SYNTHESIS AND CHARACTERIZATION OF GRAPHENE USING LIQUID PHASE EXFOLIATION

NUR AININA BINTI MUHAMAD

UNIVERSITI MALAYSIA PAHANG

SYNTHESIS AND CHARACTERIZATION OF GRAPHENE USING LIQUID PHASE EXFOLIATION

NUR AININA BINTI MUHAMAD

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Applied Science (Honours) Material Technology

Faculty of Industrial Sciences & Technology UNIVERSITI MALAYSIA PAHANG

DECEMBER 2016

SUPERVISORS' DECLARATION

I hereby declare that I have checked the thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Applied Science (Honor) Material Technology.

Signature		
Name of Supervisor	:	DR. IZAN IZWAN MISNON
Position	:	LECTURER
Date	:	30/12/2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	NUR AININA BINTI MUHAMAD
ID Number	:	SC13054
Date	:	30/12/2016

DEDICATION

I dedicate this thesis to my beloved family for their unconditional love, support and encouragement.

ACKNOWLEDGEMENTS

First and foremost, I am heartily thankful to my supervisor, Dr. Izan Izwan, whose encouragement, guidance and support from the beginning and until the last level enabled me to finish my final year project and correcting my mistakes.

Apart from that, I would like to thanks all the laboratory assistants of Faculty Industrial Science and Technology on helping me a lot in laboratory works and special thanks to Ms. Nurul Khairiyyah Mohd Zain for her guidance.

I also would like to thanks all my team members, mostly to Norshahirah Nadiah Abd. Rahman in helping me a lots throughout the project and Siti Nur Najwa Mohd Yusof for the encouragement and helps. Last but not least, I extend my thanks to my family and friends for their endless support that make me wont give up.

TABLE OF CONTENTS

			Page
SUPERVIS	ORS' DE	ECLARATION	iii
STUDENT'	S DECL	ARATION	iv
DEDICATI	ON		v
ACKNOWI	EDGEN	MENTS	vi
ABSTRACI			vii
ABSTRAK			viii
TABLE OF	CONTE	INTS	ix
LIST OF TA	BLES		xi
LIST OF FI	GURES		xii
LIST OF SY	MBOLS	8	xiv
LIST OF AI	BBREVI	ATIONS	XV
CHAPTER	1 INTRO	ODUCTION	1
1.1	INTRO	DDUCTION	1
1.2	PROB	LEM STATEMENT	3
1.3	OBJEC	CTIVES OF RESEARCH	3
1.4	STATI	EMENT OF CONTRIBUTION	4
CHAPTER	2 LITE	RATURE REVIEW	5
2.1	INTRO	DDUCTION	5
2.2	PROPI	ERTIES OF GRAPHENE	5
	2.2.1	Structural and Electronic Properties of Graphene	5
	2.2.2	Optical Properties of Graphene	8
	2.2.3	Mechanical Properties of Graphene	9
	2.2.4	Transport Properties of Graphene	10
2.3	REVIE	EW OF EXPERIMENTAL WORK ON GRAPHENE	10
2.4	REVIE	EW OF FUNCTIONALIZED GRAPHENE	14
CHAPTER	3 MATE	ERIALS AND METHODS	16
3.1	INTRO	DDUCTION	16
3.2	RESEA	ARCH FLOW CHART	16
3.3	SYNT	HESIS OF GRAPHENE	17
3.4	CHAR	ACTERIZATION OF GRAPHENE	17

3.4.1 UV-Vis Spectrometer 17 3.4.2 Field Emission Scanning Electron Microscopy (FESEM) 18 3.4.3 Fourier Transform Infrared (FTIR) and Attenuated Total Reflectance (ATR) 18 **CHAPTER 4 RESULT AND DISCUSSION** 19 4.1 SYNTHESIS AND CHARACTERIZATION OF GRAPHENE 19 4.1.1 ATR-FTIR Analysis 19 4.1.2 UV-Vis Analysis 20 4.1.3 FESEM Analysis 24 CHAPTER 5 CONCLUCION AND RECOMMENDATION 27 5.1 CONCLUCION 27 5.2 RECOMMENDATIONS 27 REFERENCE

29

LIST OF TABLES

Table	Title	Page
Table 2.1	Different technique	11
	employed to synthesis	
	graphene	
Table 2.2	LPE methods used to	14
	employed synthesis	
	graphene from various	
	precursor	

LIST OF FIGURES

Figure	Title	Page
Figure 2.1	Honeycomb lattice of	6
	graphene (left) and	
	Brillouin zone	
Figure 2.2	The example low-energy	7
	electron diffraction	
	(LEED) images of (a)	
	Gr/Ni(111) and (b) the	
	Gr/Al/Ni(111) system	
	collected at primary	
	electron energy of 75 eV	
	and 78 eV respectively.	
	(c) Top and side view of	
	ball model of	
	Gr/Al/Ni(111) obtained	
Figure 2.3	The behavior of (a) laser	8
	beam passing through and	
	(b) optical tranparency of	
	aqueous dispersion of	
	graphene	
Figure 2.4	Graphene on polyethylene	9
	terephthalate (PET),	
	assembled in a touch panel	
	which shows outstanding	
	exibility	
Figure 3.1	Figure 3.1: Flow chart of	16
	snthesized and	
	characterization of	
	graphene	
Figure 4.1	FTIR spectra of exfoliated	20

	graphene, commercial	
	graphene and AC	
Figure 4.2	Plot of absorbance at	22
	660nm versus graphene	
	concentration (mg/ml).	
	The straight line is linear	
	regression line	
Figure 4.3	Plot of graph surface	23
	tension versus mass of	
	glycine	
Figure 4.4	Plot of graph absorbance	24
	at 660 versus variety ratio	
	of AC and glycine	
Figure 4.5	FESEM images of	25
	graphene different	
	magnification: (a) 30000x	
	and (b) 50000x	
Figure 4.6	FESEM image of (A)	26
	graphene oxide and (B)	
	bacterially reduced	
	graphene oxide	

LIST OF SYMBOLS

milligrams per millilitre
millimoles
millinewton per square meter
watt per metre kelvin
electron volt
centimeter square per volt second
per centimeter square
per centimeter
revolutions per minute
nanometer
more than
less than
approximately
percent
degree celcius
grams
hour
time

LIST OF ABBREVIATIONS

-	two-dimensional
-	chemical vapor deposition
-	complementary metal-oxide-semiconductor
-	liquid phase exfoliation
-	N-methyl-2-2pyrrolidone
-	N,N-dimethylformamide
-	expanded graphite
-	activated carbon
-	silicon carbide
-	1-hexyl-3-3methyl-imidazolium
	hexafluorophosphate
-	Fourier Transform Infrared Spectroscopy
-	Attenuated Total Reflactance
-	Ultraviolet-visible spectroscopy
-	Field Eission Scanning Electron Microscopy
-	low-energy electron diffraction
-	polyethylene terephthalate
-	transmission electron microscopy
-	graphite oxide
-	glassy carbon electrode
-	saturated calomel electrode
-	graphite intercalation compound
-	gamma-Butyrolactone