

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN:________________

Saya __
(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

NO.2 JALAN HANG JEBAT 49 NAJIDAH BINTI HAMBALI
TAMAN SKUDAI BARU 81300 (Nama Penyelia)
JOHOR BAHRU JOHOR

Tarikh: 29 NOVEMBER 2010 Tarikh: : 29 NOVEMBER 2010

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2010/2010

 MUHAMAD FARID BIN A.WAHAB (880927-23-5453)

AUTOMATIC DETECTION TEMPERATURE
TRANSMITTER FOR CALIBRATION PROCESS USING

THERMOCOUPLE

i

AUTOMATIC DETECTION TEMPERATURE TRANSMITTER FOR CALIBRATION
PROCESS USING THERMOCOUPLE

MUHAMAD FARID BIN A.WAHAB

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of
Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2010

ii

“All the trademark and copyrights use herein are property of their respective owner. References

of information from other sources are quoted accordingly; otherwise the information presented in

this report is solely work of the author.”

Signature : _______________________________

Author : MUHAMAD FARID BIN A.WAHAB

Date : 29 NOVEMBER 2010

iii

“I hereby acknowledge that the scope and quality of this thesis is qualified for the award of the

Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : NAJIDAH BINTI HAMBALI

 Date : 29 NOVEMBER 2010

iv

DEDICATION

Specially dedicated to

 My beloved family, and those who have guided and inspired me

 Throughout my journey of learning

v

ACKNOWLEDGEMENT

Throughout the development of this project I have gained chances to learn new skills and

knowledge. I wish to express my sincere appreciation and gratitude to my supervisor, Puan

Najidah binti Hambali for his continuous guidance, concern, encouragement and advices which

gave inspiration in accomplishing my final year project.

Special thanks to Universiti Malaysia Pahang for supporting and providing equipment

and information sources that assisted my studies and projects.

 Thanks also to the Engineer Instructor, Mr. Shahrizal bin Saat and laboratory assistants,

Mr. Muhammad Hamka bin Embong for the support and guidance not know the meaning of

tireless in assisting me in completing this project.

 My sincere appreciation to the lecturers of Faculty of Electrical and Electronics

Engineering who have put in effort to the lectures and always nurture and guide us with precious

advices. Thank you for sharing those experiences.

To all my lovely current and ex roommates and friends who always willingly assist and

support me throughout my journey of education, you all deserve my wholehearted appreciation.

Many thanks.

 Last but not least, my beloved family members who always stand by my side concerning

the ups and downs of my life. Home is where I find comfort. Endless love.

vi

ABSTRACT

 The purpose of this project is to detect temperature for calibration process using type K

thermocouple automatically. This project will be implementing using Visual Basic 2008 software

to develop Graphic User Interface (GUI). The Type K thermocouple will be use as temperature

sensor in calibration process. The implementation of proportional–integral–derivative controller

(PID controller) will be monitor the automatic temperature set point and detection system. The

Data Acquisition (DAQ) card will be use for interfacing process is to implementation of an

automatic detection system for temperature measuring during calibration process. The accuracy

of the measurement will be monitor besides the analysis of uncertainty and confidence limit.

vii

ABSTRAK

 Projek ini bertujuan untuk mengesan suhu untuk proses kalibrasi dengan menggunakan

thermocouple jenis K secara automatik. Projek ini akan menggunakan Visual Basic 2008 iaitu

perisian untuk membangunkan Grafik Pengguna Antaramuka (APK). thermocople jenis K akan

digunakan sebagai pengesan suhu dalam proses kalibrasi. Penerapan kawalan PID

(proportional–integral–derivative controller) akan memantau titik permulaan suhu automatik

dan sistem pengesanan. Kad Pengambilalihan Data (DAQ) akan digunakan untuk prosess

antaramuka bagi pelaksanaan sistem pengesanan automatik untuk mengukur suhu semasa proses

kalibrasi. Ketepatan pengukuran akan dipantau selain analisis ketidakpastian dan had keyakinan.

viii

TABLE OF CONTENTS

TITLE PAGE PAGE

TITLE PAGE i

DECLARATION ii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER 1 INTRODUCTION

 1.1 Background 1

 1.2 Objective 3

 1.3 Scope 4

 1.4 Research Methodology 5

CHAPTER 2 LITERATURE REVIEW

 2.1 Literature Review 7

 2.2 type K Thermocouple sensor 7

ix

 2.3 Data Acquisition 10

 2.4 Visual Basic 11

 2.5 Graphical User Interface (GUI) 13

 2.6 Calibration 15

 2.7 Standard Deviation 16

CHAPTER 3 HARDWARE

 3.1 Overall system connection 18

 3.1.1 Basic System connection 19

 3.2 Instrument

 3.2.1 Thermocouple 20

 3.2.2 HART 375 Field Communicator 21

 3.2.3 Yokogawa Temperature Transmitter

YT110

22

 3.2.4 Endress+Hauser Ecograph T RSG30 23

 3.2.5 Isotech Jupiter 650B Temperature

Bath

24

 3.2.6 Advantech USB-4716 DAQ Card 25

 3.2.7 Decade Box 30

CHAPTER 4 SOFTWARE

 4.1 Software Development 31

 4.1.1 Driver Installation 31

 4.1.2 General Procedure on Installing

Driver

32

 4.2 Creating Graphical User Interface (GUI) 36

 4.2.1 Uncertainty Calculation 38

 4.3 Connecting USB-4716 to Computer 41

 4.4 General Procedure Using the Software 46

x

CHAPTER 5 RESULT AND ANALYSIS

 5.1 Introduction 47

 5.2 Result of the Experiment 47

 5.3 Mean and Standard Deviation 51

 5.4 Percentage Error 53

 5.5 Uncertainty

 5.5.1 Calculation of Uncertainty Using

Software

54

 5.5.2 Calculation of Uncertainty Using

Formula

67

 5.6 Result Analysis 61

CHAPTER 6 CONCLUSION & RECOMMENDATIONS

 6.1 Conclusion 63

 6.2 Obstacles 64

 6.3 Recommendation 65

REFERENCES 66

APPENDIX A 68

APPENDIX B 79

APPENDIX C 80

APPENDIX D 82

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Thermocouple types and normal range 9

Table 3.1 Pin assignment references 27

Table 5.1 Result from software after export to Microsoft Excel 49

Table 5.2 Mean and standard deviation result 57

Table 5.3 Percentage of error result 53

Table 5.4 Comparison between two method results 61

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 Research flowcharts 6

Figure 2.1 Thermocouple sensor constructions 8

Figure 2.2 Data Acquisition connections 10

Figure 2.3 Heterogeneous computing environments 12

Figure 2.4 Sources of uncertainties grouped by information/energy forms 14

Figure 3.1 Overall system connections 19

Figure 3.2 Basic instrument connections 20

Figure 3.3 HART Communicator Field 21

Figure 3.4 Temperature transmitter 22

Figure 3.5 Ecograph T RSG30 23

Figure 3.6 Temperature Bath 24

Figure 3.7 Data Acquisition 25

Figure 3.8 I/O connector pin assignment 26

Figure 3.9 Single-ended input channel connection 28

Figure 3.10 Differential input channel connection 29

Figure 3.11 Decade box 30

Figure 4.1 Software installation flow chart 33

Figure 4.2 Advantech Device Manager 34

Figure 4.3 Advantech Device Test 35

Figure 4.4 Set the maximum and minimum of measurement 36

Figure 4.5 Data Logging 37

Figure 4.6 Device Control & Preview after complete 1st reading 37

Figure 4.7 Uncertainty calculator button 38

Figure 4.8 Uncertainty due to repeatability of the experiment calculator 39

Figure 4.9 Combined uncertainty calculator 39

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 4.10 Calculate the effective degree of freedom 40

Figure 4.11 Find the confidence interval 41

Figure 4.12 Setting Tab 42

Figure 4.13 Selecting Device 43

Figure 4.14 Running software 44

Figure 4.15 1st reading vs. MSU applied 45

Figure 4.16 Percentage of Error vs. MSU applied 45

Figure 4.17 General Procedure of using software 46

Figure 5.1 Result from software 48

Figure 5.2 1st Reading Temperature vs. MSU applied (℃) 49

Figure 5.3 2nd Reading Temperature vs. MSU applied (℃) 50

Figure 5.4 3rd Reading Temperature vs. MSU applied (℃) 50

Figure 5.5 Percentage of Error vs. MSU applied 53

Figure 5.6 Calculation Uncertainty due to repeatability of the experiment, U1 55

Figure 5.7 Uncertainty contributions due to MSU error, U2 55

Figure 5.8 Uncertainty due to UUT resolution/MSU resolution, U3 56

Figure 5.9 Combined uncertainty, Uc and calculate the confidence limits 56

xiv

LIST OF ABBREVIATIONS

DAQ Data Acquisition

VB Microsoft visual Basic software

USB Universal Serial Bus

GUI Graphical User Interface

HART Highway Addressable Remote Transducer

PID Proportional-Integral-Derivative

Ni Nickel

Pt Platinum

Ge Germanium

PV Process Variable

LRV Lower Range Value

URV Upper Range Value

AGND Analog Ground

AI0 Analog Input

LED Light Emitting Diode

V Volts

℃ Celsius

Ma mili-ampere

IDE Integrated Development Environment

xv

LIST OF APPENDICES

APPENDIX NO. TITLE PAGE

Appendix A Software coding 68

Appendix B Student’s t-distribution Table 79

Appendix C Temperature Transmitter 80

Appendix D Advantech USB-4716 DAQ card specification 82

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

 Development of computer-based instrumentation system is an important as so far

there are no mechanisms incorporated in software offered that allows instrument to be

tailed to individual (researchers, industrial engineers) needs. No measurement is ever

guaranteed to be perfect. In many cases results of temperature measurements have to be

presented together with the uncertainty of these measurements. It concerns mainly the

measurements performed by companies or organisations which have introduced quality

management systems consistent with requirements of the ISO 9000 and EN 45000 series

of standards and the higher numbers of these standards [3]. Uncertainty of measurement

is the doubt that exists about the result of any measurement. By quantifying the possible

spread of measurements, the confident of the result can be determined. The uncertainty

derives from the measuring device and from the skill of the person doing the measuring.

 Currently, the standard limit of error for most thermocouples in industrial

measurements is 0.75% with special limits of error at 0.4% across the range. Since most

competent labs can calibrate with an uncertainty of better than 1°C, the typical

temperature measurement can be vastly improved by utilizing information from a custom

calibration. This custom characterization is stored in the memory module and utilized by

the data conversion system.

2

 Nowadays, the major change occurring at the present is the increasing number of

user friendly software that make it possible for user to experience new and fast ways of

learning. In minutes, simulation, controller and real world interfacing can be created

instantly. In this project, the software is developed to help user to learn and explore the

calibration and uncertainty process with an interesting and interactive way in order to

reduce the human error. Besides that, the temperature measurement calibration will

consume a long process compared to pressure measurement calibration due to

measurement repeatability and therefore, it needs the monitoring of the operator until the

process is finish. Therefore, the automatic detection temperature measurement from the

temperature source using the Type K thermocouple is proposed in this project. The

computer software is menu-based to give the user flexibility and ease of use. The user

needs no programming experience to operate the systems.

3

1.2 OBJECTIVE

The objectives of this project are to

I. To design an automatic detection of temperature measurement in the

software from the temperature source port within the range of the setting

temperature.

II. To develop software application to help in student learning process. Visual

Basic 2008 Express Edition will be use as main programming language.

The software is developed to be interactive and friendly user.

III. To interface the temperature transmitter output using thermocouple to

Visual Basic application. This interfacing between instrument and

computer will be done by using data acquisition (DAQ) card.

4

1.3 SCOPE

This project is to develop software application to help in student learning process.

Visual Basic (VB) 2008 Express Edition will be used as a main programming language.

The software is developed to be interactive and user friendly for student. The software

that will be includes the calculation for uncertainty and confidence limits for temperature

measurement.

Temperature transmitter output will be interface to visual basic software by using

Data Acquisition process (DAQ). Advantech USB-4716 DAQ card will be used to

interface between instrument and computer.

 The automatic detection of temperature measurement will be design in the

software from the temperature source port within the range of the setting temperature. All

the complete set of the temperature readings will be used directly for the calibration and

uncertainty calculation process.

5

1.4 RESEARCH METHODOLOGY

There are several research methodologies that need to follow:

i. Understand the concept of temperature measurement and indentify the correct

method to do the measurement.

ii. Set up the instrument with several reference instruments such as HART, recorder

and transmitter.

iii. Understand the method on how to communicate between computer and

instrument.

iv. Design and writing the program based on supervisor’s opinion.

v. Interface software to thermocouple via DAQ card.

vi. Test the software and compare the result with measurement recorder and

temperature transmitter

Design step of work methodology can be simplified as shown in figure 1.1.

6

Flow chart:
 Start

Study and Review:
 >Application of temperature measurement
 >Visual Basic application language
 >Data Acquisition and hardware interfacing

 Identify the System
 Requirement

 Develop software for temperature measurement
 Data storage and calculation uncertainty

 Simulate software for temperature reading,
 uncertainty calculation and graph representation

 Simulation result
 as expected?

