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An Efficient Ranking Analysis in Multi-criteria Decision Making
Nor Izzati Jaini, 2017
PhD in Mechanical Engineering

The University of Manchester
Abstract

This study is conducted with the aims to develop a new ranking method
for multi-criteria decision making problem with conflicting criteria. Such a
problem has a set of Pareto solutions, where the act of improving a value
of one solution will result in depreciating some of the others. Thus, in this
type of problem, there is no unique solution. However, out of many avail-
able options, the Decision Maker eventually has to choose only one solution.
With this problem as the motivation, the current study develops a compro-
mise ranking algorithm, namely a trade-off ranking method. The trade-off
ranking method able to give a trade-off solution with the least compromise
compared to other choices as the best solution. The properties of the algo-
rithm are studied in the thesis on several test cases. The proposed method is
compared against several multi-criteria decision making methods with rank-
ing based on the distance measure, which are the TOPSIS, relative distance
and VIKOR. The sensitivity analysis and uncertainty test are carried out to
examine the methods robustness. A critical criteria analysis is also done to
test for the most critical criterion in a multi-criteria problem. The decision
making method is considered further in a fuzzy environment problem where
the fuzzy trade-off ranking is developed and compared against existing fuzzy

decision making methods.

Keywords: Trade-off, ranking, multi-objective optimization, multi-criteria

decision making, Pareto optimal solution, directed search domain algorithm
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1. INTRODUCTION

SECTION ONE

1 Introduction

1.1 Background, motivation and scope

Life is about making decisions. Most people attempt to make the best de-
cision within a specified set of possible options. Thus, in a decision making
process, the first task to do is to determine the criteria needed and the al-
ternatives available. The alternative should satisfy the criteria constraints.
In a multi-objective optimization problem, by presenting the criteria as the
objective functions, a set of feasible solutions (alternatives) satisfying a set
of constraints given can be generated. Once the Decision Maker (DM) is
presented with the alternatives, he/she now have to choose the best option.
Choosing the best solution might be difficult if there are many available
options with almost the same quality. In particular, in the problem with
conflicting multi-criteria, where there are no unique solutions and each so-
lution is a trade-off of its criterion. For example, in order to decrease the
purchase price of an item, the DM has to decrease its quality as well. How-
ever, in reality, DM always wants to opt for the best quality item in cheapest
price available. Having the best quality of all things is the nature of human
beings. In a situation where it is impossible to have all the best quality at
once, the DM may opt for his/her preference. This is the part where the
DM placed his/her preference value in each criterion. Referring the previous
example of purchasing an item, a DM who prefers the purchase price over
the quality may choose the item which is the cheapest, while a DM who
opt for the quality may choose an item with the best quality regardless the
price. There is no right or wrong in making choices. In the end, it would
up to the DM. However, there are few methods available in helping the DM
in this task. Each method stands by its own property and background. By

this means, there is no single method that can cater for all types of decision
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1.1 - Background, motivation and scope

making problems or all types of DMs.

The DM attribution in achieving the optimal solution is divided into four
classes: no preference method, priori method, posteriori method and interac-
tive method (Hwang and Masud, 2012). In no preference method, a neutral
compromise solution is identified without the DM preference information. In
priori method, the DM preference information is first asked and then the best
solution satisfying the preference is found. While in posteriori, a represen-
tative set of Pareto optimal solutions is first found and then the DM must
choose one of them. In interactive methods, the decision maker is allowed
to iteratively search for the most preferred solution. In this study, no DM
is involved physically, however we take into account the DM preferences by
imposing the criteria weights. Hence, we can say that we imply the priori
method in the study.

In helping the DM to choose the appropriate decision making methods,
each method should be tested for its robustness and sensitivity towards a
change in the problem. A multi-criteria decision making (MCDM) problem
may have uncertainty towards its data. In this case, the change may occur
in the input data, i.e. the criteria parameters or the DM preference. Once
the sensitivity analysis and the robustness test are done, the DM is now able
to distinguish each method in its strength and weakness towards the specific
problem. Note that different problem may be better solved by the means of
different methods. After the sensitivity analysis is done, the DM is now able
to choose the most suitable method to seek for the best option according to
him /her.

Once obtaining the best option, the DM may want to change his/her
preference. Let say, instead of preferring the quality of an item, the DM
now prefers the purchase price. The analysis of the preference change after
getting the solution may give insight to the DM of how much of the change
value that would affect the current solution. In a situation where there are

few criteria considered, the DM can know whether the alternative stays as
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1.1 - Background, motivation and scope

the best solution if he/she change the preference of one criterion over the
others. If there is no change occurs, the DM may be delighted to know that
the solution is not only satisfies his/her previous preference, but also his/her
change of preference. If there is a change occurs, the DM may know by
how much of the change that would affect the previous solution. With the
knowledge of sensitivity of the methods, the uncertainty test of the problem
and the change of a criterion preference, the DM is now able to make an
efficient decision making process.

Now, consider a problem with conflicting criteria in a fuzzy environment.
The fuzzy decision making consists of the fuzziness in the performance value
of an alternative in each criterion and the fuzziness in the preference towards
each criterion. It is the same as the uncertainty part mentioned in previous
text, however in this problem the data are now consists of fuzzy numbers.
A decision making method that can solve the fuzzy problem would be the
help to the DM. In this problem, the fuzzy decision making method should
be considered rather than the conventional method.

The problem, that is considered is this study, is the conflicting multi-
criteria problem. This study is focused on the distance-based ranking tech-
niques for the decision making tools. Either it is the deterministic decision
making problem or the fuzzy decision making problem, the DM would be
able to choose the best solution in an efficient way. That is the ultimate aim

of this study. To achieve this aim, the objectives of this work are:

1. develop an efficient ranking algorithm based on a set of Pareto solu-

tions,

2. test the robustness of the ranking algorithm for uncertainties and sen-

sitivity analysis,
3. develop the ranking algorithm for a fuzzy multi-criteria problem,

4. apply the ranking algorithm to a design problem.

20



1.2 - Multi-Criteria decision making method

1.2 Multi-Criteria decision making method

In the real-life design it is required to improve different objectives simultane-
ously. A trade-off between the objectives is usually unavoidable because of
the conflicting objectives as well as the constraints. As a result, the optimal
solution is not unique and corresponds to a so-called Pareto solution. Each
Pareto solution is defined as a trade-off between the conflicting criteria, where
it is not possible to achieve the best score of a criterion without downgrading
the score of some other criteria. In the objective space all Pareto solutions
create a Pareto frontier. For a practical decision making analysis the Pareto
frontier is represented by a Pareto set that contains a finite number of op-
timal solutions. Eventually, the DM has to choose only one solution. This
leads to the problem of ranking because the definition of the Pareto fron-
tier does not presume any preferences. The Decision Making analysis can
be based on a ranking procedure to select the best solution among formal
candidates representing the Pareto set. An additional algorithm is required
to introduce the ranking.

