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Abstract. A metaheuristic algorithm, called Harmony Search is quite highly applied in 
optimizing parameters in many areas. HS is a derivative-free real parameter optimization 
algorithm, and draws an inspiration from the musical improvisation process of searching for a 
perfect state of harmony. Propose in this paper Modified Harmony Search for solving 
optimization problems, which employs a concept from genetic algorithm method and particle 
swarm optimization for generating new solution vectors that enhances the performance of HS 
algorithm. The performances of MHS and HS are investigated on ten benchmark optimization 
problems in order to make a comparison to reflect the efficiency of the MHS in terms of final 
accuracy, convergence speed and robustness. 

1.  Introduction 
Nowadays, researchers all over the world are attracted toward the nature-inspired metaheuristics in 
order to meet demands solution of the complex and real-world problems since it can reduce the 
computational cost dramatically. It is not about reducing the cost only, but sometimes the traditional 
methods are, in some cases impossible to apply. Among all the kind, we named a few of quite well-
known methods such as genetic algorithm (GA), particle swarm optimization (PSO), artificial bee 
colony algorithm (ABC) and harmony search (HS). GA which was invented and developed by John 
Holland in the 1960s at the University of Michigan [1] presented the GA in [2]. Other well-known 
methods such as PSO invented by [3] and [4] invented ABC. 

A music-inspired metaheuristics method, HS [5] have been successfully applied to wide range of 
optimization problems, for example, wireless sensor network [6], load frequency control [7], power 
system stabilizers [8], vehicle routing problem [9], knapsack problem [10] and scheduling algorithm 
[11]. Meanwhile, a few researchers take initiative to improved HS in order to improve optimization 
methods in their areas such as [12] and [13] which hybridizing HS and PSO, [14] hybridizing genetic 
programming and HS, [15] proposed global-best harmony while, [16] make a modification to the HS 
by adapting new parameter. 

This paper proposes a useful modification to the classical harmony search which use a concept of 
GA and PSO as one of the methods in searching the best parameters in order to optimize the objective 
function. These two employments contribute a significant vectors to enhance the performance of the 
proposed method.  The new version is called modified harmony search (MHS). The results of the 
experiments conducted are shown and compared with the versions of HS proposed by [5] and global-
best harmony search (GHS) by [15].   

The rest of the paper is organized in the following way. Section 2 provides an overview of HS 
algorithm. Global-best HS is summarized in section 3. The proposed approach is presented in section 
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4. Section 5 presents and discusses the experimental results of the comparative study and section 6 
concludes the paper.  

2.  Harmony Search 
Harmony Search (HS) is a metaheuristic algorithm which was originally inspired by the improvisation 
process of Jazz musicians which mimicking the improvisation of music players [5]. The details 
process of these steps is illustrated in figure 1. 
 

 
Figure 1. Procedure of harmony search algorithm [17]. 

 
The most important part is step 3, which is improvise a new harmony. This is because all the reforms 
will be put under this step, a mechanism for creating a better new harmony. The details of this step is : 
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Step 3 : Improvise a new harmony 
for 1 to j N= , if ( )0,1 HMCRU ≤ then /* memory consideration*/ 
            begin 
               ( ),  where ~ 1, , .i jx x j U HMS′ ′=   
               if ( )0,1 PARU ≤  then /*pitch adjustment*/ 
                    begin 
                      ( ),  where ~ 0,1  and  is an arbitrary distance bandwidth.i ix x r bw r U bw′ ′= ± ×   
                    endif 
             else /*random selection*/ 
              ( )LB UB LBi i i ix r′ = + × −  
        endif 
done 
 

3.  Global-best Harmony Search 
[15] proposed a new variant of the HS called, global-best harmony search (GHS), modifies the pitch-
adjustment step which new harmony can mimic the best harmony in the HM. Thus, replacing the bw 
parameter gether and adding a social dimension to the HS.  
 