 Interface temperature measurement instrumentation
 Using Advantech USB-4716 DAQ

 Interfacing
 as expected?

 Result comparison
 And discussion

 Final report and submit thesis

 End

Figure 1.1: Research flowcharts

7

CHAPTER 2

LITERATURE REVIEW

2.1 LITERATURE REVIEW

 For this project, there are some previous researches that are used to be referred to

develop an automatic temperature measurement. These are researches and journals are

related to this project either directly or indirectly.

2.2 TYPE K THERMOCOUPLE SENSOR

 Thermocouples, as in figure 2.1, contain two electrical conductors made of

different materials which are connected at one end. The end of the conductors which will

be exposed to the process temperature is called the measurement junction. The point at

which the thermocouple conductors end which is usually where the conductors connect to

the measurement device is called the reference junction.

8

 When the measurement and reference junctions of a thermocouple are at different

temperatures, a millivolt potential is formed within the conductors. Knowing the type of

thermocouple used, the magnitude of the millivolt potential within the thermocouple, and

the temperature of the reference junction allows the user to determine the temperature at

the measurement junction.

Figure 2.1: Thermocouple sensor constructions

 The millivolt potential that is created in the thermocouple conductors differs

depending on the materials used. Some materials make better thermocouples than others

because the millivolt potentials created by these materials are more repeatable and well

established. These thermocouples have been given specific type designations such as

Type E, J, K, N, T, B, R and S. The differences between these thermocouple types will be

explained in table 2.1.

9

Table 2.1: Thermocouple types and normal range

Type Material Range

E Chromel/Constantan 0 To 340C

J Iron/Constantan −40 to +750 °C

K Chromel/Alumel −270 °C to +1372 °C

N Nicrosil/Nisil (293 To 1260C

T Copper/Constantan −200 to 350 °C

B Platinum/Platinum-30% Rhodium 800 To 1700C

R Platinum/Platinum-13% Rhodium 0 To 600C

600 To 1450C

S Platinum/Platinum-10% Rhodium 0 To 600C

600 To 1450C

 The paperwork titled Smart Thermocouple system for Industrial Temperature

Measurement by Bill schuh and Watlow create thermocouple with integral memory,

complementary instrumentation and software algorithms. The information data stored in

the memory of the sensor allow for enhanced measurements by improving the

traceability, calibration uncertainty and robustness. While various features of this smart

system have been utilized in other temperature measurement systems these have not

taken full advantage of sensor knowledge in conjunction with application to provide an

industrial temperature measurement [4].

 The other paperwork is Temperature Measurement System Based on

Thermocouple with Controlled Temperature Field. This sensor uses known method of

rejection of systematic error or stabilization on influence factor. In this case it is proposed

to make stabilization of temperature field along electrodes of thermocouple. Including

several additional temperature control subsystems provides this stabilization during

exploitation. Each such subsystem includes additional thermocouple and heater. These

additional thermocouple and heater are shifted along the main axis of main thermocouple.

10

It provides stabilization of this form during testing and during exploitation independently

of changing of temperature field of measurement object [5].

2.3 DATA AQUISITION

 The purpose of data acquisition is to measure an electrical or physical

phenomenon such as voltage, current, temperature, pressure, or sound. Figure 2.2 shows

data acquisition system typically involves the conversion of analog waveforms into

digital values for processing. The components of data acquisition systems include:

• Sensors that convert physical parameters to electrical signals.

• Signal conditioning circuitry to convert sensor signals into a form that can be

converted to digital values.

• Analog-to-digital converters, which convert conditioned sensor signals to digital

values.

• Data acquisition applications are controlled by software programs

developed using various general purpose programming languages such as BASIC,

C, FORTRAN, Java, Lisp, and Pascal. COMEDI is an open source API

(application program Interface) used by applications to access and controls the

data acquisition hardware.

Figure 2.2: Data Acquisition connections

http://en.wikipedia.org/wiki/C_%28programming_language%29�

11

2.4 VISUAL BASIC

 Visual basic is a programming language and environment developed by

Microsoft. Based on the BASIC language, Visual Basic was one of the first products to

provide a graphical programming environment and a paint metaphor for developing user

interfaces. Instead of worrying about syntax details, the Visual Basic programmer can

add a substantial amount of code simply by dragging and dropping controls, such as

buttons and dialog boxes, and then defining their appearance and behavior.

 Although not a true object-oriented programming language in the strictest sense,

Visual Basic nevertheless has an object-oriented philosophy. It is sometimes called an

event-driven language because each object can react to different events such as a mouse

click.

 Since its launch in 1990, the Visual Basic approach has become the norm for

programming languages. Now there are visual environments for many programming

languages, including C, C++, Pascal, and Java. Visual Basic is sometimes called a Rapid

Application Development (RAD) system because it enables programmers to quickly

build prototype applications.

 In this journal can describes how supervisory data at PLC level can be collected

and stored at Access database, and how these data can be retrieved later for graphic user

interface purpose or raw data processing. Basically, the hardware setup is as Figure 2.3,

where PC and PLC are connected through RS-232[9, 10, 11]. Visual Basic is used to

develop the communication program, where then take advantage of the available

mscomm.vbx object provided by Visual Basic to access PC's RS-232 port. With

http://www.webopedia.com/TERM/V/C.html�

12

mscomm.vbx object, program developers can save the otherwise trouble of coding

Windows API's to control RS-232 port [12]. The portion of the program is listed in the

following to show how the mscomm.vbx control tool is used for PC to request state data

from PLC [16]. The overall system was summarized into flow chart in figure 2.3 below.

Figure 2.3: Heterogeneous computing environments.

13

2.5 GRAPHICAL USER INTERFACE (GUI)

 A graphical user interface (GUI) is a human-computer interface that uses

windows, icons and menus and which can be manipulated by a mouse and limited extent

by a keyboard. A major advantage of GUIs is that they make computer operation more

intuitive, and thus easier to learn and use. For example, it is much easier for a new user to

move a file from one directory to another by dragging its icon with the mouse than by

having to remember and type seemingly arcane commands to accomplish the same task.

 Adding to this intuitiveness of operation is the fact that GUIs generally provide

users with immediate, visual feedback about the effect of each action. For example, when

a user deletes an icon representing a file, the icon immediately disappears, confirming

that the file has been deleted. This is contrast with the situation for a CLI, in which the

user types a delete command but receives no automatic feedback indicating that the file

has actually been removed.

 In addition, GUIs allow users to take full advantage of the powerful multitasking

capabilities of modern operating systems by allowing such multiple programs and/or

instances to be displayed simultaneously. The result is a large increase in the flexibility of

computer use and a consequent rise in user productivity.

 The paperwork of Marian Jerzy titled A Calculation of Uncertainties in Virtual

Instrument said that the one of the way to distinguish sources of uncertainties in an

application of deliberation developed in literature [7, 8, 9], which concern approaching

from energy or information propagation through any system. At a virtual instrument, the

system looks upon two boundaries which are intrinsic and extrinsic. A boundary may be

14

visualized between the Virtual Instrument and the human machine super-system by

observer. Impacts of sources of uncertainties from outside the instrument penetrate the

extrinsic boundary and cause effects within the system from those outside system. Thus,

modeling of virtual instruments using extrinsic and intrinsic boundaries illustrated in

figure 2.4 is essentially the same as modeling, for example, and operational amplifier or

analogue sensor, which are parts of the very front end elements of virtual instruments [6].

Figure 2.4: Sources of uncertainties grouped by information/energy forms

15

2.6 CALIBRATION

 To calibrate an instrument means to check and adjust (if necessary) its response

so the output accurately corresponds to its input throughout a specified range. The

purpose of calibration is to ensure the input and output of an instrument corresponds to

one another predictably throughout the entire range of operation [1]. For the five-point

calibration of the instrument, the span of the UUT is divided into five equal parts with the

first point at the low range and the top point at the high range. For example the

temperature transmitter has the range between 0 to 20 mA. Therefore, span is 0.02-0=20

mA. Dividing the span by four we get 5. Hence, the five equal points are 0, 5, 10, 15, 20

mA.

 To measure a quantity without needing calibration, the used basic model must

satisfy some conditions with respect to its structure and to the nature of its parameters. A

model contains in general nature constants, directly measurable parameters, and unknown

parameters. For a calibration free measurement the quantity being measured must be

calculable without needing to predetermine any of the other unknown parameters in the

model [2].

 The journal titled Measuring Temperature Calibration Free with Bipolar

Transistor by O. Kanoun done the temperature measurement based on transistor which is

considered under the aspect of calibration. The necessity of calibration increases the

production and maintenance costs. Therefore, both manufacturers and appliers prefer to

use sensors, which dispose of calibration. The method offers the possibility of calibration

free temperature measurement. However, this fact could not be used in practice because

of the low accuracy reached. Calibration free temperature measurement must guarantee a

certain accuracy class to be profitable for some applications with corresponding

requirements [1].

16

 The journal from Matthew Harker and Paul O’Leary titled Calibration,

Measurement and Error analysis of Optical Temperature Measurement via Laser Induced

Fluorescence said that the experiment at hand is cooling of water as cell walls are cooled

from 42°C to 5°C, which mimics a die cast model. The physical portion of the device is

based on the principle of Laser Induced Fluorescence (LIF); however, this technique

must be calibrated, hence a portion of the measurement device is a mathematical model.

The interested not only temperature measurement but also its accuracy. The accuracy of

the physical measurement also must take account and propagate the uncertainty in

estimated parameters throughout the theoretical portion of the measurement device [2].

2.7 STANDARD DEVIATION

 The standard deviation is a measure of the dispersion of a set of values. It can

apply to a provability distribution, a random variable, a population or a multiset. The

standard deviation is usually denoted with the letter σ(lowercase sigma). It is defined as

the root-mean-square (RMS) deviation of the values from their mean, or as the square

root of the variance. xi – �̅�𝑥.

The calculation is described by the following formula:

σ = ∑
∞

=0
i)x-(x

N
1

k

-- (2.1)

Where the mean of x’ is defined as:

�̅�𝑥 = ∑
=

n

i 0
i)(x

n
1 --- (2.2)

17

 From the journal Standard Deviation Method for Determining the Weights of

Group Multiple Attribute Decision Making under Uncertain Linguistic Environment by

Yejun Xu and Zhijian Cai, The standard deviation method is proposed by Wang [17] to

deal with MADM problems with numerical information. Xu and Da [18] also use this

method to deal with the uncertain multiple attribute decision making problems, in which

the information about the attribute weights is unknown completely and the attributes

values are in the forms of interval numbers. Its main ideal is as follows. For the MADM

problems, the collective preference values is compare to rank the alternatives, the larger

the ranking value zi(w), the better the corresponding alternative xi is. If the performance

values of each alternative have little differences under an attribute, it shows that such an

attribute plays a small important role in the priority procedure.

 Contrariwise, if some attribute makes the performance values among all the

alternatives have obvious differences, such an attribute plays an important role in

choosing the best alternative. So, to the view of sorting the alternatives, if one attribute

has similar attribute values across alternatives, it should be assigned a small weight;

otherwise, the attribute which makes larger deviations should be evaluated a bigger

weight, in spite of the degree of its own importance. Especially, if all available

alternatives score about equally with respect to a given attribute, then such an attribute

will be judged unimportant by most experts. In other word, such an attribute should be

assigned a very small weight. Wang [17] suggests that zero should be assigned to the

attribute of this kind. The difference of attribute values can be measured using standard

deviation [11].

18

CHAPTER 3

INSTRUMENT AND HARDWARE

3.1 OVERALL SYSTEM CONNECTION

 From figures 3.1, there are four major parts for this project which is thermocouple

sensor, temperature transmitter and data acquisition. Type k thermocouple is a sensor to

detect the temperature change and transmit signals in a voltage value. Temperature

transmitter which is the instrument that needs to calibrate automatically by software.

Temperature transmits milivolt signal from thermocouple and then convert to miliamp

signal after through the temperature transmitter. Data Acquistion is use to convert analog

signal to digital signal so that can be read by computer software. All the temperature

measurement system is control by computer software. Visual basic 2008 is use to

captured, stored and analysis data from sensor.

19

Figure 3.1: Overall system connections

3.1.1 BASIC INSTRUMENT CONNECTIONS

 From the Figure 3.2 and 3.3, the instrument connection includes Emerson 375

HART Field Communicator and Endress+Hauser Ecograph T RSG30 as reference

temperature for this project. Type k thermocouple measured temperature heat from

Isotech Jupiter 650B temperature bath. Yokogawa temperature transmitter YT110

functioning to convert signal from thermocouple to current value so that DAQ can read

the data and convert it into digital signal. Since the Advantech USB-4716 DAQ card only

receives data in voltage, 250 Ω resistances has been added to convert current signal to

voltage signal. 250 Ω resistances can be taken either from decade box or 250 Ω resistors.

20

Figure 3.2: Basic instrument connections

3.2 INSTRUMENT

3.2.1 Thermocouple

 Thermocouple is a transducer use to convert temperature value to voltage signal.