In 1881, Edgeworth is the first to define an optimum for multi-criteria
economic decision making (Edgeworth, 1881). He does so for the multi-utility
problem within the context of two consumers, P and 7, where it is required
to find a point (z,y) such that in whatever direction we take, an infinitely
small step, P and 7 do not increase together but that, while one increases, the
other decreases. In 1906, a civil engineer turns economist, Pareto, creates his
infamous theory, the Pareto optimum (Pareto, 1906). The theory states that
the optimum allocation of the resources of a society is not attained so long as
it is possible to make at least one individual better off in his own estimation
while keeping others as well off as before in their own estimation. After the
translation of Pareto’s Manual of Political Economy into English, the notion
of Pareto optimality begins to be applied to the fields of engineering and
science (Pareto, 1971).

In the multi-criteria decision analysis, the decision making methods have
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1.2 - Multi-Criteria decision making method

been developed for more than 50 years (Triantaphyllou, 2013). However,
there are no universal approaches. Each method stands on its own back-
ground and principles. The most natural approach is to introduce individual
preferences. Ome of the basic and simplest multi-criteria decision analy-
sis techniques is the sum of weight calculation model. In this technique, a
weight is assigned to each criterion to denote its importance. Each aggregate
function is then calculated as the sum of weight criteria. A classic work on
the weight determination is by Eckenrode (1965). Eckenrode worked with
twenty-four expert judges, who were required to put a weight on six criteria
in a specified experiment related to an air-defence system.

Another well-known decision making method is the Analytic Hierarchy
Process (AHP). AHP was proposed by Saaty (1980). The essence of this
method is that a human judgement is used in performing evaluations. AHP
structures a decision problem into an hierarchy with the goal, decision crite-
ria, and alternatives. Then, it uses the pairwise comparison and the expert
judgement, where these judgements are converted into a numerical evalua-
tion. However, a human can lack of consistency in judging (influenced by
emotional, experience, etc.) and different people have different preferences.
AHP works best for decision making process in a group of people having
consensus. Many authors used AHP in the decision making process (e.g.
Kablan, 2004; Herath, 2004; Randall et al., 2004; Bascetin, 2007; Brent et al.,
2007; Iwanejko, 2007; Wu et al., 2007; Srdjevic, 2007; Contreras et al., 2008;
Dabaghian et al., 2008; Ercanoglu et al., 2008; Thapa and Murayama, 2008;
Chatzimouraddis and Pilavachi, 2009; Chen, 2009). Current work on AHP
is by Zaidan et al. (2015). They imposed the AHP method, integrated it
with other MCDM techniques, to select the right software for open-source
electronic medical record.

The Analytic Network Process (ANP) is an extension of AHP also pro-
posed by Saaty (1996). Apart from structuring the multi-objective problem

as an hierarchy, ANP treats it as a network. The decision criteria in AHP
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1.2 - Multi-Criteria decision making method

assume to be independent from each another, while ANP allows interdepen-
dence of those criteria. Several authors used ANP in their research (e.g.
Levy, 2005; Cheng and Li, 2007; Banar et al., 2007; Khan and Faisal, 2008;
Tseng et al., 2008; Gomez-Navarro et al., 2009; Boj et al., 2014).

The Multi-Attribute Utility Theory (MAUT) by Keeney and Raiffa (1976)
is among the classical methods of multi-criteria decision analysis. It follows
the utility axioms of Von Neumann and Morgenstern (1944). MAUT is a
structured methodology designed to handle the trade-off among multiple ob-
jectives. MAUT assigns a utility value to each action and its quantifying
individual’s preferences. The result of using this method is a set of choices
that represents the decision maker’s preferences. MAUT was employed in
the decision making by Ananda and Herath (2005).

The Elimination and Choice Expressing Reality (ELECTRE) was pro-
posed by Bernard Roy in 1960s. There are several extensions of the method
(ELECTRE I, II, IIL, IV, IS and TRI). The original version of ELECTRE,
ELECTRE I, is an outranking method that discards unacceptable alterna-
tives using a binary relation. It was designed to lead to ”choice-type” results
(Bouyssou, 2008). A limited set of alternatives that are obtained saves much
of selecting time. Another outranking method is PROMETHEE (Prefer-
ence Ranking Organization Method for Enrichment Evaluations), which is
a modified approach of ELECTRE proposed by Brans and Vincke (1985).
PROMETHEE is a much simpler version of the outranking technique that
uses pairwise comparison of alternatives via a preference index. PROMETHEE
consists of three tools: the PROMETHEE I (partial ranking), the PROMETHEE
IT (complete ranking) and the PROMETHEE-GATA (geometrical analysis for
interactive aid). Several authors applied the outranking method to multi-
criteria decision problems (e.g. Goumas and Lygerou, 2000; De Leeneer and
Pastijn, 2002; Soltanmohammadi et al., 2009; Oberschmidt et al., 2010;
Petrovi¢ et al., 2014).

The genetic algorithm (GA) has also been used as a MCDM method.
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1.2 - Multi-Criteria decision making method

Several authors employed GA for this purpose (e.g. Fonseca and Fleming,
1993; Tanaka et al., 1995; Feng et al., 1997; Hegazy, 1999; Zheng et al., 2005).
They used GA prior to the decision making process to obtain the Pareto
solutions. The foundation of GA lies in the survival of fitted individuals
that mimics the process of the natural selection. Several natural selection
techniques such as mutation, selection and crossover are implemented. This
approach proved to be efficient. However, in the algorithm, the solutions
can bias towards some regions and the method also produces non Pareto
solutions. The algorithm generates a large number of solutions. Eventually,
most of them appear to be redundant. Massive number of solutions, including
the redundant ones, make the ranking procedure problematic.

Wang and Yang (2009) used another natural behaviour algorithm, the
particle swarm optimization (PSO), combined with the preference order pro-
cedure to determine a ranking order for the MCDM problem. The PSO was
inspired by the movement of bird flock or fish school. Particle swarm im-
proves the search ability of GA for the best alternatives by having a better
convergence to the Pareto frontier. However, as shown by Wang and Yang
(2009), PSO requires up to 30,000 iterations to solve the problem. Therefore,
it might be time consuming.

