. The objective function 

consists of two steps. The first one is the implementation of parameters into 

simulation model and the following simulation of the dynamic system with such 

input data as for measured system. During the simulation, the system output is 
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recorded in each sampling period and this output data are then returned into the 

quality criterion with measured output data. The next step is the calculation of the 

appropriate criterion. The identification values of the system parameters approximate 

to their real values by the minimalization of this criterion. For the parameter 

identification, the integral criterion is used: 

 

F= ∫ −
T

m dtyy
0

2)(  

Where, ym is output of the simulation model and y is output of the real system. 

 

 

2.4.3 Parallel MRAS Estimation of Rotor Speed and Stator Resistance 

 

The system block diagram of a conventional MRAS speed observer is shown 

in Figure 2 and includes a reference model (1), an adjustable model (2), and an 

adaptive ω mechanism (3). Both models are excited by measured stator voltages 

and/or currents. The reference model specifies a given rotor flux ψs
rv . The difference 

of phase angle between outputs of these two models is used by the adaptive 

mechanism to converge the estimated ω to its true value. The second piece of 

information of the vector product (3) is unused. Therefore, in order to allow the 

continuous tracking of non-predictable thermal Rs changes, there is a basis for using 

ψs
rv and  ψs

rv in added adaptation mechanisms (Figure 1b). The adaptation 

mechanism for the on-line tuning of Rs (4), proposed in this letter, is derived by 

hyper stability theory [18]. 
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Figure 2.2: The MRAS speed observer; (a) the basic configuration, (b)                       
configuration for parallel rotor speed and stator resistance 
estimation. 
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CHAPTER III 

 

 

 

 

METHODOLOGY 
 

 

3.1 Chapter Overview 

 

This chapter will explain about the method that has been done to complete the 

project. Basically, the project will be divided into few parts and the project will be 

executed stage by stage. After the title has been decided, the first thing to do is to 

have a clear understanding about the whole idea of the project. 

This chapter divided to two main parts. First is developing induction motor 

by using equation. The equation was written in the Matlab simulink block. Then the 

Neural Network will be developing by using Matlab simulink and the program will 

be written in the M-file. The whole system of the project can be overview by flow 

chart is shown in Figure 3.1. 
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Figure 3.1: Flow of the project. 

 

3.2 Estimated Induction Motor 

 

In this method, by referring the equation from IEEE library, the estimated 

induction motor was designed. There are two equations involved which are based on 

stator voltages and stator currents and another one is stator currents and rotor speed.  

This induction motor was designed refer to dq frame model. The choice of 

the common dq frame is usually dictated by the symmetry constraints imposed by the 

construction and excitation of the machine. Then the sub-subsystem will be creating 

like shown in figure 3.2. In the block have 4 main subsystems such as shown in the 

figure 3.3. 

 

 
Figure 3.2: Estimated Induction Motor 
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Figure 3.3: Subsystem Estimated Induction Motor 
 

 
3.2.1 D-Axis Flux Rotor Model 

 

The block model was designed based on stator currents and rotor speed 

equation matrix. Figure 3.4 below shows a D-axis flux rotor model which has been 

developed by using equation (1). 

 
Figure 3.4: Subsystem D-axis flux rotor 
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3.2.2 Q-Axis Flux Rotor Model  

The block showed in the figure 3.5 below shows the equation of Q-axis flux 

rotor model refer to equation (2). The block model was designed using stator currents 

and rotor speed equation matrix. 

 

 

 

 

 

 

Figure 3.5: Subsystem Q-axis flux rotor 
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3.2.3 D-Axis Stator Current 

The figure 3.6 shows the equation of D-axis stator current model written in 

simulink block using equation (3). 

 

Figure 3.6: Subsystem D-axis stator current 
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2

(3)
s

s im s im s s sds m m m
s dr qr ds ds s ds

r r r r r

di L L LL i v R i
dt L T L L T

s λ ωλ= + − + −  

3.2.4 Q-Axis Stator Current 

The figure 3.7 shows the equation of D-axis stator current model written in 

simulink block using equation (4). 