In this project, type K thermocouple as figure 3.4 has been use to detect temperature from

the temperature bath. This thermocouple connected to the both temperature transmitter

and recorder in parallel.

21

Sensor type : K (Chromel-Alumel)

Lower Range Value : -270 °C (-454℉)

Upper Range Value : 1372 °C (2501.6℉)

Minimum range : 50 °C

Accuracy : ± 0.45 °C

3.2.2 HART 375 field Communicator

 HART 375 field Communicator as figure 3.3 is functioning to calibrate the

temperature transmitter. By set up the type of sensor and range of measurement, it will

automatically convert signal from sensor to current value. HART also can be reference

point for this project since it display very accurate measurement compared to temperature

transmitter measurement.

Figure 3.3: HART Communicator Field

22

3.2.3 Yokogawa Temperature Transmitter YT110

 Temperature transmitter model YT110 as figure 3.4 converts thermocouple and

RTD’s signal into current 4 to 20 mA signal. Signal from thermocouple is too low for

DAQ to receive. By convert thermocouple signal to current signal, its boost milivolt

signal so then DAQ can read the signal before its convert it to digital signal.

Figure 3.4: Temperature transmitter

23

3.2.4 Endress+Hauser Ecograph T RSG30

 Ecograph has been using widely in processes and industries such as a quality and

quantity monitoring in the water and wastewater industry, monitoring of processes power

station, food and dairy industry processes, displaying and recording critical parameters in

production cycles, tank and level monitoring, temperature monitoring and metal working,

and cold storage and transportation monitoring. In this project, ecograph model T RSG30

as figure 3.5, is used for reference point to the software measurement.

Figure 3.5: Ecograph T RSG30

24

3.2.5 Isotech Jupiter 650B Temperature Bath

 Isotech Jupiter model 650B as figure 3.6 is a temperature bath provides an

isothermal enclosure (metal block) in which allows thermometers and thermostats be

checked against the temperature indicated on the temperature controller. In this project,

Isotech Jupiter is used as temperature source to the sensor. By setting the temperature on

the display panel, the temperature will increase until to a temperature required.

Figure 3.6: Temperature Bath

25

3.2.6 Advantech USB-4716 DAQ Card

 Advantech USB-4716 offers a rich set of DLL drivers, third-party driver support

and application software on the companion CD-ROM to help fully exploit the functions

of your device. Advantech’s Device Drivers feature a complete I/O function library to

help boost your application performance and work seamlessly with development tools

such as Visual Basic. USB-4716 is equipped with plug-in screw-terminal connectors that

facilitate connection to the module without terminal boards or cables. Figure 3.7 on next

page, in figure 3.8 and table 3.1 shows the pin assignments for the five 10-pin I/O

connectors on USB-4716.

Figure 3.7: Data Acquisition

26

Figure 3.8: I/O connector pin assignment

27

Table 3.1: Pin assignment references

Signal Name Reference Direction Description

AI <0…15> AGND Input Analog Input Channels 0

through 15

AIGND - - Analog Input Ground

AO0 AGND Output Analog Output Channels 0/1

AO1

AOGND - - Analog Output Ground. The

analog output voltages are

referenced to these nodes

DI<0…7> DGND Input Digital Input Channels

DO<0…7> DGND Output Digital Output Channels

DGND - - Digital Ground. This pin

supplies reference for the

digital channels at the I/O

connector

GATE DGND Input A/D External Trigger Gate.

When GATE is connected to

+5V, it will disable the

external trigger signal to

input.

EXT_TRG DGND Input A/D External Trigger. This

pin is external trigger signal

input for the A/D conversion.

A low to high edge triggers

A/D conversion to start

EVT_IN DGND Input External events input channel.

P_OUT DGND Output Pulse output Channel

28

Analog Input Connections:

Single-ended Channel Connections

 The single-ended input configuration has only one signal wire for each channel,

and the measured voltage (Vm) is the voltage of the wire as referenced against the

common ground. A signal source without a local ground is also called a “floating

source”. It is fairly simple to connect a single-ended channel to a floating signal source.

In this mode, USB-4716 provides a reference ground for external floating signal sources.

Figure 3.9 shows a single-ended channel connection between a floating signal source and

an input channel on USB-4716.

. Figure 3.9: Single-ended input channel connection

29

Differential Input Connections

 The differential input channels operate with two signal wires for each channel,

and the voltage difference between both signal wires is measured. On USB-4716, when

all channels are configured to differential input, up to 8 analog channels are available. If

one side of the signal source is connected to a local ground, the signal source is ground-

referenced. Therefore, the ground of the signal source and the ground of the card will not

be exactly of the same voltage. The difference between the ground voltages forms a

common mode voltage (Vcm). To avoid the ground loop noise effect caused by common-

mode voltages, users can connect the signal ground to the Low input. Figure 3.12 shows a

differential channel connection between a grounded-reference signal source and an input

channel on USB-4716. With this connection, the PGIA rejects a common-mode voltage

Vcm between the signal source and USB-4716 ground, shown as Vcm in Figure 3.10

Note: In differential input mode, the input channel n should be used with channel n+1.

(n=0, 2, 4…14)

Figure 3.10: Differential input channel connection

30

3.6.7 Decade Box

 In figure 3.11 is Decade box which is used to convert 4 to 20mA signal from

temperature transmitter to 1 to 5V signal because Advantech USB-4716 DAQ only

receive signal in voltage. Decade Box also use in HART protocol to ensuring that a field

device has sufficient voltage to operate. Besides using decade box, user also may use 250

Ω resistance which is in compact version and space saving.

Figure 3.11: Decade box

31

CHAPTER 4

SOFTWARE

4.1 SOFTWARE DEVELOPMENT

 In this project, the software is developed using Microsoft Visual Basic 2008

Express Edition. The software is connected to hardware using Advantech USB-4716 Data

Acquisition which is can receive analog input from temperature transmitter. In this

software also contain Data Record, Uncertainty application, Graph result and Device

configuration application.

4.1.1 Driver Installation

 There are several steps while installing the driver for this project. The main

driver that used in this project is driver from Advantech USB-4716 DAQ driver supplied

by manufacturer. Here are the steps:

32

1. Insert Advantech Disc Driver.

2. Select “Installation button and then install “Advantech Device Manager”.

3. After finish the installation, click “Individual Driver, select “USB” and then

install “USB-4716”.

4. After that, back to the main menu and then click “Advance Option”. Select

“Active DAQ Pro to install the interfacing file.

33

4.1.2 General Procedure on Installing Driver

 Figure 4.1: Software installation flow chart

Install Device Manager

Insert the DAQ CD

Install Individual Drivers:

USB →USB4716

If Need

Install Examples & Utilities

Examples: Visual Basic

Install Advance Options:

Active DAQ Pro

Finish

No

Yes

34

 After finish all installation, test the DAQ hardware to make sure the hardware are

ready to use by open the Advantech Device Manager in the program menu, as figure 4.2

below:

Figure 4.2: Advantech Device Manager

 For the first using it, select device that connect to the PC. As example, in this

project using USB-7416. So, select Advantech USB-7416 from Supported Devices

combo box and then click button “Add”. The device will be seen in the Installed Device

box. Then, click button “Test” and display below will appear as figure 4.3:

35

Figure 4.3: Advantech Device Test

 By supplying certain voltage to the channel AI0 to AI7, the analog input reading

will display the voltage in the input range. If the voltage out of range, it will display the

maximum value of voltage only. As an instrument safety procedure, do not supply

voltage more than the maximum range to avoid damage to DAQ.

4.2 CREATING GRAPHICAL USER INTERFAC (GUI)

 The main GUI in this project is the recording of the data. Data from temperature

transmitter will transmit to the DAQ and then DAQ read that data before it can be read by

computer.

36

 Based on the figure 4.4 below, firstly, user need to make sure that the maximum

and minimum temperature those need to calibrate by this software is correct in the

‘Device Control & Preview’ tab. Then, select the reading and then click the Start button

on the ‘Data Logging’ tab as figure 4.5 and the software will automatically capture data

to the table on ‘Device Control & Preview’ tab. After first reading complete, the

measurement will automatically stop the data recording as figure 4.6. Then, select the

other reading in the ‘Data logging and click Start button again. The step is also same for

the third reading. After third reading, the software will automatically calculate the mean

value of the measurement. Then click ‘STD Dev’ and ‘Error’ button to calculate standard

deviation and Error of the Output.

Figure 4.4: Set the maximum and minimum of measurement

37

Figure 4.5: Data Logging

Figure 4.6: Device Control & Preview after complete 1st reading

38

 4.2.1 Uncertainty Calculation

 To calculate the uncertainty of measurement, click the ‘Uncertainty’ button on the

‘Application’ tab as figure 4.7. Then, uncertainty calculator appears in different form as

figure 4.8. The first calculator, which is U1 is use to calculate the uncertainty due to

repeatability of measurement. Click the calculate button and the value of uncertainty will

appear.

Figure 4.7: Uncertainty calculator button

39

Figure 4.8: Uncertainty due to repeatability of the experiment calculator

 Proceed to the next tab which is U2 and U3. The last tab includes the calculation

the combination of uncertainty, effective degree of freedom and the confidence limit.

From figure 4.9, when user click button Calculate Uc, message box will appear and give

the value of Uc.

Figure 4.9: Combined uncertainty calculator

40

 After that, click Calculate to find the value of effective degree of freedom as

figure 4.10. The value will use to find the confidence interval in the figure 4.11 below

after clicking Confidence Interval button. From figure 4.10, the value of effective degree

of freedom is 58.7199. So, the best confidence interval user can select is 2.68 which is

nearest to the value degree of freedom.

Figure 4.10: Calculate the effective degree of freedom

41

Figure 4.11: Find the confidence interval

4.3 CONNECTING USB-4716 TO COMPUTER

 In this project, computer will connect to hardware via USB-4716 DAQ card. After

connect the analog signal to AI0, and then connect DAQ to the USB port via cable

provided by manufacturer. Then go to the software and select ‘Setting’ tab to connect the

software to hardware as figure 4.12:

42

Figure 4.12: Setting tab

 The click the ‘Select Device’ button as figure 4.13 is to select which device need

to used. In this project, 001 [USB-4716 BoardID=0] is used to running the software.

Then, make sure mode for this measurement is Live before start running this software.

43

Figure 4.13: Selecting Device

 To run this software, click the button ‘Start’ as figure 4.14 below. User can see

the data view as temperature, voltage and current in the Data group box. The live graph

show in figure below will increase and decrease according to the voltage that supply to

the DAQ card.

44

Figure 4.14: Running software

 From the result of data record in figure 4.6, results of first reading and percentage

of error graph are as shown as figure 4.15 and 4.16:

45

Figure 4.15: 1st reading vs. MSU applied

Figure 4.16: Percentage of Error vs. MSU applied

46

4.4 GENERAL PROCEDURE ON USING THE SOFTWARE

Complete all
readings?

Start

Data Control & Preview Tab:
Setting the upper & lower Range Temperature

Setting Tab:
1. Select Device
2. Mode: live

Data Logging Tab:
Select 1st run, 2nd
run or 3rd run

Data Logging Tab:

1. Click button Start

End

Figure 4.17: General Procedure of using software

No

Measurement begin in the 1st,
2nd or 3rd reading

Yes

Calculate mean, standard
deviation and error output
and uncertainties

47

CHAPTER 5

RESULT AND ANALYSIS

5.1 INTRODUCTION

 The main objective of this project is to develop an automatic temperature

measurement application for industry since temperature measurement consumed long

process compared to pressure measurement. The software has successfully developed

using Microsoft Visual Basic 2008 Express Edition with friendly-user GUI which is

simple to operate.

5.2 RESULT OF THE EXPERIMENT

 For the five-point calibration of the instrument, the span of the UUT is divided

into five equal parts with the first point at the low range and the top point at the high

range. For example the temperature transmitter has the range between 50 to 200°C.