The Technique for Order Preference by Similarity to the Ideal Solution
(TOPSIS) was first proposed by Hwang and Yoon (1981). The TOPSIS
method embed the priori weights which are specified beforehand by the DM.
The core of the ranking for this method lies in the distance of alternatives
to the ideal and anti-ideal solutions. An alternative that is ”closer to ideal”
and "farther from anti-ideal” holds a higher ranking. However, the TOPSIS
method produces an inconsistent ranking between the ”closer to ideal” and
”farther from anti-ideal”. Many authors have used the TOPSIS method as a
decision making method (e.g. Chen, 2000; Chu and Lin, 2003; Jahanshahloo
et al., 2006; Liu et al., 2006; Yong, 2006; Shih et al., 2007; Wang and Chang,
2007; Gumus, 2009; Kilic et al., 2014).
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1.2 - Multi-Criteria decision making method

Kao (2010) addresses the disadvantages of inconsistency ranking in the
TOPSIS and proposes a consistent ranking between the ”closer to ideal” and
"farther from anti-ideal”. In contrast to the TOPSIS, Kao suggests a relative
distance ranking method and introduces the posteriori weights obtained from
the data.

All the existing methods consider the value of each Pareto solution sepa-
rately without its position with respect to the others in the objective space.
The ranking is obtained as the result of such individual evaluations. Mean-
while, any Pareto solution is a trade-off solution. It seems natural to mini-
mize the level of trade-off to identify "the best” design. In this study, a new
ranking method, namely trade-off ranking, that reflects the level of compro-
mise between different Pareto solutions is developed. 1t is clear that it is not
practical and even unrealistic to consider the trade-off with all Pareto solu-
tions. However, it is quite realistic to minimize the level of compromise for
a selected Pareto set that represents the entire Pareto frontier well enough.
It is worth noting that this kind of ranking is non-local because the value of
each Pareto solution depends on its position with respect to the others in the
objective space. In this way, the task is reduced to two problems. First, the
Pareto set to be analyzed should represent the entire Pareto frontier. Second,
a ranking algorithm should be identified to rearrange the Pareto set accord-
ing to preferences that are beyond the original formulation of the problem.
The former problem can be resolved via generating an evenly distributed
Pareto set. It is well known that such a task is far from trivial. However,
there are a few techniques that are able to tackle this problem such as the
Normal Boundary Intersection (NBI) method (Das and Dennis, 1998), the
Normal Constraint (NC) method (Messac et al., 2003; Messac and Mattson,
2004) and the Directed Search Domain (DSD) algorithm (Utyuzhnikov et al.,
2005, 2009; Erfani and Utyuzhnikov, 2011; Erfani et al., 2013). The DSD al-
gorithm is capable of generating a well distributed Pareto set on the entire

Pareto frontier in a quite general formulation. Eventually, it provides a set of
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1.3 - Uncertainty analysis in multi-criteria decision
making process

limited optimal choices for the DM for handling trade-off between multiple

criteria.

1.3 Uncertainty analysis in multi-criteria decision

making process

There is a considerable existing research on sensitivity analysis in the de-
terministic multi-criteria decision making (MCDM) methods. Barron and
Schmidt (1988) proposed two procedures - an entropy based procedure and
a least square technique - to test the sensitivity of the attributes (criteria)
weights in the multi-attribute value theory (MAVT) method. It is assumed
that in the former approach the weights are nearly equal, whilst the latter
requires a set of arbitrary weights of the criteria.

Von Winterfeldt and Edwards (1986) defined the Flat Maxima Principle
to test sensitivity analysis on the multi-attribute utility theory (MAUT)
method. Rios Insua (1990) described a sensitivity analysis in the traditional
MCDM Bayesian model.

In addition, there also exist several sensitivity analyses on the Analytic
Hierarchy Process (AHP). The AHP is developed by Saaty (Saaty, 1980).
Masuda (1990) studied the effect of changes in the entire decision matrix
vectors on the ranking of the alternatives in the AHP method. Further re-
search was done by Armacost and Hosseini (1994), who presented a procedure
for determining the most critical criterion for the AHP problem. There is
also a software package for the AHP, named Expert Choice, developed in
1990, to carry out the sensitivity analysis of the method where the user can
alter the weights of the decision criteria and see how the ranking changes.

Triantaphyllou and Sanchez (1997) carried out a sensitivity analysis on
the weights of the decision criteria and the performance values of the alter-
natives to three MCDM methods: Weighted Sum Model, Weighted Product
Model and AHP. They determined the smallest changes of the current weights

that would affect the existing ranking.
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1.4 - Critical criterion in multi-criteria decision making

Alinezhad and Amini (2011) carried out a sensitivity analysis on the
TOPSIS method. They changed the weight of a criterion and observed its
effect on the final score of the alternatives. Simanaviciene and Ustinovichius
(2010) also presented a sensitivity analysis on the TOPSIS method. They
carried out a comparison with the simple additive weighting (SAW) method.
They found out that the TOPSIS method is more sensitive to the differ in
criteria value than the SAW method.

The existing papers, which are related to uncertainty in the MCDM
process, address the sensitivity of MCDM models to the change of criteria
weights. However, the first task in any decision making process is to identify
the set of alternatives for the DM to make the choice. Thus, it is also essen-
tial to examine the uncertainty in this task of the decision making process,
and to determine how it affects the ranking. This thesis examines both un-
certainties in the MCDM process using the new ranking method, trade-off
ranking, as well as other MCDM methods classified as the distance-based

ranking techniques.

1.4 Critical criterion in multi-criteria decision making

In MCDM process, the DM may prefer one criterion more than the others.
The preferences can be reflected via the weights of criteria. Once a decision
ranking has been obtained, the DM may want to change their preferences.
The change may or may not affect the current decision ranking. The smallest
change in the preferences value that affects the current ranking may deter-
mine the critical criterion. To seek for the critical criterion, the sensitivity
of ranking to various criteria weights is analysed.