 

 

Figure 3.7: Unmasked Q-axis stator current 

2

(4)
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qs sim sim s s sm m m

s qr dr qs qs s qs
r r r r r

di L L LL i v R i
dt L T L L T

s λ ωλ= − − + −  
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3.3 Actual Induction Motor 

 

For actual induction motor, it focuses on Newcastle University Drive 

Simulink Library (N.U.D.S.L). Actual induction is simulated using Simulink block 

from this library. Here, there are two conditions should be considered in designing 

induction motor, which are no load and on load conditions. 

 

3.3.1 No Load  

 

 

Figure 3.8: Masked No Load Actual Induction Motor 

 

Figure 3.8 shows the simulink block induction motor that was design using 

Newcastle University Drive Simulink Library (N.U.D.S.L). The parameter value can 

be referring in Table 3.1. 

 

Table 3.1 Rate Data of the Simulated Induction Motor at No Load 

 

Power 4kW 
Frequency 50 Hz 

Voltage 220/380 
Current 15/8.6 A 

Rpm 1440 
Connection  Υ∆ /  

Power factor 0.8 
Stator Resistance,Rs 1.2 Ω 
Rotor Resistance,Rr 1.8 Ω 
Stator Inductance,Ls 0.156 H 
Rotor Inductance,Lr 0.156 H 

Mutual Inductance,Lm 0.143 H 
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Figure 3.9:  No Load Actual Induction Motor Modeling in NUDSL 
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Figure 3.10:  Three Phase supply 

 

The three phase supply as shown in figure 3.10 has no inputs and three 

outputs which are ‘A’ Phase voltage, ‘B’ Phase voltage and 'C' Phase voltage. 

 

 
Figure 3.11:  DQ to 3PH 

 

The DQ to 3PH block as shown in figure 3.11 has two inputs, D-Axis Value, 

Q-Axis Value. Three outputs are Phase 'A' Value, Phase 'B' Value, and Phase 'C' 

Value. Figure 3.12 shows the subsystem for the DQ to 3PH block. 
 

 
 

 

 

Figure 3.12:  DQ to Three Phase Block 
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Figure 3.13:   3PH to DQ 

 

The 3PH to DQ block in the figure 3.13 has three inputs which are Phase 'A' 

Value, Phase 'B' Value, Phase 'C' value. The outputs are D-Axis Value and Q-Axis 

Value. The subsystem for this block is shown in the figure 3.14. 

 

 
Figure 3.14:  Three Phases to DQ Block 

 
Figure 3.15:  Voltage Fed 

 

The Induction Motor Model block as shown in figure 3.15 has three inputs 

which are D-Axis Stator Voltage, Stator Voltage (stator ref. frame) and Rotor Speed 

(rads/sec). The outputs are D-Axis Stator Current (stator ref. frame), Q-Axis Stator 

Current (stator ref. frame), Electromagnetic Torque, D-Axis Rotor Current (stator 

ref. frame), and Q-Axis Rotor Current (stator ref. frame). The subsystem for this 

block is shown in the figure 3.16. 
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Figure 3.16:  Voltage Fed Induction Motor Block 

 

3.3.2 On Load 

 

 
Figure 3.17:  Masked On Load Induction Motor 

 

Power 4kW 
Frequency 50 Hz 

Voltage 220/380 
Current 15/8.6 A 

Rpm 1440 
Connection  Υ∆ /  

Power factor 0.8  
Stator Resistance,Rs 1.2 Ω 
Rotor Resistance,Rr 1.8 Ω 
Stator Inductance,Ls 0.156 H 
Rotor Inductance,Lr 0.156 H 

Mutual Inductance,Lm 0.143 H 
Moment Inertia,J 0.024 kgm 2  

 

Table 3.2: Rate Data of the Simulated Induction Motor at On Load 
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Figure 3.18:  Subsystem Actual Induction Motor Block 
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Figure 3.19:   Three Phase supply 

 

The three phase supply in figure 3.19 has no inputs and three outputs which 
are ‘A’ Phase voltage, ‘B’ Phase voltage and 'C' Phase voltage that function to 
supply input for induction motor. 