Therefore, span is 200-50=150°C. Dividing the span by four we get 37.5°C. Hence, the

48

five equal points are 50, 87.5, 125, 162.5 and 200 °C. The desired output for 4 to 20mA

range is based on temperature range; 50 to 200°C, calculated using equation below:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑥𝑥
100

 (𝑈𝑈𝑈𝑈𝑈𝑈 × 𝐿𝐿𝑈𝑈𝑈𝑈) + 𝐿𝐿𝑈𝑈𝑈𝑈--- (5.1)

Where;

𝑥𝑥 = measurement point

URV = Upper Range Value temperature

LRV = Lower Range Value for temperature

Result:

 From the software data and calculation, the result as figure 5.1 was export to

Microsoft Excel as in Table 5.1:

Figure 5.1: Result from software

49

Table 5.1: Result from software after export to Microsoft Excel

No
(%)

MSU
(°C)

MSU(Desired
Output mA)

1stReading
(°C)

2ndReading
(°C)

3rdReading
(°C)

Mean
(°C)

Standard
Deviation

Error
(%)

0 50 4 49.95079 50.00229 50.04807 50.0004 0.0487 0.0008
25 87.5 8 87.49313 87.51602 87.52747 87.5122 0.0175 0.014
50 125 12 125.035 125.0298 125.0355 125.0334 0.0032 0.0267
75 162.5 16 162.492 162.5263 162.5149 162.5111 0.0175 0.0068

100 200 20 199.9657 199.9771 200 199.9809 0.0175 -0.0095

 From the result above, the relationship between first reading, second reading and

third reading with MSU in Celsius are shown in figure 5.21, 5.3 and 5.4 below:

Figure 5.2: 1st Reading Temperature vs. MSU applied (℃)

50

Figure 5.3: 2nd Reading Temperature vs. MSU applied (℃)

Figure 5.4: 3rd Reading Temperature vs. MSU applied (℃)

51

5.3 MEAN AND STANDARD DEVIATION

 The mean of the any distribution is a measure of centrality, but in case of the

normal distribution, it is equal to the mode and median of the distribution. The standard

deviation is a measure of data dispersion or variability. In the case of the normal

distribution, the mean and the standard deviation are the two parameters of the

distribution; therefore they completely define the distribution. In this case, the calculation

of mean and standard deviation is using in this software to find the centrality and data

dispersion measurement. The result from the experiment is shown in table 5.2:

Table 5.2: Mean and standard deviation result

The calculation of mean and standard deviation based on the following formula:

Mean:

�̅�𝑥 = ∑
=

n

i 0
i)(x

n
1 --- (5.2)

MSU (°C) 1stReading (°C) 2ndReading (°C) 3rdReading (°C) Mean (°C) Standard Deviation
50 49.95079 50.00229 50.04807 50.0004 0.0487

87.5 87.49313 87.51602 87.52747 87.5122 0.0175
125 125.035 125.0298 125.0355 125.0334 0.0032

162.5 162.492 162.5263 162.5149 162.5111 0.0175
200 199.9657 199.9771 200 199.9809 0.0175

52

Standard deviation:

σ = ∑
∞

=0
i)x-(x

N
1

k

-- (5.3)

Where;

�̅�𝑥 is mean

𝜎𝜎 is standard deviation

xi is readings value

N is number of readings

 As example, in this experiment, the MSU value is 50 ℃ and the first, second and

third reading is 49.95079℃, 50.00229℃ and 50.04807℃. The result of mean value and

standard deviation value as below:

�̅�𝑥 =
49.95079℃ + 50.00229℃ + 50.04807℃

3

�̅�𝑥 = 50.00038℃

σ =� (49.95079−50.00038)2+(50.00229−50.00038)2+(50.04807−50.00038)2

3

σ = 0.039737

53

5.4 PERCENTAGE ERROR

 Different computers may not have the same capability to perform complex

mathematical operations and may produce significantly different results for the same

problem. Because computers must manipulate data in a digital format, numerical errors in

processing can lead to inaccurate results. In this case, calculation of error due to MSU is

implementing in this software. The result from the experiment is shown in table 5.3:

Table 5.3: Percentage of error result

MSU (°C) Mean (°C) Error (%)
50 50.0004 0.0008

87.5 87.5122 0.014
125 125.0334 0.0267

162.5 162.5111 0.0068
200 199.9809 -0.0095

Figure 5.5: Percentage of Error vs. MSU applied

54

The calculation of percentage error based on the following formula:

𝐸𝐸 = �𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴 −𝑀𝑀𝐷𝐷𝐴𝐴𝐷𝐷𝑂𝑂𝐷𝐷𝐷𝐷𝐷𝐷
𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴

� × 100 --- (5.4)

 As example, in this experiment, the MSU value which is actual value is 50 ℃ and

the mean value which is measured value is 50.0004℃. The percentage of error calculated

as below:

𝐸𝐸 = �
50 − 50.0004

50 �× 100

𝐸𝐸 = 0.0008 %

5.5 UNCERTAINTY

 5.5.1 Calculate the uncertainty using software

 This software also includes the calculator for uncertainty. Figure 5.6 to figure 5.9

show the result of calculation uncertainty using this software:

55

Figure 5.6: Calculation Uncertainty due to repeatability of the experiment, U1

Figure 5.7: Uncertainty contribution due to MSU error, U2

56

Figure 5.8: Uncertainty due to UUT resolution/MSU resolution, U3

Figure 5.9: Combined uncertainty, Uc and calculate the confidence limits

57

5.5.2 Calculation of uncertainty using formula

Uncertainty due to repeatability of the experiment

 From the data record tab, we select the worst case of standard deviation. The

Uncertainty we are looking for is the experimental standard deviation of mean s(x’). this

s(x’) is the estimation of the spread of the distribution of the means. For a sample size

n=3 the formula for standard deviation of the mean is given by:

𝐷𝐷(𝑥𝑥) = 𝐷𝐷(𝑥𝑥𝑘𝑘)
√𝑛𝑛

 --- (5.5)

With degree of freedom 𝛾𝛾1=3-1=2

The worst case of standard deviation, 𝐷𝐷(𝑥𝑥𝑘𝑘) is = 0.039737

𝐷𝐷(𝑥𝑥) =
𝐷𝐷(𝑥𝑥𝑘𝑘)
√𝑛𝑛

=
0.039737

√3

 = 0.022942

Uncertainty contribution due to MSU error

 The MSU for this calibration is the model YT110, Temperature Transmitter. For

the 100°C range accuracy specification for this instrument provided by the manufacturer

is the following:

±(0.01% 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑛𝑛𝑟𝑟 + 0.005% 𝐷𝐷𝐴𝐴𝑛𝑛𝑟𝑟𝐷𝐷)--- (5.6)

58

 So, a maximum reading of measurement is 200°C and range of instrument is

100°C. Hence the error in MSU is,

𝐴𝐴 = ± [(0.01% × 200℃) + (0.005% × 37.5℃)]

 = ±0.021875℃

The uncertainty contribution due to MSU error is defined as u2 and is given by

𝑂𝑂2 = 𝐴𝐴
√𝑛𝑛

 -- (5.7)

 =
0.021875

√3

 = 0.01263

 The degree of freedom 𝛾𝛾2 for this uncertainty is assumed to be ∞ since the

manufacturer is expected to provide the error data after a large number of tests.

Therefore 𝑂𝑂2 = 0.01263 ℃ and 𝛾𝛾2 = ∞.

Uncertainty due to UUT Resolution/MSU resolution

 For type B uncertainty, we can decide on resolution of MSU or resolution of

UUT. Generally, if the UUT is analog, we will use the resolution of MSU. If the UUT is

digital, we will use the resolution of digital UUT. The resolution of the UUT model

YT110 by using METHOD 1, which is taken from instrument datasheet.

 Considering the worst case scenario, the maximum resolution of YT110 is 0.1 °C.

the uncertainty u3 is calculated as:

59

𝑂𝑂3 = 𝑈𝑈𝐷𝐷𝐷𝐷𝑜𝑜𝐴𝐴𝑂𝑂𝑂𝑂𝐷𝐷𝑜𝑜𝑛𝑛
√3

 -- (5.8)

𝑂𝑂3 =
0.1
√3

 = 0.057735

It can consider the degree of freedom as ∞.

𝑂𝑂3 = 0.057735 𝐴𝐴𝑛𝑛𝐷𝐷 𝛾𝛾3 = ∞

Combined standard uncertainty, uc

 The combined standard uncertainty uc is determined from the individual

uncertainties u1,u2 and u3 by the following formula:

𝑂𝑂𝐴𝐴 = �𝑂𝑂1
2 + 𝑂𝑂2

2 + 𝑂𝑂3
2 -- (5.9)

𝑂𝑂𝐴𝐴 = √0.0229422 + 0.012632 + 0.0577352

 = �4.01918 × 10−3

 = 0.063397

The effective degree of freedom γe is given by

γe = 𝑂𝑂𝐴𝐴4

𝑂𝑂14
γ1

+𝑂𝑂24
γ2

+𝑂𝑂34
γ3

 -- (5.10)

60

γe =
0.0633974

0.0229424

2 + 0.012634

∞ + 0.0577354

∞

 = 116.6218

Substituting the values we get, γe = 116.218 = 100

 The total uncertainty at any confidence level is determined using the user’s

distribution. The coverage factor k is determined from user table. Referring to the degree

of freedom table in Appendix B, the value of γ is 100 and 99% confidence interval k =

2.576.

The confidence limit are obtained by the formula,

𝑂𝑂 = 𝑂𝑂𝐴𝐴𝑘𝑘 -- (5.11)

Therefore,

𝑂𝑂 = 0.063397 × 2.576

 = ±0.1633℃

 The confidence limits in a measurement are determined by the use of calibration

techniques together with statistical principle.

61

5.6 RESULT ANALYSIS

 From the software and calculation method that has been discuss before, the

difference between this two methods are conclude in the Table 5.4:

Table 5.4: Comparison between two method results

 Software Calculation Manual Calculation

Mean, �̅�𝑥 50.0004℃ 50.00038℃

Standard Deviation Value, 𝜎𝜎 0.0487 0.039737

Percentage of Error, E 0.0008% 0.0008%

U1 0.028117 0.022942

U2 0.0126295 0.01263

U3 0.057735 0.057735

Uc 0.0654477 0.063397

Effective Degree of Freedom, γe 58.71299 116.6218

Confidence Interval ±0.1754 ±0.1633

 From the result of software and calculation method, it can be conclude that even

the smallest different at the standard deviation value may cause largest different at the

effective degree of freedom. However, the value of standard deviation did not affect

much to the confidence interval since the difference only 0.01. Which mean, the software

calculation method is have the same result to the manual calculation method. This

software works well as a temperature transmitter calibrator according to the objective in

this project.

 From this calculation example also we could see that the worst case standard

deviation is 0.0487 and generate 0.0008 % of error. Standard deviation statement makes

62

us know how much the data diverge from UUT. The smallest standard deviation, smallest

error will occur and its may increase the accuracy of this software.

 The graph shows in figure 5.2 until 5.4 proved that this software accuracy is high

because of the data measured directly proportional to the unit under test (UUT) and

produce linear graph. The error graph as shown in figure 5.5 explained that the range of

error for this experiment is between -0.0095 % to 0.0267 %. The gap between maximum

and minimum error is 0.1217 % which means almost no error in this experiment.

63

CHAPTER 6

CONCLUSION RECOMMENDATIONS

6.1 CONCLUSION

 Designing software application for temperature transmitter calibration has been

presented in this project. The development of automatic calibration transmitter using type

K thermocouple has been done. Through these development it has conclude that Visual

Basic software can be a good method for learn and explore the calibration and uncertainty

process with and interactive way in order to reduce the human error.

 The main objective for this project is to develop an automatic calibration

transmitter using type k thermocouple via Microsoft Visual Basic application. The

automatic calibration was successfully completed in accordance with the required

specifications. This software comes with several basic applications such as uncertainty

calculation, graph generator, live graph, temperature-to-current converter and etc. data

that has been captured in this software also can save to the Microsoft Excel for

references.

64

6.3 OBSTACLES FACES

 While this project in progress, there are several problems that has been

encountered such as limited time, instrument selection, and limitation of freeware.

i. Limited time

 The time that provides to student is so limited since time for buying

component and instrument from outside country is taking long time. The main

idea in this project is to control the temperature bath automatically using

computer. Since the limited time of researching and for buying component, the

idea is not used.

ii. Instrument selection

 When talk about automatic calibration, the system must all about

measurement and calculation by itself. So the problem is which controller can be

use to calibrate the temperature transmitter automatically. There are several

suggestions for controller which is using PID controller and built PIC circuit. The

problem if control by using PID controller is, it is difficult to interfacing the PID

controller to the computer. Control the system using PIC circuit is a good idea,

but the risk is PIC circuit is not sure can work properly since the main objective is

to calibrate temperature transmitter and its cause wasting time.

iii. Limitation of freeware

 Microsoft Visual Basic 2008 Express Edition used in this project is a

freeware version. This free of charge version do not support GUI for mobile

devices because of no templates and emulator provided. GUI in mobile devices is

more advance and easy to carry to the factory site.

65

6.4 RECOMMENDATION

 There are several recommendations that can be suggests for the improvement of

this project which is:

i. Use microcontroller in this project to get the best measurement and improve it

with auto calibrator to the device that has been monitored their measurement.

Generally, this project only doing monitoring and check the uncertainty of

measurement but cannot repair the precision of instrument because of lack of

time. The instrument precision is important in industry because the larger error on

the instrument may cause lost thousand of dollar to the company.

ii. Control the temperature bath automatically because it can improve this system.

The main problem while done this experiment is its difficult to capture data of

temperature since it increase the temperature very fast and sometimes it skip the

MSU value. It cause data cannot been captured.

iii. Make a portable instrument calibrator device. The easy-carry device can help

engineer’s job easy in the plant which is high and dangerous places. This portable

device also need to robust.