The weights, which represent the importance of each criterion in terms of
the DMs preferences, are used in the ranking calculation process. To date,
there are many procedures proposed in the determination of the weights.
For instance, Von Winterfeldt and Edwards (1986) have proposed the ratio

method and the swing method to determine the average weights. Meanwhile,
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1.5 - Fuzzy multi-criteria decision making method

Butler et al (1997) have suggested three types of weights; random weight,
rank order weight and response distribution weight. On the other hand, Ol-
son (2004) introduced the equal weights, the weights generated by ordinal
rank and the weights generated by a regression technique. Moreover, Kao
(2010) calculated the weights by minimising the sum of squared distances
from the alternatives to the ideal solution. The terminology of the ideal so-
lution is explained further in the thesis. However, the most popular approach
used to obtain the weights is the one carried out by the DMs themselves (e.g.
Eckenrode, 1965; Saaty, 1980; Hwang and Yoon, 1981; Saaty, 1996). Once
a ranking is obtained, the DMs may be interested in the sensitivity of the
ranking to the criteria weights. The analysis of the weight changing versus
the current ranking is considered in this thesis. The idea of the analysis came
from the work of Triantaphyllou & Sanchez (1997) in which they carried out
a sensitivity analysis for three decision making methods; the weighted sum

model, the weighted product model and the analytic hierarchy process.

1.5 Fuzzy multi-criteria decision making method

The real-world design is usually related to the inevitable uncertainties in the
input data, parameters, etc. The uncertainty in the MCDM (MCDM) prob-
lem includes the imprecision of criteria values, vagueness in the importance
of criteria (weights), and dealing with qualitative, linguistic or incomplete
information.

The concept of fuzziness, first introduced by Zadeh (1965), has proved to
be an efficient tool to include uncertainties in MCDM problems. Numerous
fuzzy MCDM methods have been developed, including the fuzzy TOPSIS
(Chen, 2000; Wang and Elhag, 2006; Wang and Lee, 2007; Krohling and
Campanharo, 2011) and fuzzy VIKOR (Vise Kriterijumska Optimizacija I
Kompromisno Resenje) (Opricovic and Tzeng, 2004; Opricovic, 2007, 2011)
- they utilize the fuzzy numbers in the formulation of their fuzzy MCDM
methods.
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Apart from the fuzzy TOPSIS and fuzzy VIKOR methods, several authors
have implemented the fuzzy theory in other MCDM methods and applica-
tion problems (e.g. Cakir and Canbolat, 2008; Gungor et al., 2009; Amiri,
2010; Buyukozkan et al.; 2011; Kilincci and Onal, 2011; Torlak et al., 2011;
Buyukozkan and Cifei, 2012; Rouhani et al., 2012).

There are two options to solve the fuzzy MCDM problem (Perny and
Roubens, 1998): (i) utilizing the fuzzy MCDM method, and (ii) pre-defuzzifying
the fuzzy MCDM problem and solving it by a conventional MCDM method.
The defuzzification process converts the fuzzy numbers into crisp values; in
both options, the defuzzification process is essential, since the MCDM solu-
tion must provide a crisp result. Many defuzzification methods can be used,
including the center of sum and the center of gravity (Van Leekwijck and
Kerre, 1999; Wang and Luoh, 2000). Both options to solve the fuzzy MCDM
problem are used in this thesis for the proposed method, namely a fuzzy

trade-off ranking method, for solving the fuzzy MCDM problem.

1.6 Research contributions and thesis structure

This thesis is divided into three main parts concerning the conventional
multi-criteria decision making methods, uncertainty and sensitivity analy-
sis in the multi-criteria decision making process and multi-criteria decision
making in a fuzzy environment. In the next section, Section 2, the focus is
on distance-based ranking techniques. In particular, a new ranking method,
called trade-off ranking is introduced. In the beginning of Section 2.1, a brief
introduction to the Pareto optimality is presented. Next, the main princi-
ples of two distance-based ranking methods, the TOPSIS and the relative
distance ranking are described in Section 2.2 and Section 2.3, respectively.
After that, a proposed algorithm of the trade-off ranking method is discussed
in Section 2.4. Lastly, in Section 2.5, different test cases are considered with
analysis and comparison between the methods.

In Section 3 of the thesis, the uncertainty and sensitivity analysis in multi-
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criteria decision making process are discussed. In particular, two types of
uncertainty are considered. The beginning of Section 3 starts with the trade-
off ranking modification in Section 3.1. Next, the first type of uncertainty,
the uncertainty in the input data, is discussed in Section 3.2. In this first
type, a robust set of alternatives is obtained by adding a new robustness
function into the multi-objective optimization problem. The second type of
uncertainty - in the decision makers preference is presented in Section 3.3.
Section 3.4 identifies the critical critical in multi-criteria decision making.
Both sections 3.3 and 3.4 involve the analysis in the criterion weight, i.e. the
decision makers preference.

Apart from conventional decision making method, the fuzzy method is
also considered in Section 4 of the thesis. The beginning of the section
reviews the properties of fuzzy numbers that are used in the fuzzy decision
making method. The fuzzy decision making methods begin with the proposed
methods, the trade-off ranking with defuzzification and the fuzzy trade-off
ranking in Section 4.2 and Section 4.3, respectively. Two fuzzy decision
making methods, the fuzzy TOPSIS and the fuzzy VIKOR are reviewed
in Section 4.4 and Section 4.5, respectively for a comparison purpose and
the validation of the proposed methods. The analysis and comparison are
discussed in Section 4.6.

The last section wraps up the thesis, where the summary of research
findings are given in Section 5.1 and the future research implications are

recommended in Section 5.2.
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2. DISTANCE-BASED RANKING METHODS IN
MULTI-CRITERIA DECISION MAKING

May your choices reflect your hopes,
not your fears
-Nelson Mandela.

SECTION TWO

Parts of this section have been published online on 29th December 2016
in the Journal of Multi-criteria Decision Analysis. Doi:10.1002/mcda.1600

2 Distance-based ranking methods in

multi-criteria decision making

Multi-criteria decision analysis presumes trade-off between different criteria.
As a result, the optimal solution is not usually unique. A trade-off between
the objectives is usually unavoidable because of the constraints. If the Deci-
sion Making preferences are not priori formulated, then the optimal solution
is not unique. It is usually represented by a so-called Pareto solution. A
Pareto solution usually represents a trade-off between different objectives.
Despite there are unlimited number of Pareto optimal options, the DM even-
tually has to choose only one solution. Such a choice has to be made with
the use of additional preferences not included in the original formulation of
the optimization problem.

This section of the thesis represents a new approach to an automatic
ranking that can help the DM. In contrast to the other methodologies, the
proposed method is based on the trade-off minimization between different
Pareto solutions. To be realized, the approach presumes the existence of a
well-distributed Pareto set representing the entire Pareto frontier. In the
thesis, such a set is generated with the use of the Directed Search Domain
algorithm (Erfani and Utyuzhnikov, 2011). The proposed method is applied
to a number of test cases and compared against two existing alternative
approaches, the relative distance ranking and the TOPSIS methods. Both
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methods are used for comparison with the new proposed method as they
all imply the distance formula in their ranking algorithm which lead to an
automatic ranking that does not presume an immediate selection based on
subjective experts opinion.