Step 3 : Improvise a new harmony 
for 1 to j N= , if ( )0,1 HMCRU ≤ then /* memory consideration*/ 
            begin 
               ( ),  where ~ 1, , .i jx x j U HMS′ ′=   
               if ( ) ( )0,1 PARU t≤  then /*pitch adjustment*/ 
                    begin 
                        ,best

i kx x′ =  where best is the best index in the HM and ( )~ 1, .k U N  
                    endif 
             else /*random selection*/ 
              ( )LB UB LBi i i ix r′ = + × −  
        endif 
done 
 

4.  Modified Harmony Search 
New technique called modified harmony search (MHS) employs a novel method for generating new 
solution vectors that enhances accuracy and convergence rate of HS algorithm. Inspired by the concept 
from PSO, the position of a particle is influenced by the best position visited itself and the position of 
the best particle in swarm. MHS added one more step in memory consideration phase of the HS such 
that the new harmony can mimic the best harmony in the HM. Besides, a concept from GA which is a 
crossover was being borrowed, where MHS uses a modification of the selected harmony in order to 
generate a new harmony.  
 
 
 
 
 
 
 
 



4

1234567890

ICoAIMS 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 890 (2017) 012097  doi :10.1088/1742-6596/890/1/012097

 
 
 
 
 
 

Step 3 : Improvise a new harmony 
for 1 to j N=  
          if ( )0,1 HMCRU ≤  

 ( )( ) ( )1 2HM HMS , , HM ,j jD rand j D best j= = /*best position*/ 

 if ( )0,1 PARU ≤ , ( )BW 2 1 , 1,2lj ljD D r l= ± × − = , endif 
 else 
       ( )LB UB LB , 1,2lj j j jD r l= + − =  
 endif 
done 

( )0,1Uα = , ( ) ( )3 1 2 4 2 11 , 1D D D D D Dα α α α= + − = + −  /*cross-over*/ 
 
4.1 .  Example 
This section will discussed details about algorithm behavior in consecutive generations of HS, GHS 
and MHS by using the Griewank function which defined in section 5. The number of decision 
variables is set to 3 with possible values bounds between −600 and 600. Other parameters were set as 
in next section. The state of HM in different iterations for the algorithms MHS and HS are shown in 
tables 1 – 3 respectively. Each simulation targeted to have 500 iterations only and all of the algorithms 
improvised a near optimal, MHS is better than HS and GHS.  
 
Table 1. HM state in different iterations for the Griewank function using the HS algorithm.  [15]. 
Rank  

1x  2x  3x  ( )f x  

Initial HM   1 206.909180 241.845703 -102.795410 29.141686 
       2 -99.938965 332.336426 -397.961426 70.088302 
       3 -381.262207 -392.358398 -87.634277 77.971790 
       4 -381.262207 -472.924805 -87.634277 95.243494 
       5 -470.910645 -54.345703 -430.700684 104.179736 
HM after 10 iterations   1 206.909180 -54.332356 -87.634277 13.718178 
 2 206.909180 -54.332356 -102.795321 15.721512 
 3 206.909180 241.845703 -102.795410 29.141686 
 4 206.909180 316.369629 -87.634277 39.325780 
 5 -438.061523 -54.345703 -102.795436 52.221392 
HM after 100 iterations 1 -15.234375 -54.332356 56.637901 2.787318 
 2 109.016680 -54.332356 56.643102 5.635628 
 3 109.020996 -54.338577 56.643102 5.635628 
 4 109.020996 -54.332356 56.643102 5.635628 
 5 109.020996 -54.341623 56.637901 5.635628 
HM after 500 iterations 1 -15.296501 -18.134526 -27.026367 0.467774 
 2 -15.296501 -18.134526 50.484959 1.206920 
 
 
 

3 
4 
5 

-15.296501 
-15.296501 
-15.296501 

-18.134526 
-18.134526 
-18.134526 

50.484959 
50.484959 
50.484959 

1.207263 
1.208392 
1.208400 
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Table 2. HM state in different iterations for the Griewank function using the GHS algorithm  [15]. 
Rank  