66

REFERENCE

[1] O.Kanoun, “Measuring Temperature Calibration Free With Bipolar Transistor”,

Journal, Institut Fur Me& und automatisierungstechnik, Universitat der Bundeswehr

Munchen, Neubiberg, Germany, 1998, pp. 619

[2] M. Harker, P. O’Leary, “Calibration, Measurement and Error Analysis of Optical

Temperature Measurement via Laser Induced Fluoewscence”, Journal, Institute for

Automation, University of Leoben, Leoben, Austria, May 1-3, 2007, PP. 1

[3] T.Walach, “Uncertainty in Temperature Infrared Measurement of Electronic

Microcircuits”, 15th International Conference on Mixed Design of Integrated Circuits and

Systems, MIXDES 2008, Poznan, Poland, 19-21 June 2008, pp.359

[4] B.Schuh, Watlow “Smart Thermocouple System for Industrial Temperature

Measurement”, Sicon ’01 Sensor for Industry Conference Rosemounth, Illionis, USA, 5-

7 November 2001, pp.9

[5] O. Kochan, R. Kochan, O. Bojko, M. Chyrka, “Temperature Measurement system

Based on Thermocouple with Controlled Temperature Field”, IEEE International

Workshop on Intelligent data Acquisition and Advanced Computing systems:

Technology and Applications, Dortmund, Germany, 6-8 September 2007, pp.48

[6] M. Jerzy, K.A. Hetman, “A calculation of Uncertainties in Virtual Instrument”,

Instrumentation and Measurement Technology Conference Ottawa, Canada, 17-19 May

2005, pp.1698

[7] McGhee J., Kulesza W., Korczynski M.J., Henderson I., “Scientific Metrology”,

ACGM LODART, Lodz, Poland, First Edition, September, 1996, reprint, July, 1998,

ISBN83 90429993

[8] McGhee J., Kulesza W., Korczynski M.J., Henderson I., “Measurement Data

Handling”, ”, ACGM LODART, Lodz, Poland, First Edition, 2001, ISBN83-7283-007-x

67

[9] McGhee J., Kulesza W., Korczynski M.J., Henderson I., “The Sensor effect

tetrahedron: an extended tranduser space”, Measurement Journal of the International

Measurement Confederation ISSN 0263-2241, pp. 217-236

[10] Y.M.Wang, “A method based on standard and mean deviations for determining the

weight coefficients of multiple attributes and its applications,” Mathematical Statistics

and Management, vol.22 pp.22- 26, 2003.

[11] Y.Xu, Z.Cai, “Standard Deviation Method for Determining the Weights of Group

Multiple Attribute Decision Making under Uncertain Linguistic Environment,” the 7th

World Congress on Intelligent Control and Automation June 25 - 27, 2008, Chongqing,

China, pp 8313.

[12] B. Vilters, C. Jakus and J. Peperstraete. ‘‘An integrated process controller,

programmable logic controller and personal computer setup for didactical purposes,”

Trends in Control and Measurement Education. Selected Papers from the IFAC

Symposium, pages 33 - 6, July 1988.

[13] R. C. Ciammiachella and D. W Appleby. ‘‘Automating the small batch operation,”

InTech, Vol: 41, Iss: 3, pp. 39 - 42, Mar. 1994.

[14] J. F. Manji., “IC Integrating PCs and PLCs yields a formula for success,” Controls

i3 Systems, Vol: 39, Iss: 11, pp. 46 - 48, Nov. 1992.

[15] A. Daniel. Visual Basic Programmer’s Guide to the Windows API. Ziff-Davis Press,

1.993. pp. 621 - 659.

[16] S.L Chung, W.F Yang, “Data Acquisition and Integration in Heterogeneous

Computing Environment”, Industrial Automation and control: Emerging Technologies,

1995., IEEE/IAS Conference on May 2005. Pp 598-599.

68

APPENDIX A

SOFTWARE CODING

Imports System.Data
Imports ZedGraph
Imports System.Drawing.Drawing2D
Imports System.Data.OleDb

Public Class Form1
 Dim inc As Integer
 Dim MaxRows As Integer
 Dim con As New OleDb.OleDbConnection
 Dim sql As String
 Dim tickStart As Integer = 0
 Dim x As Integer
 Dim paint1 As Integer
 Dim tempIns As Double
 Dim volt As Double
 Dim incr As Integer
 Dim alrm1 As Integer
 Dim alrm2 As Integer
 Dim alrm3 As Integer
 Dim alrm4 As Integer
 Dim alrm5 As Integer
 Const DATA_FILE_EXTENSION As String = ".mdb"

 Private da As OleDbDataAdapter
 Private ds As New DataSet()

 Private Sub Form1_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 timer()

 btnRecord.Enabled = False
 btnReset.Enabled = False
 btnStop.Enabled = False
 btnRecord2.Enabled = False
 btnReset2.Enabled = False

 database()

 End Sub
 Private Sub Load_Excel_Details()
 'Extracting from database
 Dim filename As String

 Try
 da.Fill(ds, "proto")
 If ds.Tables.Count < 0 Or
ds.Tables(0).Rows.Count <= 0 Then
 Exit Sub
 End If
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 Dim Excel As Object =
CreateObject("Excel.Application")
 If Excel Is Nothing Then
 MsgBox("It appears that Excel is not
installed on this machine. This operation requires
MS Excel to be installed on this machine.",
MsgBoxStyle.Critical)
 Return
 End If

 'Export to Excel process
 Try
 With Excel
 .SheetsInNewWorkbook = 1
 .Workbooks.Add()
 .Worksheets(1).Select()

 Dim i As Integer = 1

 For col = 0 To
ds.Tables(0).Columns.Count - 1
 .cells(1, i).value =
ds.Tables(0).Columns(col).ColumnName
 .cells(1, i).EntireRow.Font.Bold
= True
 i += 1
 Next
 i = 2
 Dim k As Integer = 1
 For col = 0 To
ds.Tables(0).Columns.Count - 1
 i = 2
 For row = 0 To
ds.Tables(0).Rows.Count - 1
 .Cells(i, k).Value =
ds.Tables(0).Rows(row).ItemArray(col)
 i += 1
 Next
 k = 2
 Next
 filename = txtPath.Text & "\" &
Format(Now(), "dd-MM-yyyy_hh-mm-ss") & ".xls"

.ActiveCell.Worksheet.SaveAs(filename)
 End With

System.Runtime.InteropServices.Marshal.ReleaseComObj
ect(Excel)
 Excel = Nothing
 MsgBox("Data's are exported to Excel
Succesfully in '" & filename & "'",
MsgBoxStyle.Information)

 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 ' The excel is created and opened for insert
value. We most close this excel using this system
 Dim pro() As Process =
System.Diagnostics.Process.GetProcessesByName("EXCEL
")
 For Each i As Process In pro
 i.Kill()
 Next

 End Sub

 Private Sub timer()
 Dim myPane As GraphPane =
ZedGraphControl1.GraphPane
 myPane.Title.Text = "Voltage VS Time" &
Chr(10) & _
 "(After 25 seconds the graph scrolls)"
 myPane.XAxis.Title.Text = "Time, Seconds"
 myPane.YAxis.Title.Text = "Sample Potential,
Volts"

 ' Save 1200 points. At 50 ms sample rate,
this is one minute
 ' The RollingPointPairList is an efficient
storage class that always
 ' keeps a rolling set of point data without
needing to shift any data values
 Dim list As New RollingPointPairList(1200)

 ' Initially, a curve is added with no data
points (list is empty)
 ' Color is blue, and there will be no
symbols

69

 Dim curve As LineItem =
myPane.AddCurve("Voltage", list, Color.Blue,
SymbolType.None)

 ' Sample at 50ms intervals
 Timer1.Interval = 50

 ' Just manually control the X axis range so
it scrolls continuously
 ' instead of discrete step-sized jumps
 myPane.XAxis.Scale.Min = 0
 myPane.XAxis.Scale.Max = 30
 myPane.YAxis.Scale.Min = 0
 myPane.YAxis.Scale.Max = 6
 myPane.XAxis.Scale.MinorStep = 1
 myPane.XAxis.Scale.MajorStep = 5

 'curve.Line.StepType = StepType.ForwardStep

 myPane.Chart.Fill = New Fill(Color.White,
Color.LightGoldenrodYellow, 45.0F)

 ' Fill the pane background with a color
gradient
 myPane.Fill = New Fill(Color.White,
Color.FromArgb(220, 220, 255), 45.0F)

 myPane.XAxis.MajorGrid.IsVisible = True
 myPane.YAxis.MajorGrid.IsVisible = True

 ' Scale the axes
 ZedGraphControl1.AxisChange()

 ' Save the beginning time for reference
 tickStart = Environment.TickCount
 End Sub

 Private Sub Button5_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 Dim y As Double

 inc = 0
 y = 0
 For i = 0 To MaxRows - 1
 y = y +
ds.Tables("proto").Rows(inc).Item(2)
 inc = inc + 1
 Next i
 MsgBox(y)

 End Sub

 Private Sub Button9_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click

 If CheckBox1.Checked Then
 Graph1.Visible = True
 End If
 If CheckBox2.Checked Then
 Graph2.Visible = True
 End If
 If CheckBox3.Checked Then
 Graph3.Visible = True
 End If
 If CheckBox4.Checked Then
 Graph4.Visible = True
 End If
 If CheckBox5.Checked Then
 Graph5.Visible = True
 End If
 If CheckBox6.Checked Then
 Graph6.Visible = True
 End If

 End Sub
 Private _drawInsidePanel As Boolean

 Private Sub Timer1_Tick(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Timer1.Tick
 Dim textA1 As Integer
 Dim textA2 As Integer
 Dim textA3 As Integer
 Dim textA4 As Integer
 Dim textA5 As Integer

 AutoKeyIn()
 MeanAuto()

 ' Make sure that the curvelist has at least
one curve
 If
ZedGraphControl1.GraphPane.CurveList.Count <= 0 Then
Return

 ' Get the first CurveItem in the graph
 Dim curve As LineItem =
ZedGraphControl1.GraphPane.CurveList(0)
 If curve Is Nothing Then Return

 ' Get the PointPairList
 Dim list As IPointListEdit = curve.Points
 ' If this is null, it means the reference at
curve.Points does not
 ' support IPointListEdit, so we won't be
able to modify it
 If list Is Nothing Then Return

 ' Time is measured in seconds
 Dim time As Double = (Environment.TickCount
- tickStart) / 1000.0

 If rbtnSimulation.Checked Then
 ' 3 seconds per cycle
 ' Produce dummy data range 1-5V
 volt = (Math.Sin(2 * Math.PI * time /
3.0)) * 2 + 3

 Else
 volt = AxAdvAI1.DataAnalog
 End If

 list.Add(time, volt)
 ' Keep the X scale at a rolling 30 second
interval, with one
 ' major step between the max X value and the
end of the axis
 Dim xScale As Scale =
ZedGraphControl1.GraphPane.XAxis.Scale
 If time > xScale.Max - xScale.MajorStep Then
 xScale.Max = time + xScale.MajorStep
 xScale.Min = xScale.Max - 30.0
 End If

 ' Make sure the Y axis is rescaled to
accommodate actual data
 ZedGraphControl1.AxisChange()
 ' Force a redraw
 ZedGraphControl1.Invalidate()

 ' Data

 InstrumentCalibration()

 txtDataTime.Text = Math.Round(time, 1) & "s"
 txtDataTemp.Text = Math.Round(tempIns, 3) &
"°C"
 txtDataVolt.Text = Math.Round(volt, 4) & "V"
 txtDataCurrent.Text = Math.Round(((volt /
250) * 10 ^ (3)), 3) & "mA"

 textA1 = txtA1.Text
 textA2 = txtA2.Text
 textA3 = txtA3.Text

70

 textA4 = txtA4.Text
 textA5 = txtA5.Text

 If Math.Round(textA1, 0) >
Math.Round(tempIns, 0) And cmbA1.SelectedItem =
"Enable" And alrm1 = 1 Then
 alrm1 = 0
 MsgBox("Temperature is recorded in
database.")
 ElseIf Math.Round(textA2, 0) >
Math.Round(tempIns, 0) And cmbA2.SelectedItem =
"Enable" And alrm2 = 1 Then
 alrm2 = 0
 MsgBox("Temperature is recorded in
database.")
 ElseIf Math.Round(textA3, 0) >
Math.Round(tempIns, 0) And cmbA3.SelectedItem =
"Enable" And alrm3 = 1 Then
 alrm3 = 0
 MsgBox("Temperature is recorded in
database.")
 ElseIf Math.Round(textA4, 0) >
Math.Round(tempIns, 0) And cmbA4.SelectedItem =
"Enable" And alrm4 = 1 Then
 alrm4 = 0
 MsgBox("Temperature is recorded in
database.")
 ElseIf Math.Round(textA5, 0) >
Math.Round(tempIns, 0) And cmbA5.SelectedItem =
"Enable" And alrm5 = 1 Then
 alrm5 = 0
 MsgBox("Temperature is recorded in
database.")
 End If

 paint1 = Math.Round(time, 0)
 _drawInsidePanel = True
 Panel1.Invalidate()
' force to redraw the Panel1

 End Sub

 Private Sub Panel1_Paint(ByVal sender As
System.Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles
Panel1.Paint
 Dim g As Graphics = e.Graphics
 Dim rect As New Rectangle
 Dim y As Integer

 y = 85 * volt - 85

 g.FillRectangle(Brushes.Red, 0, 0, 20, 340)
 If _drawInsidePanel Then
 ' Draw inside the panel
 rect = New Rectangle(0, 0, 80, 340 - y)
 g.FillRectangle(Brushes.AliceBlue, 0, 0,
80, 340 - y)
 End If
 End Sub