Both methods, the TOPSIS and the relative distance, imply the same idea
of having the alternative that is ”closer to an ideal” and ”farther from an
anti-ideal”. One difference is in the calculation of the distance. The TOPSIS
uses the Euclidean distance L,-metric from an alternative to the ideal and
the anti-ideal solutions. In contrast, the relative distance ranking is based
on the measure that represents a relative position of an alternative from the
origin to the ideal, deduced into the L;-metric. Another difference is in the
calculation of the weights. The TOPSIS uses the priori weights obtained
beforehand by the DM, whilst the relative distance ranking exploiting the
posteriori weights obtained from the data.

For further consideration, assume that there are ¢ alternatives. Then,
a multi-criteria decision analysis problem can be expressed via a trade-off

matrix form as

Criterion
Alternative | Y7 Y5 Y; .. Y,
Ay Yiu Yoo Yis Yim
A? }/21 YiQ )/23 YQWL
As Y1 Ya Y33 Y,
Aq Yo Yo Yos Yom

where the value of Y;; denotes the performance of alternative ¢ in terms of

criterion j.
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2.1 - Pareto optimality

2.1 Pareto optimality

Let the design space be presented by X C R". Consider m objective func-
tions, forming an objective space Y C R™. For each z € X, there exists a
point in Y corresponding to mapping R" — R™.

Multi-objective optimization problem is formulated by

Minimize Y = {Y;(z), Ys(2), ..., Yu(2)},
subject to r € X™. (2.1)

Here, X* C X is the feasible design space defined as the set of elements
x € X~ satisfying all the constraints. The feasible objective space Y* is
defined as the set {Y(z) | z € X*}.

A design vector x € X* is called Pareto optimal iff there does not exist
any a € X* such that

Y(a) < Y(x) and exists k € 1,...,m: Yi(a) < Yi(z).

2.2 Relative distance ranking

In the relative distance approach, the first task is to identify the ideal solution
It and the anti-ideal solution /. In general, the ideal solution is the solution
with the best score in all eriteria. In turn, the anti-ideal solution is the
solution with the worst score in every criteria. Consider a minimization
problem. Thus, the ideal I} and the anti-ideal [ solutions in the relative

distance method are determined as follows:
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2.2 - Relative distance ranking

I;g = (Y1+,Y2+, ...,Ynf), (2.2)
Ip 3# (Y, Yy, .., Y ), (2.3)
where

Yj+ = min {Y};,i =1,...,q},

Y =max {Yy;,i=1,...q}, (j =1,...,m).

In turn, for the maximization problem, the ideal I} and the anti-ideal I

solutions are defined as:

I = (%7, Yy YD), (2.4)
Iy = <Y1_7Y2_v "'>Y7r:)7 (25>
where

Y;“ =max {Y;;,i =1, ...,q},

Y, =min {Y;;,i=1,..,q¢}, (j=1,..,m).

The next task of the algorithm is to determine the weights for each crite-
rion. According to Kao (2010), the weight is determined by minimizing the

quadratic problem:

q m
Minimize Z [Z wj‘Y}JF — Y|

i=1 Lj=1

subject to E:ijY;+ -V =1

=1
w|Y;" =Y | >ej=1,..,m,
e>0. (2.6)
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2.3 - TOPSIS

where w; is the weight or importance of the j-th criterion. The objective
function is the total distances between the ideal solution and each alternative
in the objective space. The aim is to obtain a set of optimal weights that
minimizes the distances. The small quantity ¢ is suggested to avoid any
criterion being neglected.

Using the weights obtained from formula (2.6), the distance of each al-
ternative to the ideal solution and the anti-ideal solution is then calculated

respectively by the formulas (Kao, 2010)

j=1
dR; = ZwﬂYj_ -Yl, i=1,...,¢q (2.8)
j=1

The alternative with the shortest distance to the ideal and the longest

distance to the anti-ideal is ranked the highest.

2.3 TOPSIS

In the TOPSIS (technique for order preference by similarity to ideal solution),
the first step is to standardize the data set. The step can be skipped if the
data are already in the standard form. The data standardization is done by

the formula:

& .
=1,....m.

ﬁa 1= 17 ]
\ 2i=1 Y

Next task is the data weighting process using the formula:

Tz'j:
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2.3 - TOPSIS

m
Vij = W;Tiy, where E w; = 1.

j=1

As mentioned earlier, the weights for each criterion in the TOPSIS method
might be determined by the DM. However, in this study the DM is not in-
volved. Therefore, the same approach to calculate the weights as in the
relative distance ranking method is imposed.

The ideal and the anti-ideal solutions in the TOPSIS are then determined
by:

If = (o, vf, .. v7), (29
]jj = (’Ul_vv2_7 ...,U;), (2'10)
where
1);_ = min {Uij,i - 17 -~-7Q}>

v; =max {v;;,i =1,....q}, (j=1,..,m).

In a similar way with the relative distance approach, the ideal I} and the
anti-ideal I solutions are defined as reverse from the above definitions for
maximization problem.

The distance from an alternative solution to the ideal solution is then

calculated using the Euclidean distance as follows:

m

Tt = wa(v}r —v;)?% i=1,...,q. (2.11)

J=1

In turn, the distance from an alternative solution to the anti-ideal solution

is calculated by formula (2.12):
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2.4 - Trade-off ranking method

ATy = | w?(vy —vy)? i=1,...q. (2.12)
j=1

As proven by Kao (2010), the TOPSIS ranking with respect to the ideal
solution is different from the ranking with respect to the anti-ideal solution.

The full ranking in the TOPSIS is expressed by formula (Hwang and
Yoon, 1981):

T
Di = T T (2.13)

The largest value of D;" is accepted as the best solution, while the smallest
value is regarded as the worst solution.

In the next section, the trade-off ranking approach is introduced. The
method is then compared against the TOPSIS and the relative distance rank-

ing.

2.4 'Trade-off ranking method

In this section, the key steps of the proposed method are described. The
trade-off ranking is based on the property that the set of Pareto points is a
set of trade-off solutions.

In the default trade-off ranking, there is no weights calculation that saves
much calculation time. The importance of each criterion is assumed to be
equal.

To demonstrate some justifications to the approach, consider a simple
example with two sets of Pareto solutions, as shown in Figure 2.1.