 

 
Figure 3.20:   DQ to 3PH 

 

The DQ to 3PH block in figure 3.20 has two inputs, D-Axis Value, Q-Axis 

value that convert from one phase to three phase output. Three outputs are Phase 'A' 

Value, Phase 'B' Value, and Phase 'C' Value. The subsystem for the DQ to 3PH block 

showed in the figure 3.21. 
 

 
 

Figure 3.21:  DQ to Three Phase Block 
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Figure 3.22:  3PH to DQ 

 

The 3PH to DQ block figure 3.22 has three inputs which are Phase 'A' Value, 

Phase 'B' Value, Phase 'C' value that convert to one phase output. The outputs are D-

Axis Value, Q-Axis value that their subsystem shown in the figure 3.23. 

 

 

 
 

Figure 3.23:  Three Phases to DQ Block 

 

 
Figure 3.24:  Voltage Fed 

 

The Induction Motor Model block in figure 3.24 has three inputs which are 

D-Axis Stator Voltage, Q-Axis Stator Voltage (stator ref. frame) and Rotor Speed 

(rads/sec). The outputs are D-Axis Stator Current (stator ref. frame), Q-Axis Stator 
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Current (stator ref. frame), Electromagnetic Torque, D-Axis Rotor Current (stator 

ref. frame), and Q-Axis Rotor Current (stator ref. frame). The construction of this 

block below is showed in figure 3.25.  

 
 

Figure 3.25:  Voltage Fed Induction Motor Block 

 

 
 

Figure 3.26:  Mechanical Dynamic 

 

 
Figure 3.27:  Subsystem Mechanical Dynamic Block 
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Figure 3.26 shows the Mechanical Dynamics and figure 3.27 shows its 

subsystem that have  block one input, electromagnetic Torque and one output, rotor 

Speed (rads/sec). 

 

3.4  Neural Network Estimator  

 

Neural network estimator designed using simulink block and M-file in 

MATLAB. Artificial Neural Network (ANN) have been powerfully applied in the 

field of automatic control in system identification, adaptive control, parameter 

estimation and optimization and a lot of other applications in this field.   

In this application, the plant model is not available. Neural networks can be 

trained to learn the unknown model of the plant using input/output data obtain 

experimentally from the plant. 

 

3.4.1 Generating the Training Data 

 

This will be done by subjecting the plant to a sequence of input p and 

obtaining the corresponding output t. The simulink model is shown in figure 3.28. 

The simulation parameters were adjusted as in figure 3.29 and the ZOH sampling 

time was adjusted to 1e-3. The Band-limited white noise was chosen as the training 

input generates normally distributed random input. The power was adjusted to 0.1, 

sampling time to 0.1 and seed to 23341 as shown in figure 3.30. The block was used 

to workspace to save the training data in array format. The input was named p and 

the output was named to t. The simulation time was set to 10 and simulation was 

started. After the end of simulation, the workspace was looked at that figure should 

find the arrays representing p and t or open the scopes representing the input and 

output as shown in figure 3.31. 

 



27 
 

 

 

Figure 3.28: Simulink model used to generate the training data 

 

 

Figure 3.29: Simulation parameters configuration 
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Figure 3.30: Input block parameters 

 

 

Input 
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Output 

Figure 3.31: Input/output training pattern 

 

 

3.4.2 Creating and Training the Neural Network  

 

After generating the training data, typing commands was started to create and 

train the neural network at MATLAB command window as Appendix B. To 

generate a simulink model of the trained neural network, the command gensim was 

used which is written as gensim(network name, sampling time), choose a sample 

time of 1e-3 for good accuracy as follow: 

>> gensim(net,1e-3) 

The blue NN model as figure 3.32 was copied and paste into a new simulink 

model to test it as a third step. 
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Figure 3.32: Generating simulink model of ANN Estimator 

 

3.4.3   Testing the Trained Neural Network  

 

In this step, the trained neural network will be tested using a testing input. A 

new Simulink model was build to consist of both plant model and NN model 

subjected to the same input as shown in figure 3.33. Use the training input as the test 

input or change its parameters. In this example, first option will be used. Observe the 

plant output and the NN model output on the same scope. If the training is good 

enough, the result should find the two outputs very similar as shown in figure 3.34. 