 Private Sub Button3_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnStart.Click
 Timer1.Enabled = True
 Timer1.Start()
 RadioButton1.Enabled = False
 RadioButton2.Enabled = False
 RadioButton3.Enabled = False
 btnRecord.Enabled = True
 btnReset.Enabled = True
 btnStart.Enabled = False
 btnStop.Enabled = True
 btnRecord2.Enabled = True
 btnReset2.Enabled = True
 My.Forms.Voltage.Timer1.Enabled = True
 My.Forms.Voltage.Timer1.Start()

 incr = 1
 End Sub

 Private Sub Button4_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnStop.Click
 Timer1.Enabled = False
 Timer1.Stop()
 RadioButton1.Enabled = True
 RadioButton2.Enabled = True
 RadioButton3.Enabled = True
 btnRecord.Enabled = False
 btnReset.Enabled = False
 btnStart.Enabled = True
 btnStop.Enabled = False
 btnRecord2.Enabled = False
 btnReset2.Enabled = False
 My.Forms.Voltage.Timer1.Enabled = False
 My.Forms.Voltage.Timer1.Stop()

 incr = 1
 End Sub

 Private Sub Button10_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button10.Click
 Form2.ShowDialog()
 End Sub

 Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnRecord.Click
 MaxRows = ds.Tables("proto").Rows.Count

 InstrumentCalibration()
 If RadioButton1.Checked And MaxRows <> incr
Then
 ds.Tables("proto").Rows(incr).Item(4) =
Math.Round(tempIns, 3)
 MsgBox("Data " & incr & " is recorded in
1st sample")
 incr = incr + 1
 ElseIf RadioButton2.Checked And MaxRows <>
incr Then
 ds.Tables("proto").Rows(incr).Item(5) =
Math.Round(tempIns, 3)
 MsgBox("Data " & incr & " is recorded in
2nd sample")
 incr = incr + 1
 ElseIf RadioButton3.Checked And MaxRows <>
incr Then
 ds.Tables("proto").Rows(incr).Item(6) =
Math.Round(tempIns, 3)
 MsgBox("Data " & incr & " is recorded in
3rd sample")
 incr = incr + 1
 End If
 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles
ComboBox1.SelectedIndexChanged
 Dim myPane As GraphPane =
ZedGraphControl1.GraphPane
 myPane.XAxis.MajorGrid.IsVisible =
ComboBox1.Text
 End Sub

 Private Sub ComboBox2_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles
ComboBox2.SelectedIndexChanged
 Dim myPane As GraphPane =
ZedGraphControl1.GraphPane
 myPane.YAxis.MajorGrid.IsVisible =
ComboBox2.Text
 End Sub

71

 Private Sub ComboBox3_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles cmbA1.SelectedIndexChanged
 If cmbA1.SelectedIndex = 1 Then
 txtA1.Enabled = False
 alrm1 = 1
 Else
 txtA1.Enabled = True
 End If
 End Sub

 Private Sub cmbA2_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles cmbA2.SelectedIndexChanged
 If cmbA2.SelectedIndex = 1 Then
 txtA2.Enabled = False
 alrm2 = 1
 Else
 txtA2.Enabled = True
 End If
 End Sub

 Private Sub cmbA3_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles cmbA3.SelectedIndexChanged
 If cmbA3.SelectedIndex = 1 Then
 txtA3.Enabled = False
 alrm3 = 1
 Else
 txtA3.Enabled = True
 End If
 End Sub

 Private Sub cmbA4_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles cmbA4.SelectedIndexChanged
 If cmbA4.SelectedIndex = 1 Then
 txtA4.Enabled = False
 alrm4 = 1
 Else
 txtA4.Enabled = True
 End If
 End Sub

 Private Sub cmbA5_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles cmbA5.SelectedIndexChanged
 If cmbA5.SelectedIndex = 1 Then
 txtA5.Enabled = False
 alrm5 = 1
 Else
 txtA5.Enabled = True
 End If
 End Sub

 Private Sub cmbSample_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles
cmbSample.SelectedIndexChanged
 If cmbSample.SelectedItem = "1" Then
 Timer1.Interval = 1000
 ElseIf cmbSample.SelectedItem = "2" Then
 Timer1.Interval = 500
 ElseIf cmbSample.SelectedItem = "4" Then
 Timer1.Interval = 250
 ElseIf cmbSample.SelectedItem = "8" Then
 Timer1.Interval = 125
 ElseIf cmbSample.SelectedItem = "16" Then
 Timer1.Interval = 62.5
 ElseIf cmbSample.SelectedItem = "32" Then
 Timer1.Interval = 31.25
 End If
 End Sub

 Private Sub Button2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnExport.Click
 Load_Excel_Details()
 End Sub

 Private Sub cmdSelectDevice_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs)
Handles cmdSelectDevice.Click
 AxAdvAI1.SelectDevice()
 txtDeviceNumber.Text = AxAdvAI1.DeviceNumber
 txtDeviceName.Text = AxAdvAI1.DeviceName

 End Sub

 Private Sub cmdRead_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdRead.Click
 txtDataDigital.Text =
Hex(AxAdvAI1.DataDigital)
 txtDataAnalog.Text =
Format(AxAdvAI1.DataAnalog, "0.######0")

 End Sub
 Private Sub InstrumentCalibration()
 Dim y1 As Double
 Dim y2 As Double
 Dim x1 As Double
 Dim x2 As Double
 Dim m As Double
 Dim c As Double
 Dim yIns As Double

 y1 = txtTempLR.Text
 y2 = txtTempUR.Text
 x1 = (txtTcLR.Text) * (1 * 10 ^ (-3))
 x2 = (txtTcUR.Text) * (1 * 10 ^ (-3))

 m = (y2 - y1) / (x2 - x1)
 c = y2 - (x2 * m)
 yIns = m * (volt / 250) + c
 tempIns = yIns

 End Sub

 Private Sub btnMean_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnMean.Click
 Dim y As Double
 Dim a As Double
 Dim b As Double
 Dim c As Double
 Dim obj As Object
 Dim obj2 As Object
 Dim obj3 As Object
 Dim g As Integer

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)
 obj2 =
ds.Tables("proto").Rows(i).Item(5)
 obj3 =
ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or
IsDBNull(obj3) Then
 g = 1
 Else
 a =
ds.Tables("proto").Rows(i).Item(4)
 b =
ds.Tables("proto").Rows(i).Item(5)
 c =
ds.Tables("proto").Rows(i).Item(6)
 y = (a + b + c) / 3
 ds.Tables("proto").Rows(i).Item(7) =
Math.Round(y, 4)
 End If

 If g = 1 And i = MaxRows - 1 Then
 MsgBox("Not Enough Data")
 End If

 Next i
 End Sub

72

 Private Sub btnStd_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnStd.Click
 Dim avg As Double
 Dim a As Double
 Dim b As Double
 Dim c As Double
 Dim sum As Double
 Dim obj As Object
 Dim obj2 As Object
 Dim obj3 As Object
 Dim g As Integer

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)
 obj2 =
ds.Tables("proto").Rows(i).Item(5)
 obj3 =
ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or
IsDBNull(obj3) Then
 g = 1
 Else
 a =
ds.Tables("proto").Rows(i).Item(4)
 b =
ds.Tables("proto").Rows(i).Item(5)
 c =
ds.Tables("proto").Rows(i).Item(6)
 avg = (a + b + c) / 3
 sum = Math.Sqrt((0.5) * ((a - avg) ^
2 + (b - avg) ^ 2 + (c - avg) ^ 2))

 ds.Tables("proto").Rows(i).Item(8) =
Math.Round(sum, 4)
 End If

 If g = 1 And i = MaxRows - 1 Then
 MsgBox("Not Enough Data")
 End If
 Next i
 End Sub

 Private Sub btnError_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnError.Click
 Dim avg As Double
 Dim a As Double
 Dim b As Double
 Dim c As Double
 Dim x As Double
 Dim sum As Double
 Dim obj As Object
 Dim obj2 As Object
 Dim obj3 As Object
 Dim obj4 As Object
 Dim g As Integer

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)
 obj2 =
ds.Tables("proto").Rows(i).Item(5)
 obj3 =
ds.Tables("proto").Rows(i).Item(6)
 obj4 =
ds.Tables("proto").Rows(i).Item(2)

 If IsDBNull(obj) Or IsDBNull(obj2) Or
IsDBNull(obj3) Or IsDBNull(obj4) Then
 g = 1
 Else
 a =
ds.Tables("proto").Rows(i).Item(4)

 b =
ds.Tables("proto").Rows(i).Item(5)
 c =
ds.Tables("proto").Rows(i).Item(6)
 x =
ds.Tables("proto").Rows(i).Item(2)
 avg = (a + b + c) / 3

 If x > avg Then
 sum = ((avg - x) / x) * 100

ds.Tables("proto").Rows(i).Item(9) = Math.Round(sum,
4)
 ElseIf avg > x Then
 sum = ((avg - x) / x) * 100

ds.Tables("proto").Rows(i).Item(9) = Math.Round(sum,
4)
 ElseIf x = avg Then
 sum = 0

ds.Tables("proto").Rows(i).Item(9) = Math.Round(sum,
4)
 End If
 End If

 If g = 1 And i = MaxRows - 1 Then
 MsgBox("Not Enough Data")
 End If

 Next i
 End Sub

 Private Sub btnReset_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnReset.Click
 If RadioButton1.Checked And incr <> 1 Then
 incr = incr - 1
 ds.Tables("proto").Rows(incr).Item(4) =
0
 MsgBox("Data " & incr & " is deleted
from 1st sample")
 ElseIf RadioButton2.Checked And incr <> 1
Then
 incr = incr - 1
 ds.Tables("proto").Rows(incr).Item(5) =
0
 MsgBox("Data " & incr & " is deleted
from 1st sample")
 ElseIf RadioButton3.Checked And incr <> 1
Then
 incr = incr - 1
 ds.Tables("proto").Rows(incr).Item(6) =
0
 MsgBox("Data " & incr & " is deleted
from 1st sample")
 End If
 End Sub

 Private Sub btnAlarmSave_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnAlarmSave.Click
 Dim lowRange As Double
 Dim highRange As Double

 lowRange = txtTempLR.Text
 highRange = txtTempUR.Text

 If cmbA1.SelectedItem = "Enable" Then
 alrm1 = 1
 ElseIf cmbA1.SelectedItem = "Disable" Then
 alrm1 = 0
 End If

 If cmbA2.SelectedItem = "Enable" Then
 alrm2 = 1
 ElseIf cmbA2.SelectedItem = "Disable" Then
 alrm2 = 0
 End If

73

 If cmbA3.SelectedItem = "Enable" Then
 alrm3 = 1
 ElseIf cmbA3.SelectedItem = "Disable" Then
 alrm3 = 0
 End If

 If cmbA4.SelectedItem = "Enable" Then
 alrm4 = 1
 ElseIf cmbA4.SelectedItem = "Disable" Then
 alrm4 = 0
 End If

 If cmbA5.SelectedItem = "Enable" Then
 alrm5 = 1
 ElseIf cmbA5.SelectedItem = "Disable" Then
 alrm5 = 0
 End If

 If txtA1.Text < lowRange Or txtA1.Text >
highRange Then
 MsgBox("Out of range.The range is
between " & lowRange & "°C" & " to " & highRange &
"°C")
 txtA1.Text = lowRange
 alrm1 = 0
 End If

 If txtA2.Text < lowRange Or txtA2.Text >
highRange Then
 MsgBox("Out of range.The range is
between " & lowRange & "°C" & " to " & highRange &
"°C")
 txtA2.Text = lowRange
 alrm2 = 0
 End If

 If txtA3.Text < lowRange Or txtA3.Text >
highRange Then
 MsgBox("Out of range.The range is
between " & lowRange & "°C" & " to " & highRange &
"°C")
 txtA3.Text = lowRange
 alrm3 = 0
 End If

 If txtA4.Text < lowRange Or txtA4.Text >
highRange Then
 MsgBox("Out of range.The range is
between " & lowRange & "°C" & " to " & highRange &
"°C")
 txtA4.Text = lowRange
 alrm4 = 0
 End If

 If txtA5.Text < lowRange Or txtA5.Text >
highRange Then
 MsgBox("Out of range.The range is
between " & lowRange & "°C" & " to " & highRange &
"°C")
 txtA5.Text = lowRange
 alrm5 = 0
 End If

 End Sub

 Private Sub Button4_Click_2(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 'Sets the device number of AdvAO1 to 0
 AxAdvAO1.DeviceNumber = 0

 'Set the ChannelNow of AdvAO1 to 0
 AxAdvAO1.ChannelNow = 0

 'Set the ChannelNow as a voltage output
 'AxAdvAO1.DataPhysics = 0

 'Set the value range

 AxAdvAO1.SetValueRange(AxAdvAO1.ChannelNow,
0, 5)

 AxAdvAO1.DataAnalog = 4.5

 End Sub

 Private Sub Button5_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button5.Click
 Voltage.Visible = True
 End Sub