The first set consists of points F, G and H while the other set contains
points F, I and J. The lines FH and FJ are two different Pareto frontiers,
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2.4 - Trade-off ranking method

1;(2,5)

¢ Solution for first Pareto set

¢  Splution for second Pareto set

Figure 2.1: Two sets of Pareto solutions

but both contain the same point F as one of the three alternatives. Con-
sider the minimization problem. Then, the ideal solution for the example
is I = (0,0). The anti-ideal solution for the first set is /- = (2,4) and
for the second set is I7 = (2,5). In the first Pareto frontier, FH, point F
is the closest to the ideal solution and farthest from the anti-ideal solution.
Hence, in the two ranking approaches considered above, point F is the most
preferable solution out of the alternatives G and H. Consider now another
Pareto frontier, FJ. Point F holds the shortest distance to the ideal solution
and the longest distance to the anti-ideal solution. Thus, point F still holds
the highest ranking versus the other points I and J. As a consequence, the
ranking captures the same solution regardless the entire Pareto frontier.

The key principle of the trade-off ranking is to prefer the solutions with
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2.4 - Trade-off ranking method

less compromise with the others. The trade-off minimization can be achieved
by calculating the distance from one point to all other points in the objective
space. The distance reflects the degree of trade-off between the solutions.

The general formula for the distance between point (alternative) A; =
AP, 4D AD)Y and point 4, = (42, 4D, .., AD) is:

o 1/2

S0 a2

J=1

d(Ay, Ay) = (2.14)

Then, the sum of distances from one point to the other points is considered

as the degree of trade-off:

q
DT, = [d(Ar, A)] bk =1,2,...q (2.15)

=1

The trade-off ranking of each solution is determined by the value of DT
with respect to the others. The least value of DT holds the highest ranking.

For the trade-off analysis, it is efficient to have an evenly distributed set
representing the entire Pareto frontier. Thus, the first step in the trade-off
ranking is generating an evenly distributed Pareto set. Evenly distributed
solutions give the maximum information of the Pareto frontier to the DM.

As an example, consider Figure 2.1 again with two different sets of evenly
distributed Pareto solutions F(2,0), G(1,2), H(0,4), I(1,2.5) and J(0,5). The
results of the trade-off ranking are given in Table 2.4 and Table 2.4. In
this simple example, solutions G and I seem more preferable because they
better represent the entire Pareto frontier. In addition, it is easy to see that

they correspond to the minimized trade-off among the other Pareto solutions.
The trade-off ranking method can be applied to find the best compromise

solution in any set of Pareto alternatives. However, it is better to have a set of

whole and evenly distributed Pareto solutions as it is the best set of solutions

39



2.4 - Trade-off ranking method

Table 2.1: Trade-off ranking for Pareto frontier FH
Distance
between each  F G H DT Ranking
Pareto points

V20
5~ 28
0 3v5

(O%]
&
[\)

0
V5
V20

ot
—_

F
G
H

)

Table 2.2: Trade-off ranking for Pareto frontier FJ
Distance

between each F I J DT Ranking
Pareto points

F 0 V29/4 /29 145/4 2
I 29/4 0 V29/4 4/29/2 1
J V29 29/4 0 145/4 2

in helping the DM to make an efficient decision in time-saving environment.
The integration of the trade-off ranking method with the property of an even
distributed alternatives give the best solution with the most balance value
in all criteria.

As a practical analogy, consider the examples shown in Figure 2.2.

Figure 2.2 represents two different real-life trade-off problems: (a) risk
over return in a share investment, and (b) price over quality in a car purchase.

For a share investment, DM wusually wants a low risk investment that
generates a high return. However, such a situation seems almost unrealistic.
As shown in Figure 2.2(a), investments offer possibility I and II as the
extreme solutions, a low risk with a low return or a high risk with a high
return. Apart from these extreme solutions, there is a yellow area which gives

acceptable solutions with a return higher than in / and a risk lower than in
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Risk Price
M M
High High
“HE HE
I 1
Son DT
Return = Ii
Low High i Low High  ~ Qualty
(a) (b)
. Intolerable I, II Extreme solutions
. Unrealistic [ Bestcompromise solutions

|:| Acceptable

Figure 2.2: Practical examples for the trade-off ranking

II. The trade-off ranking method provides the best compromise solution 177
as the best choice.

The same situation occurs in problem (b). In case (b), it is almost im-
possible to buy a high quality car with a minimal price. On the market there
is a choice in a wide range between cheap second-hand cars I and expensive
luxury cars I/. Many buyers prefer intermediate solutions that correspond
to options in I11, cheaper than Il and higher quality than /. The trade-of
ranking method can ensure that the optimal solution is in the yellow area
II1.

Now, for brief comparison between the methods, consider two arcs, A and
B, represent two different Pareto frontiers as shown in Figure 2.3. In both
Pareto frontiers, the top solutions for the trade-off ranking are situated in the
middle of each frontier. For the TOPSIS and the relative distance method,
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2.4 - Trade-off ranking method

the top solutions in B situated in the middle of the frontier as well, as they
are closer to the ideal solution. However, their top solutions in A disperse
between two extreme cases (areas I and I/ in Figure 2.2) as the middle area

is no longer closer to the ideal solution.

Trade-off ranking

O TOPSIS/ relative distance method

Ideal

q-) >

Figure 2.3: Results for the top ranking with the TOPSIS, relative distance
and trade-off methods

Next, consider another two different graphs (a) and (b) as shown in Figure
2.4. In both graphs, the line C is the original Pareto frontier. In Figure
2.4(a), as F'1 changes from the original value F'1 = 4, the top solutions for
the TOPSIS and the relative distance approach retain. In this example, the
best choice in the TOPSIS and relative distance methods might not reflect the
other alternatives. For the trade-off ranking method, the top solutions change
according to the new Pareto frontier, nevertheless maintain in the middle of
the frontiers. In Figure 2.4(b), as the value of F2 changes from F'2 = 2, the
top solutions for the TOPSIS and the relative distance method change as
well. However, the solutions merely situated on the extreme cases (areas [
and 1] in Figure 2.2). The example demonstrate that a small variations of
the Pareto frontier can lead to a sharp replacement of the best choice in the
TOPSIS/relative distance methods. For the trade-off ranking method, the

top solutions retain in the middle of each frontier (area /11 in Figure 2.2).