 

Figure 3.33: Simulink model of NN model testing 
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x{1}

x{1} y {1}

Neural Network
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Figure 3.34: Actual plant and NN model outputs 

 

3.5.0      Neural Network Correction 

 

ANN have been applied in the field of diagnosis in medicine, engineering and 

manufacturing by correct association between input patterns representing some forms 

of abnormal behavior with the corresponding disease or fault type. It is fault 

diagnosis of electrical motors and correction will be made. 
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3.5.1 Development of   Neural Network Correction 

Correction was made at D-axis stator currents block in the estimation motor. 

Workspace block was added at the end of Is output and Rs input as shown in figure 

3.35. Then the workspace was double -click and the input were changed to p and the 

output was changed to t like in figure 3.36. The save format was changed from 

structure to array. 

 

 

Figure 3.35: Correction simulink block 
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Figure 3.36: Input block parameter  

 

After generating the training data, go to Matlab command window and start 
typing commands to create and train the neural network as Appendix C. Result will 
get the following figure 3.37. 

 

 

Figure 3.37: Simulink model of ANN Estimator 
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CHAPTER IV 

 

 

 

RESULT & DISCUSSION 

 

 

 

 

4.0      Introduction 

 

For this project, a few results have been taken. This section consist no load, 

on load, and stator resistance estimation of induction motor and resistance estimation 

of induction motor using Neural Network. 

 

 

 4.1 No Load Analysis 

 

 
Figure 4.1: Stator Current )(kI s at no load 
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 At 0.025, the stator current for induction motor is 68A as shown in figure 

4.1. This is the maximum current achieved by induction motor cause motor need 

high starting current to turn on. After that, the stator decrease slowly and become 

stable at 0.17 second with current value is 8.5A. The current is still needed even 

though there is no load at induction motor. The current for no load motor is lower 

than on load induction motor. The induction was assumed motor without losses for 

this section. 

 

 
Figure 4.2: Torque at no load 

 

In the figure 4.2 shows that the torque at no load takes time less than 0.25 

second to stabilize. Induction motor use the maximum torque to start moving the 

rotor with value of torque is 118Nm causing starting of the graph is higher and then 

decreases slowly. In stabilize condition the value of synchronous speed and rotor 

speed is same. This theory is only suitable for motor without load. 
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Figure 4.3: Speed of rotor at no load 

 

The speed of the rotor increase to maximum from 0 to 0.2 and the speed are 

constant when the rotor rotating is stabilizing as shown in figure 4.3. In stabilize 

condition the value of synchronous speed and rotor speed is same. The rotor speed 

achieved 160.5 at 0.1 second before the speed constant. 

 

4.2 On Load Analysis 

 

 
Figure 4.4: Stator Current )(kI s at on load 

 

The maximum stator current for the on load and no load induction is same but 

the value current when the system is stable is different as shown in figure 4.4. This 
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situation occurs because more current is needed to operate the on load induction 

motor. 

 

 
Figure 4.5: Torque at on load 

 

In the figure 4.5 shows torque at on load take time less than 0.1 second to 

decrease. Induction motor use the maximum torque to start moving the rotor with 

value of torque is 118.0Nm causing starting of the graph is higher and then decreases 

slowly at 0.0Nm. Then increase to 20Nm constantly when the motor operating at 

stable condition. This situation happens because the motor take time to familiar with 

load. 

 

 
Figure 4.6: Speed of rotor at on load 



38 
 

 

The speed of the rotor increase to maximum from 0 to 0.2 and the speed is 

decreasing to 154.0 when the time up to 0.4 as shown in figure 4.6. For this section 

motor needed more time to stable when the motor has load. The speed values also 

decrease because the rotor needs to carry the load. 