 Private Sub btnBrowse_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnBrowse.Click
 Dim objFolderDialog As New
FolderBrowserDialog()
 '===== Pass object as Parameter and get
Selected network folder
 txtPath.Text =
GetNetworkFolders(objFolderDialog)
 End Sub
 Public Shared Function GetNetworkFolders(ByVal
oFolderBrowserDialog _
 As FolderBrowserDialog) As String

 If oFolderBrowserDialog.ShowDialog() =
DialogResult.OK Then
 Return oFolderBrowserDialog.SelectedPath
 Else
 Return ""
 End If
 End Function

 Private Sub txtTempLR_TextChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs)
Handles txtTempLR.TextChanged

 End Sub

 Private Sub btnSave_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSave.Click
 ' Make a command builder to generate INSERT,
 ' UPDATE, and DELETE commands as necessary.
 Dim command_builder As New
OleDbCommandBuilder(da)

 ' Save any changes.
 da.Update(ds, "proto")
 MsgBox("Data has been saved")
 End Sub

 Private Sub Button7_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button7.Click
 vCurrent.Visible = True
 End Sub

 Private Sub Button6_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button6.Click
 vTemperature.Visible = True
 End Sub

 Private Sub btnRecord2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnRecord2.Click
 MaxRows = ds.Tables("proto").Rows.Count

 If RadioButton1.Checked And MaxRows <> incr
Then
 ds.Tables("proto").Rows(incr).Item(4) =
Math.Round(volt / 0.25, 5)
 MsgBox("Data " & incr & " is recorded in
1st sample")
 incr = incr + 1

74

 ElseIf RadioButton2.Checked And MaxRows <>
incr Then
 ds.Tables("proto").Rows(incr).Item(5) =
Math.Round(volt / 0.25, 5)
 MsgBox("Data " & incr & " is recorded in
2nd sample")
 incr = incr + 1
 ElseIf RadioButton3.Checked And MaxRows <>
incr Then
 ds.Tables("proto").Rows(incr).Item(6) =
Math.Round(volt / 0.25, 5)
 MsgBox("Data " & incr & " is recorded in
3rd sample")
 incr = incr + 1
 End If
 End Sub

 Private Sub btnReset2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnReset2.Click
 If RadioButton1.Checked And incr <> 1 Then
 incr = incr - 1
 ds.Tables("proto").Rows(incr).Item(4) =
0
 MsgBox("Data " & incr & " is deleted
from 1st sample")
 ElseIf RadioButton2.Checked And incr <> 1
Then
 incr = incr - 1
 ds.Tables("proto").Rows(incr).Item(5) =
0
 MsgBox("Data " & incr & " is deleted
from 1st sample")
 ElseIf RadioButton3.Checked And incr <> 1
Then
 incr = incr - 1
 ds.Tables("proto").Rows(incr).Item(6) =
0
 MsgBox("Data " & incr & " is deleted
from 1st sample")
 End If
 End Sub

 Private Sub btnConvert_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnConvert.Click
 Dim y1 As Double
 Dim y2 As Double
 Dim x1 As Double
 Dim x2 As Double
 Dim m As Double
 Dim c As Double
 Dim x As Double
 Dim y As Double

 If txtMinTemp.Text = "" Or txtMaxTemp.Text =
"" Or txtMaxCur.Text = "" Or txtMinCur.Text = ""
Then
 MsgBox("Please fill in the required
value")
 ElseIf rbCurtoTemp.Checked And
txtValCur.Text = "" Or rbTemptoCur.Checked And
txtValTemp.Text = "" Then
 MsgBox("Please fill in the required
value")
 Else
 y1 = txtMinTemp.Text
 y2 = txtMaxTemp.Text
 x1 = (txtMinCur.Text)
 x2 = (txtMaxCur.Text)

 m = (y2 - y1) / (x2 - x1)
 c = y2 - (x2 * m)

 If rbCurtoTemp.Checked Then
 x = txtValCur.Text
 y = m * x + c
 txtValTemp.Text = Math.Round(y, 5)
 ElseIf rbTemptoCur.Checked Then
 y = txtValTemp.Text
 x = (y - c) / m

 txtValCur.Text = Math.Round(x, 5)
 End If
 End If
 End Sub

 Private Sub rbCurtoTemp_CheckedChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs) Handles rbCurtoTemp.CheckedChanged
 If rbCurtoTemp.Checked Then
 txtValTemp.ReadOnly = True
 txtValCur.ReadOnly = False
 ElseIf rbTemptoCur.Checked Then
 txtValTemp.ReadOnly = False
 txtValCur.ReadOnly = True
 End If
 End Sub

 Private Sub btnGenerate_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnGenerate.Click
 Dim command_builder As New
OleDbCommandBuilder(da)
 Dim x As Integer
 Dim percent As Single
 Dim a As Single
 Dim incrx As Integer
 Dim temp As Single
 Dim upper As Single
 Dim lower As Single
 Dim uppCur As Single
 Dim lowCur As Single
 Dim current As Single
 Dim more As Integer
 Dim less As Integer

 If txtUpperVal.Text = "" Or txtLowerVal.Text
= "" Then
 MsgBox("Please enter a correct value")
 Else
 upper = txtUpperVal.Text
 lower = txtLowerVal.Text
 uppCur = txtTcUR.Text
 lowCur = txtTcLR.Text
 x = txtPoint.Text - 1
 percent = 100 / x

 MaxRows = ds.Tables("proto").Rows.Count

 If txtPoint.Text > (MaxRows - 1) Then
 more = txtPoint.Text - (MaxRows - 1)
 For i = 1 To more
 ds.Tables("proto").Rows.Add()
 da.Update(ds, "proto")
 Next i

 ElseIf txtPoint.Text < (MaxRows - 1)
Then
 less = (MaxRows - 1) - txtPoint.Text
 For i = 1 To less
 MaxRows =
ds.Tables("proto").Rows.Count
 ds.Tables("proto").Rows(MaxRows
- 1).Delete()
 da.Update(ds, "proto")
 Next i

 End If

 MaxRows = ds.Tables("proto").Rows.Count
 a = 0
 For i = 1 To MaxRows - 1
 incrx = incrx + 1

ds.Tables("proto").Rows(incrx).Item(1) = a
 temp = (a / 100) * (upper - lower) +
lower

75

ds.Tables("proto").Rows(incrx).Item(2) = temp
 current = (a / 100) * (uppCur -
lowCur) + lowCur

ds.Tables("proto").Rows(incrx).Item(3) = current
 a = a + percent
 Next i
 End If
 End Sub

 Private Sub btnDel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 Dim command_builder As New
OleDbCommandBuilder(da)
 MaxRows = ds.Tables("proto").Rows.Count
 ds.Tables("proto").Rows(MaxRows -
1).Delete()
 End Sub
 Private Sub btnSaveData_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSaveData.Click
 Data_Recorder.Visible = True
 End Sub

 Private Sub btnPlotter_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnPlotter.Click
 OpenFileDialog1.Filter = DATA_FILE_EXTENSION
& _
 " files (*" & DATA_FILE_EXTENSION & "|*"
& DATA_FILE_EXTENSION
 OpenFileDialog1.FilterIndex = 1
 OpenFileDialog1.RestoreDirectory = True
 OpenFileDialog1.ShowDialog()
 End Sub

 Private Sub OpenFileDialog1_FileOk(ByVal sender
As System.Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles
OpenFileDialog1.FileOk
 Plotter.Visible = True
 End Sub

 Private Sub btnBrowseDatabse_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs)
Handles btnBrowseDatabse.Click
 OpenFileDialog2.Filter = DATA_FILE_EXTENSION
& _
 " files (*" & DATA_FILE_EXTENSION & "|*"
& DATA_FILE_EXTENSION
 OpenFileDialog2.FilterIndex = 1
 OpenFileDialog2.RestoreDirectory = True
 OpenFileDialog2.ShowDialog()
 End Sub

 Private Sub OpenFileDialog2_FileOk(ByVal sender
As System.Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles
OpenFileDialog2.FileOk
 txtDatabase.Text = OpenFileDialog2.FileName
 database()
 End Sub
 Private Sub database()

 con.ConnectionString =
"PROVIDER=Microsoft.Jet.OLEDB.4.0;Data Source =" &
txtDatabase.Text

 con.Open()

 sql = " select*from tblContacts"
 da = New OleDb.OleDbDataAdapter(sql, con)
 da.Fill(ds, "proto")

 con.Close()

 MaxRows = ds.Tables("proto").Rows.Count
 inc = -1

 x = 0

 'datagrid view
 Try
 ds.Reset()
 da.Fill(ds, "proto")
 DataGridView1.DataSource = ds.Tables(0)
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 End Sub

 Private Sub RadioButton5_CheckedChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs)
 Dim y As Double
 Dim a As Double
 Dim b As Double
 Dim c As Double
 Dim obj As Object
 Dim obj2 As Object
 Dim obj3 As Object
 Dim g As Integer
 Dim y1 As Double
 Dim y2 As Double
 Dim x1 As Double
 Dim x2 As Double
 Dim m As Double
 Dim co As Double
 Dim yo As Double

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)
 obj2 =
ds.Tables("proto").Rows(i).Item(5)
 obj3 =
ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or
IsDBNull(obj3) Then
 g = 1
 Else
 a =
ds.Tables("proto").Rows(i).Item(4)
 b =
ds.Tables("proto").Rows(i).Item(5)
 c =
ds.Tables("proto").Rows(i).Item(6)
 y = (a + b + c) / 3

 y1 = txtTempLR.Text
 y2 = txtTempUR.Text
 x1 = (txtTcLR.Text)
 x2 = (txtTcUR.Text)

 m = (y2 - y1) / (x2 - x1)
 co = y2 - (x2 * m)

 yo = m * a + co
 ds.Tables("proto").Rows(i).Item(4) =
yo

 End If

 If g = 1 And i = MaxRows - 1 Then
 MsgBox("Not Enough Data")
 End If

 Next i
 End Sub

 Private Sub RadioButton4_CheckedChanged(ByVal
sender As System.Object, ByVal e As
System.EventArgs)
 Dim y As Double
 Dim a As Double
 Dim b As Double
 Dim c As Double
 Dim obj As Object
 Dim obj2 As Object

76

 Dim obj3 As Object
 Dim g As Integer
 Dim y1 As Double
 Dim y2 As Double
 Dim x1 As Double
 Dim x2 As Double
 Dim m As Double
 Dim co As Double
 Dim x As Double
 Dim yo As Double

 For i = 1 To MaxRows - 1

 obj = ds.Tables("proto").Rows(i).Item(4)
 obj2 =
ds.Tables("proto").Rows(i).Item(5)
 obj3 =
ds.Tables("proto").Rows(i).Item(6)

 If IsDBNull(obj) Or IsDBNull(obj2) Or
IsDBNull(obj3) Then
 g = 1
 Else
 a =
ds.Tables("proto").Rows(i).Item(4)
 b =
ds.Tables("proto").Rows(i).Item(5)
 c =
ds.Tables("proto").Rows(i).Item(6)
 y = (a + b + c) / 3

 y1 = txtTempLR.Text
 y2 = txtTempUR.Text
 x1 = (txtTcLR.Text)
 x2 = (txtTcUR.Text)

 m = (y2 - y1) / (x2 - x1)
 co = y2 - (x2 * m)

 yo = a
 x = (yo - co) / m
 ds.Tables("proto").Rows(i).Item(4) =
x

 yo = b
 x = (yo - co) / m
 ds.Tables("proto").Rows(i).Item(5) =
x

 yo = c
 x = (yo - co) / m
 ds.Tables("proto").Rows(i).Item(6) =
x

 End If

 If g = 1 And i = MaxRows - 1 Then
 MsgBox("Not Enough Data")
 End If

 Next i
 End Sub

 Private Sub btnSaveINst_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSaveINst.Click
 If txtTempLR.Text = "" Or txtTempUR.Text =
"" Or txtTcLR.Text = "" Or txtTcUR.Text = "" Then
 MsgBox("Please insert the value")
 txtTempLR.Text = 0
 txtTempUR.Text = 200
 txtTcLR.Text = 4
 txtTcUR.Text = 20
 End If
 End Sub

 Private Sub AxAdvAO1_OnTimeOut(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
AxAdvAO1.OnTimeOut

 End Sub

 Private Sub Button1_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 Timer1.Enabled = True
 Timer1.Start()
 RadioButton1.Enabled = False
 RadioButton2.Enabled = False
 RadioButton3.Enabled = False
 btnRecord.Enabled = True
 btnReset.Enabled = True
 btnStart.Enabled = False
 btnStop.Enabled = True
 btnRecord2.Enabled = True
 btnReset2.Enabled = True
 My.Forms.Voltage.Timer1.Enabled = True
 My.Forms.Voltage.Timer1.Start()

 incr = 1

 MaxRows = ds.Tables("proto").Rows.Count
 InstrumentCalibration()

 End Sub

 Private Sub DataGridView1_CellContentClick(ByVal
sender As System.Object, ByVal e As
System.Windows.Forms.DataGridViewCellEventArgs)
Handles DataGridView1.CellContentClick