1x  2x  3x  ( )f x  

Initial HM   1 206.909180 241.845703 -102.795410 29.141686 
       2 -99.938965 332.336426 -397.961426 70.088302 
       3 -381.262207 -392.358398 -87.634277 77.971790 
       4 -381.262207 -472.924805 -87.634277 95.243494 
       5 -470.910645 -54.345703 -430.700684 104.179736 
HM after 10 iterations   1 206.909180 -54.345703 -87.634277 13.721652 
 2 206.909180 -54.345703 -87.634277 13.721652 
 3 206.909180 136.926270 -102.795410 18.311658 
 4 206.909180 136.926270 -87.634277 19.032912 
 5 206.909180 136.926270 -87.634277 19.032912 
HM after 100 iterations 1 -18.859863 24.719238 -45.629883 1.692257 
 2 -18.859863 45.593262 -45.629883 1.890251 
 3 -18.859863 45.593262 -45.629883 1.890251 
 4 -18.859863 45.593262 -45.629883 1.890251 
 5 -18.859863 45.593262 -45.629883 1.890251 
HM after 500 iterations 1 -18.859863 1.171875 22.082520 0.546616 
 2 -18.859863 1.171875 22.082520 0.546616 
 
 
 

3 
4 
5 

-18.859863 
-18.859863 
-18.859863 

1.171875 
1.171875 
1.171875 

22.082520 
22.082520 
22.082520 

0.546616 
0.546616 
0.546616 

 
Table 3. HM state in different iterations for the Griewank function using the MHS algorithm. 
Rank  

1x  2x  3x  ( )f x  

Initial HM   1 -443.204366 208.270871 -60.580594 62.691691 
       2 -119.486776 -152.607740 -332.219628 38.432213 
       3 189.459541 -174.790596 -442.564732 66.441219 
       4 -500.641212 -341.119459 421.814952 137.212745 
       5 -144.995047 -294.434745 431.536697 74.818646 
HM after 10 iterations   1 -119.489181 -128.606243 -332.218452 35.330456 
 2 -119.489453 -128.606243 -332.218908 35.330620 
 3 -119.488961 -128.606243 -332.218081 35.330323 
 4 -119.489232 -128.606243 -332.218538 35.330487 
 5 -119.489453 -128.606243 -332.218908 35.330620 
HM after 100 iterations 1 -0.208369 -33.852081 -55.948645 1.842361 
 2 -0.208369 -33.852081 -55.950488 1.842708 
 3 -0.208369 -33.852081 -55.948645 1.842361 
 4 -0.208369 -33.852081 -55.949556 1.842533 
 5 -0.208369 -33.852081 -55.949623 1.842545 
HM after 500 iterations 1 -0.006091 8.876288 -21.263782 0.174450 
 2 -0.006864 8.876288 -21.263782 0.174455 
 
 
 

3 
4 
5 

-0.008878 
-0.008878 
-0.008878 

8.876288 
8.876288 
8.876288 

-21.263782 
-21.263782 
-21.263782 

0.174470 
0.174470 
0.174470 

5.  Experimental results 
In this section, the following functions have been used to compare the performance of the methods. 
Generally all algorithms are set HMS = 5 and HMCR = 0.9. But for HS and MHS PAR = 0.3 and bw = 
0.01, while GHS sets PARmin = 0.01 and PARmax = 0.99 unless another parameter in MHS, which is α
will be a random number between 0 and 1, α  will be used to do the cross-over process. For each of 
these functions, the goal is to find the global minimizer. 
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Table 4. Benchmark Functions. 
Function Name Expression Search Range Optimum Value 

Sphere Function ( ) 2
1

1

N

i
i

f x x
=

= ∑


 100 100ix− ≤ ≤  ( ) ( )1 1min 0, ,0 0f f= =  

Schwefel’s 
Problem ( )2

11

N N

i i
ii

f x x x
==

= +∏∑


 10 10ix− ≤ ≤  ( ) ( )2 2min 0, ,0 0f f= =  

Step Function ( ) ( )2

3
1

0.5
N

i
i

f x x
=

= +∑


 100 100ix− ≤ ≤  
( )