 

 

4.3 Stator Resistance Estimation Analysis 

 

 
Figure 4.7: Current error between actual and estimated induction motor 

 

 Figure 4.7 shows the differences between the actual stator current with 

estimated stator current of induction motor. The error between the estimated stator 

current )(kI s  and the measured stator current )(kI s is used to determine the 

incremental value of stator resistance )( sR∆ through a ANN estimator 
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Figure 4.8: Change of stator resistance ).( sR∆  

 

Figure 4.8 shows the change stator resistance after  )( si∆  flow through the 

ANN estimator and convert to ).( sR∆  

 

 

Figure 4.9: Stator resistance estimation using ANN 

 

The green line is shows the Rs value by using ANN estimator and the blue 

line is actual Rs value must be estimate. Accuracy for the ANN estimator is 96.8% 

only. The value Rs is 1.452 as shown in figure 4.9. 
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4.4 Stator Resistance Correction Analysis 

 

 
Figure 4.10: Stator resistance correction using ANN 

 

 ANN correction make adjustment from the error Rs is 1.452 to 1.2. The 

correction for Rs value is straight line because of using suitable value clock as in 

figure 4.10. Correction process is training by using actual motor Rs value. 
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CHAPTER V 

 

 

 

CONCLUSION & RECOMMENDATION 

 

 

5.0       Conclusion 

 

 

 The purpose of this final year project is to estimate stator resistance of 

Induction Motor Using Artificial Neural Network and made a correction in demand 

to improve the approach of fault detection in polyphase induction motor. Artificial 

intelligence is implemented to improve traditional techniques, as the results can be 

obtained instantaneously after it analyzes the input data of the motor where it can be 

accomplished without an expert. 

 

Artificial intelligence approached can easily do difficult analysis such as 

pattern recognition and nonlinear system identification and control. In this project, 

Feedfoward Backpropagation Neural Network is used to train data and analyzes the 

motor condition as it is the backbone of the programming development structured to 

conduct monitoring in an early stage to detect stator resistance fault to eliminate the 

hazards of severe motor faults and preventing any miserable damage. This project is 

successfully with all objectives achieved. 
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5.1      Future Recommendation 

 

 

 This project was successfully accomplished using Feedfoward 

Backpropagation Neural Network where the data is obtained by the simulation that 

simulated using MATLAB. However the implementations need to be improved as 

the theoretical value and the calculated value always discriminate each other. For 

future recommendation, several suggestions are proposed: 

 

o Replace the simulation model with actual motor to analyze real time 

theoretical data where it is time consuming.  

o Conduct the data extraction via manipulating the actual three-phase 

motor which requires cost of application. 

o Develop an ANN which can analyze the combination of several faults 

in one analysis which requires further studies in Neural Network 
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APPENDIX  A: Mathematical Expressions for Estimated Induction Motor 

 

Stator Voltage model equation   
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Stator current model equation  
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Rotor flux estimations model equation for D–frame 
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Rotor flux estimations model equation for Q–frame 
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APPENDIX  B :ANN Estimator  

 

>> net=newff(minmax(p'),[30,1],{'tansig','purelin'},'trainlm');  

>> net.trainParam.epochs=1000;  

>> [net,tr]=train(net,p',t');  

