An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways

Ahmad Muhaimin Ismaila, Mohd Saberi Mohamadc,g,h,*, Hairudin Abdul Majida, Khairul Hamimah Abasb, Safaai Derisc,g,h, Nazar Zaki, Siti Zaiton Mohd Hashimc, Zuwairie Ibrahimf, Muhammad Akmal Remlia

aArtificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
bDepartment of Control and Mechatronic Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
cFaculty of Creative Technology and Heritage, Universiti Malaysia Kelantan, Bachok, Kelantan, Malaysia
dCollege of Information Technology, United Arab Emirate University, Al Ain, United Arab Emirates
eSoft Computing Research Group, Faculty of Computing, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
fFaculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
gCenter For Computing and Informatics, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
hInstitute For Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia

ARTICLE INFO

Article history:
Received 6 October 2016
Received in revised form 23 June 2017
Accepted 21 September 2017
Available online 23 September 2017

Keyword:
Parameter estimation
Biochemical pathway
Particle swarm optimization
Gravitational search algorithm
Artificial intelligence
Bioinformatics
Metabolic engineering

ABSTRACT

Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions.

This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions.

© 2017 Elsevier B.V. All rights reserved.

*Corresponding author.
E-mail address: saberi@umk.edu.my (M.S. Mohamad).

http://dx.doi.org/10.1016/j.biosystems.2017.09.013
0303-2647/© 2017 Elsevier B.V. All rights reserved.