IONIC CONDUCTION STUDY ON BIOPOLYMER ELECTROLYTES BASED CARBOXYMETHYL CELLULOSE/KAPPA CARRAGEENAN DOPED NH4BR

SHUI JUN KIT

UNIVERSITI MALAYSIA PAHANG

IONIC CONDUCTION STUDY ON BIOPOLYMER ELECTROLYTES BASED CARBOXYMETHYL CELLULOSE/KAPPA CARRAGEENAN DOPED NH4BR

SHUI JUN KIT

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Applied Science (Honors) Material Technology

> Faculty of Industrial Sciences & Technology UNIVERSITI MALAYSIA PAHANG

> > December 2016

SUPERVISORS' DECLARATION

I hereby declare that I have checked the thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Applied Science (Honor) Material Technology.

Signature		
Name of Supervisor	:	DR. AHMAD SALIHIN BIN SAMSUDIN
Position	:	SENIOR LECTURER
Date	:	

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	SHUI JUN KIT
ID Number	:	SC13058
Date	:	

ACKNOWLEDGEMENTS

Firstly, I would like to express my great appreciation to my final year project supervisor, Dr Ahmad Salihin bin Samsudin who gave me a great opportunity to get involved in this supreme research, which is potentially to improve human lifestyle in the future. Throughout the research, he had been helping me by providing professional guidance based on his wide experience and expert knowledge of material sciences. He was very kind to cooperate with me, listening to my problems patiently and unblocking the bottlenecks that I faced by providing appropriate solution regarding to the mistakes. I am truly grateful to the full effort enlightenment given by my supervisor that helped me to complete the research successfully.

Secondly, I would like to thank postgraduate students for assisting me in my project especially Nur Khalidah binti Zainuddin and Nur Muhitul Jalilah binti Rasali for always been there to guide me to get my research works done in a precise and easier way. Meanwhile, I would also like to express my salutation to my coursemates and every laboratory staffs of Faculty of Industrial Sciences and Technology at Universiti Malaysia Pahang, who had helped me a lot throughout the whole research.

Lastly, I would like to express my gratitude to my beloved parents who gave me mentally support in the realization of this research thesis.

TABLE OF CONTENTS

	Page
SUPERVISORS' DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objective of Research	4
1.4	Thesis Outline	4

CHAPTER 2 LITERATURE REVIEW

2.1	Polymer Electrolytes	6
2.2	Solid Polymer Electrolyte (SPE)	7
2.3	Polymer Blend Electrolyte	8
2.4	Polymer Salt Complexes	9
2.5	Carboxymethyl Cellulose (CMC)	11
2.6	Kappa Carrageenan (KC)	12
2.7	Ammonium Bromide (NH4Br)	13

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introdu	iction	16
3.2	Sample	Sample Preparation	
3.3	Charac	eterization Technique	19
	3.3.1	Fourier Transform Infrared Spectroscopy (FTIR)	19
	3.3.2	X-Ray Diffraction (XRD)	19
	3.3.3	Electrical Impedance Spectroscopy (EIS)	20
3.4	Locatio	on of Research	21

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introdu	action	22
4.2	Charac	eterization Technique	22
4.3	Fourie	r Transform Infrared Spectroscopy (FTIR)	23
	4.3.1	FTIR of Pure Carboxymethyl cellulose (CMC) Powders	23
	4.3.2	FTIR of Pure kappa carrageenan (KC) Powders	24
	4.3.3	FTIR of Pure Ammonium Bromide (NH4Br) Powders	25
	4.3.4	FTIR of CMC/KC-NH ₄ Br Biopolymer Electrolytes	26
4.4	X-Ray	Diffraction (XRD)	30
	4.4.1	XRD Patterns of CMC/KC-NH4Br Biopolymer Electrolytes	30
4.5	Electri	cal Impedance Spectroscopy (EIS)	31
	4.5.1	AC Impedance Study of CMC-NH4Br Biopolymer Electrolytes	31
	4.5.2	Dielectric Study	34
		4.5.2.1 Dielectric Constant Study	35
		4.5.2.2 Dielectric Loss Study	36

	4.5.3	Modulus Study	37
		4.5.3.1 Real Modulus Study	38
		4.5.3.2 Imaginary Modulus Study	38
	4.5.4	Tangent Loss Study	39
4.6	Trans	port Parameter of CMC/KC-NH4Br Biopolymer Electrolytes	40