42



2.4 - Trade-off ranking method

n ' Trade-off ranking
—  TOPSIS
Relative distance method
5
ISE
T =%
N N
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=Ny
Ideal Sy -~
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F1 47 F1
(a) (b)

Figure 2.4: Results for the top ranking with the TOPSIS, relative distance
and trade-off methods

In each example shown, the trade-off ranking method able to capture the
best compromise solution of all alternatives provided.

In general, the steps for the trade-off ranking are as follows:

1. Generate an evenly distributed Pareto set.

2. Calculate the distance from one alternative to the others.

3. Calculate the degree of trade-off, DT

4. Repeat steps 1 and 2 for all other alternatives from the Pareto set.
5. Alternative with less value of DT holds a higher ranking.

The concepts of distance measure in the trade-off ranking and TOPSIS
methods are further illustrated in Figure 2.5.

Figure 2.5 shows the difference in the distance measure between the TOP-
SIS and the trade-off ranking method in evaluating three Pareto alternatives
Al, A2, and A3. The TOPSIS uses the distance between an alternative to
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Figure 2.5: Distance measures in TOPSIS and trade-off ranking

the ideal/anti-ideal solutions as a ranking measure, which are denoted in
Figure 2.5 as d(Ai, I") and d(Ai, 1), respectively, for ¢ = 1,2,3. In turn,
the trade-off ranking method uses the distance from an alternative to the
other alternatives to determine the ranking. In Figure 2.5, such distances
are marked as d(Al, A2),d(A2, A3) and d(Al, A3). The ranking determina-
tion in the trade-off ranking method depends on the sum of the distances
between those alternatives. The example in Figure 2.5 also shows that al-
ternative A2, which is the closest to the ideal solution, is also the closest to
the anti-ideal solution, compared to alternatives A1 and A3. In this case, a
violation occurs in the aim of the TOPSIS method to have the best solution

as the closest to the ideal solution and the farthest to the anti-ideal solution.

2.5 Test cases: analysis and comparison

In this section, the trade-off ranking is applied to six test cases. The TOPSIS
and the relative distance ranking approaches are also used for a comparison.

The trade-off ranking is applicable to n-dimensional problems. It is impor-
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tant to have a set that represents well enough the entire Pareto frontier.
This problem can be talked by the DSD algorithm (Erfani and Utyuzhnikov,
2011). The number of candidate-solutions should depend on the problem.
In this general test case, the DSD approach (Erfani and Utyuzhnikov, 2011)
was used for generation of an evenly distributed Pareto set. The evenness
property ensures that the limited optimal set obtained represents the whole
Pareto frontier. The problem formulations for the test cases are given in the

Appendix A.

2.5.1 General Test Cases

TNK problem: this test case is introduced by Tanaka et al. (1995). The test
case considers a discontinuous Pareto frontier with significant gaps. Despite
the discontinuity, DSD algorithm gives an evenly distributed Pareto solutions
(Erfani and Utyuzhnikov, 2011). The results for the most preferable Pareto
solutions in TNK problem, identified by each method, are shown in Figure
2.6.

For this test case, the ideal solution for the TOPSIS and the relative
distance method is I = (0,0) and the anti-ideal solution is I~ = (1.1, 1.1).
As can be seen in Figure 2.6, the trade-off ranking approach gives prefer-
able solutions in the middle range of both criteria z; : [0.55,0.60] and
xg : [0.75,0.80]. The other two methods, the TOPSIS and the relative dis-
tance ranking, give the same level of ranking with much higher values for
criterion x5 : [0.95,1.00]. The weights obtained in this test case using for-
mula (2.6) are wy; = 0.71 and wsy = 0.29.

ZDT1 problem: this test case is introduced by Zitzler et al. (2000). The
test case has a convex Pareto optimal frontier. The results of each ranking
method for ZDT1 problem are shown in Figure 2.7.

The ideal solution for the TOPSIS and relative distance method in ZDT1
is It = (0,0) and the anti-ideal solution is I~ = (1,1). In Figure 2.7,
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Figure 2.6: Results of the highest ranking for TNK

the preferable alternatives in the trade-off ranking are in the range of F} :
[0.3,0.4] and F5 : [0.4,0.45]. The TOPSIS provides the ranking closest to
the trade-off ranking method such that highest ranking solutions are ranging
from Fy : [0.2,0.3] and F5 : [0.45,0.5]. It is worth noting that the highest
ranked solution in the trade-off approach is only ranked the thirteenth in the
TOPSIS method. On the contrary, the first choice in the TOPSIS is ranked
the tenth in the trade-off ranking. A similar situation occurs between the
TOPSIS and the relative distance method. The most preferable alternative
in the relative distance method is ranked the eleventh in the TOPSIS. The
weights obtained for the ranking calculation in the relative distance method
and the TOPSIS using formula (2.6) are w; = 0.54 and wy = 0.46.

ZDT?2 problem: this test case is introduced by Zitzler et al. (2000). The
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Figure 2.7: Results of the highest ranking for ZDT1

test case has a non-convex Pareto optimal frontier. The results for the best
solutions in ZDT2 for each ranking approach are shown in Figure 2.8.

The ideal solution of the test case, for both the TOPSIS and relative
distance method, is I = (0,0) and the anti-ideal solution is I~ = (1,1).
As shown in Fig. 2.8, a higher ranking alternatives in the trade-off ranking
algorithm are situated in the middle of the Pareto set within the range of
Fy :]0.5,0.6] and F; : [0.7,0.8]. The TOPSIS and the relative distance ap-
proach have the same ranking alternatives at the top rank. Both methods
have the most preferable solutions in the range of F; : [0,0.1] and F; : [0.9, 1].
The weights obtained for ZDT2 using formula (2.6) are w; = 0.69 and
wy = 0.31.

ZDT6 problem: this test case is taken from Shukla and Deb (2007). The

test case has non-uniform density solutions on a non-convex Pareto optimal
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Figure 2.8: Results of the highest ranking for ZDT2

frontier. The results for the most preferable alternatives of ZDT6 problem
for each ranking approach are shown in Figure 2.9.

The ideal solution for ZDT6 is /™ = (0.38,0) and the anti-ideal solution
is I~ = (1,0.88). They are applied in both the TOPSIS and relative distance
method. In Figure 2.9, it can be seen that the top ranked alternatives in the
trade-off ranking are in the range between £y : [0.7,0.75] and F5 : [0.4,0.5].
In this test case, similar to TNK and ZDT2, the preferable alternatives in
the TOPSIS and the relative distance method coincide. Both methods give
alternatives with greater values for criterion F; : [0.95, 1] and smaller values
for criterion F» : [0,0.1]. The weights for the test case, calculated from for-

mula (2.6) are w; = 0.1 and wy = 0.9.