TRAINLM, Epoch 0/1000, MSE 2.85796/0, Gradient 30464.9/1e-010  

TRAINLM, Epoch 25/1000, MSE 0.0384398/0, Gradient 31.4321/1e-010  

TRAINLM, Epoch 50/1000, MSE 0.0345469/0, Gradient 24.9989/1e-010  

TRAINLM, Epoch 75/1000, MSE 0.0322424/0, Gradient 133.248/1e-010  

TRAINLM, Epoch 100/1000, MSE 0.0279006/0, Gradient 9.16506/1e-010  

TRAINLM, Epoch 125/1000, MSE 0.0267224/0, Gradient 43.5687/1e-010  

TRAINLM, Epoch 150/1000, MSE 0.0250702/0, Gradient 3.73641/1e-010  

TRAINLM, Epoch 175/1000, MSE 0.025039/0, Gradient 1.54462/1e-010  

TRAINLM, Epoch 200/1000, MSE 0.0250024/0, Gradient 1.79969/1e-010  

TRAINLM, Epoch 225/1000, MSE 0.0249883/0, Gradient 8.63699/1e-010  

TRAINLM, Epoch 250/1000, MSE 0.0249872/0, Gradient 0.152471/1e-010  

TRAINLM, Epoch 275/1000, MSE 0.024987/0, Gradient 0.00954264/1e-010  

TRAINLM, Epoch 300/1000, MSE 0.024987/0, Gradient 0.0324412/1e-010  

TRAINLM, Epoch 325/1000, MSE 0.024987/0, Gradient 0.0860265/1e-010  

TRAINLM, Epoch 350/1000, MSE 0.0249869/0, Gradient 0.0895968/1e-010  

TRAINLM, Epoch 375/1000, MSE 0.0249869/0, Gradient 0.0292589/1e-010  

TRAINLM, Epoch 400/1000, MSE 0.0249868/0, Gradient 1.25556/1e-010  

TRAINLM, Epoch 425/1000, MSE 0.0249865/0, Gradient 1.01611/1e-010  
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TRAINLM, Epoch 450/1000, MSE 0.0249862/0, Gradient 0.994071/1e-010  

TRAINLM, Epoch 475/1000, MSE 0.024986/0, Gradient 1.49094/1e-010  

TRAINLM, Epoch 500/1000, MSE 0.0249858/0, Gradient 5.64823/1e-010  

TRAINLM, Epoch 525/1000, MSE 0.0249854/0, Gradient 8.91029/1e-010  

TRAINLM, Epoch 550/1000, MSE 0.0249851/0, Gradient 3.24994/1e-010  

TRAINLM, Epoch 575/1000, MSE 0.0249848/0, Gradient 1.1172/1e-010  
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TRAINLM, Epoch 600/1000, MSE 0.0249846/0, Gradient 0.409848/1e-010  

TRAINLM, Epoch 625/1000, MSE 0.0249844/0, Gradient 0.163045/1e-010  

TRAINLM, Epoch 650/1000, MSE 0.0249838/0, Gradient 0.266647/1e-010  

TRAINLM, Epoch 675/1000, MSE 0.0249837/0, Gradient 0.475013/1e-010  

TRAINLM, Epoch 700/1000, MSE 0.0249836/0, Gradient 0.60567/1e-010  

TRAINLM, Epoch 725/1000, MSE 0.0249835/0, Gradient 0.3998/1e-010  

TRAINLM, Epoch 750/1000, MSE 0.0249833/0, Gradient 0.486509/1e-010  

TRAINLM, Epoch 775/1000, MSE 0.024983/0, Gradient 2.04466/1e-010  

TRAINLM, Epoch 800/1000, MSE 0.0249827/0, Gradient 1.41733/1e-010  

TRAINLM, Epoch 825/1000, MSE 0.0249825/0, Gradient 0.378752/1e-010  

TRAINLM, Epoch 850/1000, MSE 0.0249824/0, Gradient 1.17317/1e-010  

TRAINLM, Epoch 875/1000, MSE 0.0249823/0, Gradient 0.859761/1e-010  

TRAINLM, Epoch 900/1000, MSE 0.0249822/0, Gradient 0.0968464/1e-010  
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TRAINLM, Epoch 925/1000, MSE 0.024982/0, Gradient 10.6725/1e-010  

TRAINLM, Epoch 950/1000, MSE 0.0249819/0, Gradient 0.036869/1e-010  

TRAINLM, Epoch 975/1000, MSE 0.0249818/0, Gradient 2.52703/1e-010  

TRAINLM, Epoch 1000/1000, MSE 0.0249818/0, Gradient 3.94388/1e-010  

TRAINLM, Maximum epoch reached, performance goal was not met. 

 

 

 

 

Figure 20: Network performance function during training 

 

 

>> gensim(net,1e-3) 
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APPENDIX  C: ANN Correction 

 

 

>> net=newff(minmax(p'),[30,1],{'tansig','purelin'},'trainlm'); 

Warning: NEWFF used in an obsolete way.  

> In nntobsu at 18 

  In newff at 86 

          See help for NEWFF to update calls to the new argument list. 

  

>> net.trainParam.epochs=1000; 

>> [net,tr]=train(net,p',t'); 

>> gensim(net,1e-3): 
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APPENDIX  D: Block Diagram of Stator Resistance Estimation of Induction 
Motor 

 

 

 

This simulation simulates A Stator
 Resistance Estimation of Induction Motor Using Neural Network.
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