 End Sub
 Private Sub AutoKeyIn()
 MaxRows = ds.Tables("proto").Rows.Count

 '1st run
 If RadioButton1.Checked And
ds.Tables("proto").Rows(1).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(1).Item(4) =
Math.Round(tempIns, 5)
 ElseIf RadioButton1.Checked And
ds.Tables("proto").Rows(2).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(2).Item(4) =
Math.Round(tempIns, 5)
 ElseIf RadioButton1.Checked And
ds.Tables("proto").Rows(3).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(3).Item(4) =
Math.Round(tempIns, 5)
 ElseIf RadioButton1.Checked And
ds.Tables("proto").Rows(4).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(4).Item(4) =
Math.Round(tempIns, 5)
 ElseIf RadioButton1.Checked And
ds.Tables("proto").Rows(5).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(5).Item(4) =
Math.Round(tempIns, 5)
 Timer1.Stop()
 Timer1.Enabled = False
 RadioButton1.Enabled = True
 RadioButton2.Enabled = True
 RadioButton3.Enabled = True
 btnRecord.Enabled = False
 btnReset.Enabled = False
 btnStart.Enabled = True
 btnStop.Enabled = False
 btnRecord2.Enabled = False
 btnReset2.Enabled = False
 My.Forms.Voltage.Timer1.Enabled = False
 My.Forms.Voltage.Timer1.Stop()
 MsgBox("Data is recorded in 1st sample")
 End If
 '2nd run
 If RadioButton2.Checked And
ds.Tables("proto").Rows(1).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(1).Item(5) =
Math.Round(tempIns, 5)

77

 ElseIf RadioButton2.Checked And
ds.Tables("proto").Rows(2).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(2).Item(5) =
Math.Round(tempIns, 5)
 ElseIf RadioButton2.Checked And
ds.Tables("proto").Rows(3).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(3).Item(5) =
Math.Round(tempIns, 5)
 ElseIf RadioButton2.Checked And
ds.Tables("proto").Rows(4).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(4).Item(5) =
Math.Round(tempIns, 5)
 ElseIf RadioButton2.Checked And
ds.Tables("proto").Rows(5).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(5).Item(5) =
Math.Round(tempIns, 5)
 Timer1.Stop()
 Timer1.Enabled = False
 RadioButton1.Enabled = True
 RadioButton2.Enabled = True
 RadioButton3.Enabled = True
 btnRecord.Enabled = False
 btnReset.Enabled = False
 btnStart.Enabled = True
 btnStop.Enabled = False
 btnRecord2.Enabled = False
 btnReset2.Enabled = False
 My.Forms.Voltage.Timer1.Enabled = False
 My.Forms.Voltage.Timer1.Stop()
 MsgBox("Data is recorded in 2nd sample")

 End If
 '3rd run
 If RadioButton3.Checked And
ds.Tables("proto").Rows(1).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(1).Item(6) =
Math.Round(tempIns, 5)
 ElseIf RadioButton3.Checked And
ds.Tables("proto").Rows(2).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(2).Item(6) =
Math.Round(tempIns, 5)
 ElseIf RadioButton3.Checked And
ds.Tables("proto").Rows(3).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(3).Item(6) =
Math.Round(tempIns, 5)
 ElseIf RadioButton3.Checked And
ds.Tables("proto").Rows(4).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(4).Item(6) =
Math.Round(tempIns, 5)
 ElseIf RadioButton3.Checked And
ds.Tables("proto").Rows(5).Item(2) =
Math.Round(tempIns, 1) Then
 ds.Tables("proto").Rows(5).Item(6) =
Math.Round(tempIns, 5)
 Timer1.Stop()
 Timer1.Enabled = False
 RadioButton1.Enabled = True
 RadioButton2.Enabled = True
 RadioButton3.Enabled = True
 btnRecord.Enabled = False
 btnReset.Enabled = False
 btnStart.Enabled = True
 btnStop.Enabled = False
 btnRecord2.Enabled = False
 btnReset2.Enabled = False
 My.Forms.Voltage.Timer1.Enabled = False
 My.Forms.Voltage.Timer1.Stop()
 MsgBox("Data is recorded in 3rd sample")
 End If
 End Sub
 Private Sub MeanAuto()
 Dim a, b, c, d, e, f, g, h, i, j, k, l, m,
n, o As Double

 Dim mean1, mean2, mean3, mean4, mean5 As
Double
 a = ds.Tables("proto").Rows(1).Item(4)
 b = ds.Tables("proto").Rows(1).Item(5)
 c = ds.Tables("proto").Rows(1).Item(6)
 d = ds.Tables("proto").Rows(2).Item(4)
 e = ds.Tables("proto").Rows(2).Item(5)
 f = ds.Tables("proto").Rows(2).Item(6)
 g = ds.Tables("proto").Rows(3).Item(4)
 h = ds.Tables("proto").Rows(3).Item(5)
 i = ds.Tables("proto").Rows(3).Item(6)
 j = ds.Tables("proto").Rows(4).Item(4)
 k = ds.Tables("proto").Rows(4).Item(5)
 l = ds.Tables("proto").Rows(4).Item(6)
 m = ds.Tables("proto").Rows(5).Item(4)
 n = ds.Tables("proto").Rows(5).Item(5)
 o = ds.Tables("proto").Rows(5).Item(6)
 If RadioButton3.Checked And Timer1.Enabled =
False Then
 mean1 = (a + b + c) / 3
 ds.Tables("proto").Rows(1).Item(7) =
Math.Round(mean1, 4)
 mean2 = (d + e + f) / 3
 ds.Tables("proto").Rows(2).Item(7) =
Math.Round(mean2, 4)
 mean3 = (g + h + i) / 3
 ds.Tables("proto").Rows(3).Item(7) =
Math.Round(mean3, 4)
 mean4 = (j + k + l) / 3
 ds.Tables("proto").Rows(4).Item(7) =
Math.Round(mean4, 4)
 mean5 = (m + n + o) / 3
 ds.Tables("proto").Rows(5).Item(7) =
Math.Round(mean5, 4)
 End If

 End Sub
 Private Sub StdAuto()
 Dim a, b, c, d, e, f, g, h, i, j, k, l, m,
n, o As Double
 Dim mean1, mean2, mean3, mean4, mean5 As
Double
 Dim std1, std2, std3, std4, std5 As Double

 a = ds.Tables("proto").Rows(1).Item(4)
 b = ds.Tables("proto").Rows(1).Item(5)
 c = ds.Tables("proto").Rows(1).Item(6)
 d = ds.Tables("proto").Rows(2).Item(4)
 e = ds.Tables("proto").Rows(2).Item(5)
 f = ds.Tables("proto").Rows(2).Item(6)
 g = ds.Tables("proto").Rows(3).Item(4)
 h = ds.Tables("proto").Rows(3).Item(5)
 i = ds.Tables("proto").Rows(3).Item(6)
 j = ds.Tables("proto").Rows(4).Item(4)
 k = ds.Tables("proto").Rows(4).Item(5)
 l = ds.Tables("proto").Rows(4).Item(6)
 m = ds.Tables("proto").Rows(5).Item(4)
 n = ds.Tables("proto").Rows(5).Item(5)
 o = ds.Tables("proto").Rows(5).Item(6)
 mean1 = ds.Tables("proto").Rows(1).Item(7)
 mean2 = ds.Tables("proto").Rows(2).Item(7)
 mean3 = ds.Tables("proto").Rows(3).Item(7)
 mean4 = ds.Tables("proto").Rows(4).Item(7)
 mean5 = ds.Tables("proto").Rows(5).Item(7)
 If RadioButton3.Checked And Timer1.Enabled =
False Then
 std1 = Math.Sqrt(((a - mean1) ^ 2 + (b -
mean1) ^ 2 + (c - mean1) ^ 2) / 2)
 ds.Tables("proto").Rows(1).Item(8) =
Math.Round(std1, 4)
 std2 = Math.Sqrt(((d - mean2) ^ 2 + (e -
mean2) ^ 2 + (f - mean2) ^ 2) / 2)
 ds.Tables("proto").Rows(2).Item(8) =
Math.Round(std2, 4)
 std3 = Math.Sqrt(((g - mean3) ^ 2 + (h -
mean3) ^ 2 + (i - mean3) ^ 2) / 2)
 ds.Tables("proto").Rows(3).Item(8) =
Math.Round(std3, 4)
 std4 = Math.Sqrt(((j - mean4) ^ 2 + (k -
mean4) ^ 2 + (l - mean4) ^ 2) / 2)

78

 ds.Tables("proto").Rows(4).Item(8) =
Math.Round(std4, 4)
 std5 = Math.Sqrt(((m - mean5) ^ 2 + (n -
mean5) ^ 2 + (o - mean5) ^ 2) / 2)
 ds.Tables("proto").Rows(5).Item(8) =
Math.Round(std5, 4)
 End If

 End Sub
 Private Sub ErrorAuto()
 Dim mean1, mean2, mean3, mean4, mean5 As
Double
 Dim error1, error2, error3, error4, error5
As Double
 Dim a, b, c, d, e As Double
 mean1 = ds.Tables("proto").Rows(1).Item(7)
 mean2 = ds.Tables("proto").Rows(2).Item(7)
 mean3 = ds.Tables("proto").Rows(3).Item(7)
 mean4 = ds.Tables("proto").Rows(4).Item(7)
 mean5 = ds.Tables("proto").Rows(5).Item(7)
 a = ds.Tables("proto").Rows(1).Item(2)
 b = ds.Tables("proto").Rows(2).Item(2)
 c = ds.Tables("proto").Rows(3).Item(2)
 d = ds.Tables("proto").Rows(4).Item(2)
 e = ds.Tables("proto").Rows(5).Item(2)

 If RadioButton3.Checked And Timer1.Enabled =
False Then
 error1 = ((mean1 - a) / a) * 100

 ds.Tables("proto").Rows(1).Item(9) =
Math.Round(error1, 3)
 error2 = ((mean2 - b) / b) * 100
 ds.Tables("proto").Rows(2).Item(9) =
Math.Round(error2, 3)
 error3 = ((mean3 - c) / c) * 100
 ds.Tables("proto").Rows(3).Item(9) =
Math.Round(error3, 3)
 error4 = ((mean4 - d) / d) * 100
 ds.Tables("proto").Rows(4).Item(9) =
Math.Round(error4, 3)
 error5 = ((mean5 - e) / e) * 100
 ds.Tables("proto").Rows(5).Item(9) =
Math.Round(error5, 3)
 End If
 End Sub

 Private Sub Button2_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub Button1_Click_2(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 ds.Tables("proto").Rows(6).Item(9) = ""
 End Sub
End Class

79

APPENDIX B

STUDENT’S T-DISTRIBUTION TABLE

 Value of tρ (υ) from the t-distribution for degree of freedom γ that defines an

 Interval - tρ (υ) to + tρ (υ) that encompasses the fraction ρ of the distribution.

Degree of
Freedom γ

Fraction ρ in percent
68.27* 90.00 95.00 95.45 99.00 99.73*

1 1.84 6.31 12.71 13.97 63.66 235.8
2 1.32 2.92 4.30 4.53 9.92 19.21
3 1.20 2.35 3.18 3.31 5.84 9.22
4 1.14 2.13 2.78 2.87 4.606 6.62
5 1.11 2.02 2.57 2.65 4.03 5.51
6 1.09 1.94 2.45 2.52 3.71 4.90
7 1.08 1.89 2.36 2.43 3.50 4.53
8 1.07 1.86 2.31 2.37 3.36 4.28
9 1.06 1.83 2.26 2.32 3.25 4.09
10 1.05 1.81 2.23 2.28 3.17 3.96
11 1.05 1.80 2.20 2.25 3.11 3.85
12 1.04 1.78 2.18 2.23 3.05 3.76
13 1.04 1.77 2.17 2.21 3.01 3.69
14 1.04 1.76 2.14 2.20 2.98 3.64
15 1.03 1.75 2.13 2.18 2.95 3.59
16 1.03 1.75 2.12 2.17 2.92 3.54
17 1.03 1.74 2.11 2.16 2.90 3.51
18 1.03 1.73 2.10 2.15 2.88 3.48
19 1.03 1.73 2.09 2.14 2.86 3.45
20 1.03 1.72 2.09 2.13 2.85 3.42

25 1.02 1.71 2.06 2.11 2.79 3.33
30 1.02 1.70 2.04 2.09 2.75 3.27
35 1.01 1.70 2.03 2.07 2.72 3.23
40 1.01 1.68 2.02 2.06 2.70 3.20
45 1.01 1.68 2.01 2.06 2.69 3.18

50 1.01 1.68 2.01 2.05 2.68 3.16
100 1.005 1.660 1.984 2.025 2.626 3.077

 1.000 1.645 1.96 2.000 2.576 3.000

80

APPENDIX C

TEMPERATURE TRANSMITTER

81

82

APPENDIX D

ADVANTECH USB-4716 DAQ CARD SPECIFICATION

83

84

	pengesahan_status_tesis.pdf
	JUDUL:
	NO.2 JALAN HANG JEBAT 49 NAJIDAH BINTI HAMBALI

	[front page] my thesis
	[content] my thesis