( )
3

3

min 

0.5, , 0.5 0

f

f − − =

 

Rosenbrock’s 
Function ( ) ( ) ( )

1 2 22
4 1

1
100 1

N

i i i
i

f x x x x
−

+
=

 = − + −  ∑


 30 30ix− ≤ ≤  ( ) ( )4 4min 1, ,1 0f f= =  

Rotated Hyper-
Ellipsoid Function ( )

2

5
1 1

N i

j
i j

f x x
= =

 
=  

 
∑ ∑



 100 100ix− ≤ ≤  ( ) ( )5 5min 0, ,0 0f f= =  

Generalized 
Schwefel’s 
Problem 

( ) ( )6
1

sin
N

i i
i

f x x x
=

 = −   ∑


 500 500ix− ≤ ≤  
( )

( )
6

6

min 

420.9687, , 420.9687
418.9829

f

f
N= − ×

  

Rastrigin Function ( ) ( )2
7

1
10cos 2 10

N

i i
i

f x x xπ
=

 = − + ∑


 5.12 5.12ix− ≤ ≤  ( ) ( )7 7min 0, ,0 0f f= =  

Ackley’s Function 
( )

( )2

1 1

8

1 10.2 cos 2

20 20

N N
i i

i i

x xN N

f x

e e e
π

= =

    −     
   

=

∑ ∑
− − + +



 32 32ix− ≤ ≤  ( ) ( )8 8min 0, ,0 0f f= =  

Griewank 
Function ( ) 2

9
11

1 cos 1
4000

N N
i

i
ii

x
f x x

i==

 
= −∏ + 

 
∑



 600 600ix− ≤ ≤  ( ) ( )9 9min 0, ,0 0f f= =  

Six-Hump Camel-
Back Function 

( ) 2 4
10 1 2 1 1

6 2 4
1 1 2 2 2

, 4 2.1
1 4 4
3

f x x x x

x x x x x

= −

+ + − +
 5 5ix− ≤ ≤  ( ) ( )10 10min 0.08983,0.7126

1.0316285
f f= −

= −
 

 

 
The results reported in this section are means and standard deviations over 30 simulations. Each 
simulation runs for 50,000 evaluations of the objective function. Table 5 summarizes the results 
obtained by these three methods on the benchmark functions. The results show that the MHS 
outperformed HS and GHS in all functions except for Rosenbrock function.  

 
Table 5.  Means and standard deviation of the benchmark function optimization results. 

 HS GHS MHS 
Sphere Function 0.000187(0.000032) 0.000010(0.000022) 0.000000(0.000000) 
Schwefel’s Problem 0.171524(0.072851) 0.072815(0.114464) 0.000002(0.000000) 
Step Function 340.297100(266.691353) 49.669203(59.161192) 0.000000(0.000000) 
Rosenbrock’s Function 4.233333(3.029668) 0(0) 2.18492(0.63435) 
Rotated Hyper-Ellipsoid F.  4297.816457(1362.148438) 5146.176259(6348.792556) 0.000000(0.000000) 
Generalized Swefel’s 
Problem 

-12539.237786(11.960017) -12569.458343(0.050361) -1256.948662 
(0.000000) 

Rastrigin Function 1.390625(0.824244) 0.008629(0.015277) 0.000000(0.000000) 
Ackley’s Function 1.130004(0.407044) 0.020909(0.021686) 0.000001(0.000000) 
Griewank Function 1.119266(0.041207) 0.102407(0.175640) 0.00674(0.00082) 
Six-Hump Camel-Back F.  -1.031628(0.00000) -1.031600(0.00018) -1.03163(0.000000) 
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6.  Conclusion 
This paper has presented a new version of harmony search which called modified harmony search. 
The approach adopted a concept from particle swarm optimization, which allows to keep the best 
position visited itself and a phase in genetic algorithm that calls cross-over in order to generate a new 
harmony beside generating harmony as in classic HS. This approach was tested on ten benchmark 
functions where it shows better performances compared to other approaches.  
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