CHAPTER 5 CONCLUSIONS AND RECOMMENDATION

5.1	Conclusions	43
5.2	Recommendations	44

REFERENCES

45

LIST OF TABLES

Table No.	Title	Page
2.1	Solid biopolymer electrolytes and the highest ionic conductivity	8
2.2	Solid blended biopolymer electrolytes and highest ionic conductivity	9
2.3	Polymer host and salt type used to increase ionic conductivity	10
2.4	Ionic conductivity between polymer hosts doped with NH ₄ Br	10
3.1	The materials and apparatus that was used in research.	16
3.2	List of samples prepared with respective NH ₄ Br composition	18
3.3	Location of research	21
4.1	Thickness and bulk resistance of biopolymer electrolytes	33
4.2	Percentage area of free and contact ions of CMC/KC doped NH ₄ Br biopolymer electrolytes	41

LIST OF FIGURES

Figure No.	Title	Page
2.1	Molecular Structure of Carboxymethyl Cellulose.	11
2.2	Molecular Structure of kappa carrageenan.	12
2.3	Molecular structure of ammonium bromide.	13
2.4	XRD patterns of CMC/CS containing (a) 0 wt. %, (b) 10 wt. %,	14
	(c) 20 wt. %, (d) 30 wt. %, (e) 40 wt. % and (f) 50 wt. % of NH4NO ₃ .	
2.5	FTIR spectra of dual-blend CMC/CS doped with (a) 10 wt. %, (b) 20 wt. %, (c) 30 wt. %, (d) 40. wt%, and (e) 50 wt. % of NH_4NO_3	15
3.1	General overview of experimental procedures.	17
3.2	FTIR spectrometer of Perkin Elmer Spectrum 100 model with ATR connected with computer.	19
3.3	Rigaku Miniflex II model XRD Spectrometer.	20
3.4	HIOKI 3532-50 LCR Electrical Impedance Spectroscopic connected with computer and oven.	20
4.1	FTIR spectra of pure CMC powder.	23
4.2	FTIR spectra of pure KC powder.	24
4.3	FTIR spectraof pure NH ₄ Br.	25
4.4	FTIR spectra of (a) CMC/KC + 10 wt. % NH ₄ Br (b) CMC/KC + 15 wt. % NH ₄ Br (c) CMC/KC + 20 wt. % NH ₄ Br (d) CMC/KC + 25 wt. % NH ₄ Br (e) CMC/KC + 30 wt. % NH ₄ Br (f) CMC/KC + 35 wt. % NH ₄ Br (g) CMC/KC + 40 wt. % NH ₄ Br (h) CMC/KC + 45 wt. % NH ₄ Br.	26
4.5	(a) FTIR spectra of CMC/KC doped with (i) 10 wt. % NH ₄ Br, (ii) 15 wt. % NH ₄ Br, (iii) 20 wt. % NH ₄ Br, (iv) 25 wt. % NH ₄ Br, (v) 30 wt. % NH ₄ Br, (vi) 35 wt. % NH ₄ Br, (vii) 40 wt. % NH ₄ Br and (viii) 45 wt. % NH ₄ Br in the region of 1200 cm ⁻¹ to 1300 cm ⁻¹ . (b) FTIR spectra of CMC/KC doped with (i) 10 wt. % NH ₄ Br, (ii) 15 wt. % NH ₄ Br, (iii) 20 wt. % NH ₄ Br, (iv) 25 wt. % NH ₄ Br, (v) 30 wt. % NH ₄ Br, (vii) 35 wt. % NH ₄ Br, (vii) 40 wt. % NH ₄ Br, (v) 30 wt. % NH ₄ Br, (vii) 35 wt. % NH ₄ Br, (vii) 40 wt. % NH ₄ Br and (viii) 45 wt. % NH ₄ Br in the region of 1000 cm ⁻¹ to 1100 cm ⁻¹ and (c) FTIR spectra of CMC/KC doped with (i) 10 wt. % NH ₄ Br, (ii) 15 wt. % NH ₄ Br, (iii) 20 wt. % NH ₄ Br, (iv) 25 wt. % NH ₄ Br, (v) 30 wt. % NH ₄ Br, (vii) 35 wt. % NH ₄ Br, (vi) 40 wt. % NH ₄ Br, (v) 30 wt. % NH ₄ Br, (vii) 20 wt. % NH ₄ Br, (vi) 40 wt. % NH ₄ Br, (vi) 40 wt. % NH ₄ Br, (vi) 35 wt. % NH ₄ Br, (vi) 40 wt. % NH ₄ Br, (vi) 30 wt. % NH ₄ Br, (vi) 35 wt. % NH ₄ Br, (vii) 40 wt. % NH ₄ Br and (viii) 45 wt. % NH ₄ Br, (vi) 35 wt. % NH ₄ Br, (vii) 40 wt. % NH ₄ Br and (viii) 45 wt. % NH ₄ Br, (vi) 35 wt. % NH ₄ Br, (vi) 40 wt. % NH ₄ Br and (viii) 45 wt. % NH ₄ Br in the region of 800 cm ⁻¹ to 900 cm ⁻¹ .	28
4.6	FTIR spectra of CMC/KC doped with (i) 10 wt. % NH ₄ Br, (ii) 15 wt. % NH ₄ Br, (iii) 20 wt. % NH ₄ Br, (iv) 25 wt. % NH ₄ Br, (v) 30 wt. % NH ₄ Br, (vi) 35 wt. % NH ₄ Br, (vii) 40 wt. % NH ₄ Br and (viii) 45 wt. % NH ₄ Br in the region of 1100 cm ⁻¹ to 1700 cm ⁻¹ .	29
4.7	XRD patterns of (a) CMC/KC +5 wt. % NH ₄ Br (b) CMC/KC +10 wt. % NH ₄ Br (c) CMC/KC +30 wt. % NH ₄ Br and (d) CMC/KC +35 wt. % NH ₄ Br.	30

4.8	Cole-cole plot of (a) CMC/KC doped with 5 wt. % NH ₄ Br, (b) CMC/KC doped with 25 wt. % NH ₄ Br of (c) CMC/KC doped with 35 wt. % NH ₄ Br.	32
4.9	Conductivity against NH ₄ Br composition wt. % at room temperature.	34
4.10	Dielectric constant curves, ε_r of biopolymer electrolyte samples versus frequency at room temperature.	35
4.11	Dielectric loss curves, ε_i of biopolymer electrolyte samples versus frequency at room temperature.	36
4.12	Frequency dependence of the real parts of modulus formalism for biopolymer electrolytes at room temperature.	38
4.13	Frequency dependence of the imaginary parts of modulus formalism for biopolymer electrolytes at room temperature	38
4.14	Graph of tangent loss versus log frequency for biopolymer electrolytes at room temperature.	39
4.15	FTIR deconvolution of CMC/KC doped 35 wt. % of NH ₄ Br.	40
4.16	The transport parameters of (a) μ and D for biopolymer	
	electrolytes with different NH ₄ Br composition and (b) <i>n</i> versus NH4Br biopolymer electrolytes with different NH ₄ Br composition.	42

LIST OF SYMBOLS

0	Degree
°C	Degree Celcius
E _r .	Dielectric Constant
\mathcal{E}_i	Dielectric Loss
σ	Electrical Conductivity
μ	Mobility
η	Number of Mobile Ions
%	Percentage
π	Pi
θ	Theta
Α	Area
cm	Centimeter
cm ⁻¹	Per centimeter
cm ²	Square Centimeter
CIII	Square Continueter
D	Diffusion Coefficient
	-
D	Diffusion Coefficient
D f	Diffusion Coefficient Frequency
D f g	Diffusion Coefficient Frequency Gram
D f g Hz	Diffusion Coefficient Frequency Gram Hertz
D f g Hz K	Diffusion Coefficient Frequency Gram Hertz Kelvin
D f g Hz K k	Diffusion Coefficient Frequency Gram Hertz Kelvin Boltzman Constant
D f g Hz K k Mi	Diffusion Coefficient Frequency Gram Hertz Kelvin Boltzman Constant Imaginary Parts of Modulus
D f g Hz K k Mi Mr	Diffusion Coefficient Frequency Gram Hertz Kelvin Boltzman Constant Imaginary Parts of Modulus Real Parts of Modulus
D f g Hz K k Mi Mr ml	Diffusion Coefficient Frequency Gram Hertz Kelvin Boltzman Constant Imaginary Parts of Modulus Real Parts of Modulus Milliliter
D f g Hz K k Mi Mr ml n	Diffusion Coefficient Frequency Gram Hertz Kelvin Boltzman Constant Imaginary Parts of Modulus Real Parts of Modulus Milliliter Number Density

LIST OF SYMBOLS

S	Siemens
S	Seconds
Т	Temperature in Kelvin
t	Thickness
$\tan \delta$	Loss Tangent
wt. %	Weight Percentage
Ζ	Impedance
Z_i	Imaginary Parts of Complex Permitivity

LIST OF ABBREVIATIONS

CMC	Carboxyl Methylcellulose
EIS	Electrical Impedance Spectroscopy
FTIR	Fourier Transform Infrared Spectroscopy
KC	Kappa carrageenan
MgTf	Magnesium trifluoromethanesulfonate
NH ₄ Br	Ammonium bromide
NH ₄ I	Ammonium iodide
NH ₄ SCN	Ammonium thiocyanate
PCL	Poly(ε-caprolactone)
PEO	Polyethylene oxide
PVA	Polyvinyl Alcohol
P(VdF-HFP)	Poly(vinylidene fluoride-hexafluoropropylene)
SPE	Solid Polymer Electrolyte
XRD	X-Ray Diffraction