DTLZ5 problem: this three-dimensional test case is introduced by Deb et
al. (2005). The test case has only two anchor points despite there are three-
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Figure 2.9: Results of the highest ranking for ZDT6

objective functions (Erfani and Utyuzhnikov, 2011). The best alternatives

for each ranking method are shown in Figure 2.10.
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Figure 2.10: Results of the highest ranking for DTLZ5
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For this problem, in both the TOPSIS and the relative distance method,
the ideal solution is I = (0,0, 0) and the anti-ideal solution is /~ = (0.71,0.71, 1).
As shown in Figure 2.10, the highest ranking alternative in the trade-off rank-
ing is in the middle of the set of Pareto points. The TOPSIS and the relative
distance method have close ranking results with greater values in criterion
F3. The weights obtained for ranking of the relative distance method and
the TOPSIS are w; = 0.59, wy = 0.39 and w3 = 0.02.

2.5.2 Application Test Case

Consider an example from Jacquet-Lagreze and Siskos (1982) as given in
Table 2.3. The data correspond to ten cars evaluated via six criteria: max-
imum speed, horse power, space of the car, gas consumption in town, gas

consumption at 120 km/h and the price.

Table 2.3: Input data for car selection example and the results of ranking

MNo. | Maximum | Horse | Space | Gas Gas Price | Trade- | Relative | TOPSIS
speed power | (m2) | consumption | consumption | (1000 | off distance
(km/h) (cv) in town at 120 km/h | francs) | ranking | ranking

{It/100 km) (It/100 km)

1 173 10 7.88 11.4 10.01 45,5 1 2 4

2 176 11 7.96 12.3 10.48 46.7 2 1 2

3 161 7 511 2.6 842 35.2 3 3 1

4 148 7 6.15 10.5 5.61 39.15 4 7 5

5 178 13 8.06 14.5 11.05 64.7 5 5 7

5] 145 11 8.38 14.3 12.95 55 6 ] 10

7 182 11 7.81 12.7 12.26 68.553 7 4 3

8 142 5 5.85 8.2 7.3 321 8 8 3

9 180 13 8.47 13.6 10.4 75.7 9 [+] 9

10 117 3 381 7.2 6.75 24.8 10 10 5]

In this example, the first three criteria (maximum speed, horse power and
space) are maximized while the last three criteria (gas consumption in town,
gas consumption at 120 km/h and price) are minimized. Clearly the problem

is having a conflicting criteria. The solutions given are the general Pareto
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solutions. In general, the ideal solution is I™ = (182,13,8.47,7.2,7.3,24.8)
while in turn, the anti-ideal solution is I~ = (117,3,5.11,14.5,12.95,75.7).
However, in this application test case, the criterion value is not in standard
form. To standardized the criterion value, formulae (2.2)-(2.5) and formulae
(2.9)-(2.10) are used. After the weight calculation using the standardize
values and formula (2.6), the weights 0.6346, 0.01, 0.01, 0.01, 0.01 and 0.3254
for each criterion, respectively are obtained (Kao, 2010). The cars are ranked
with the trade-off ranking, the TOPSIS and the relative distance ranking
method. The results are shown in the last three columns in Table 2.3.

The rankings obtained by the TOPSIS and the relative distance method
are different from those in the proposed method, i.e. the trade-off ranking.
The trade-off method ranked car no. 1 as the best choice while the relative
distance method ranked it as the second and the TOPSIS ranked it as the
fourth. In turn, the best choice in the relative distance approach is the sec-
ond one in both the trade-off ranking and the TOPSIS. Car no. 3 is ranked
the highest with the TOPSIS method, while the third with both the trade-off
ranking and the relative distance method. To justify the best solution of the

trade-off ranking approach in this application problem, refer to the Table 2.4.

Table 2.4: Preference ranking for each criterion in the car example

Car no. 1 2 2] 4 5 6 7 8 ] 10
Maximum 5 4 6 7 3 3 1 9 2 10
speed

Horse 5 3 7 7 1 3 3 9 1 10
power

Space 5 4 10 7 3 2 6 9 1 ]
Gasconsumption | 5 il 3 4 10 9 7 2 g 1
in town

Gas consumption | 5 7 3 4 8 10 9 2 6 1
at120 km/h

Price 6 5 3 4 g 7 9 2 10 1

o1
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Notice that each criterion is ranked according to its value from the input
data (Table 2.3). For the first three criteria, they are ranked from the highest
value to the lowest value since they are the benefits criteria. It is vice versa
for the last three criteria, the cost criteria, where they are ranked from the
smallest value to the largest one. As can be seen in Table 2.4, car no.1
holds the most balance ranking in all criteria out of the ten cars. It is
an evident that the trade-off ranking approach gives the less compromise

solution compare to the others in a general Pareto set of solutions.
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3. UNCERTAINTY AND SENSITIVITY ANALYSIS IN
MULTI-CRITERIA DECISION MAKING PROCESS

Good decisions come from experience.
Ezxperience comes from making bad decisions.

-Mark Twain, Literary icon.
SECTION THREE

Parts of this section have been (i)presented in the 2016 International
Conference on Natural Science and Applied Mathematics, 7-9th April 2016,
Dubai, UAE, (ii)published in the International Journal of Applied Physics
and Mathematics, vol. 6, no. 3, pp. 129-137, 2016, and (iii)presented in the
2nd International Conference of Mathematics: Pure, Applied and Computa-

tion, 23rd November 2016, Surabaya, Indonesia.

3 Uncertainty and sensitivity analysis in

multi-criteria decision making process

Data in the multi-criteria decision making are often imprecise and change-
able. Therefore, it is important to carry out sensitivity analysis test for
the multi-criteria decision making problem. This part of the thesis aims to
present a sensitivity analysis for some ranking techniques based on the dis-
tance measures in multi-criteria decision making. Two types of uncertainties
are considered for the sensitivity analysis test. The first type is related to the
input data, while the second type is towards the DM preferences (weights).
Several test cases are considered to study the performance of each ranking
technique in both types of uncertainties.

The ranking techniques considered in this study are TOPSIS, the relative
distance and trade-off ranking methods. Recall from Section 2, the TOPSIS
and the relative distance method measure a distance from an alternative to
the ideal and anti-ideal solutions. In turn, the trade-off ranking calculates
a distance of an alternative to the other alternatives. The trade-off ranking

method in its original form as illustrated in Section 2.4 has been tested
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3.1 - Trade-off ranking modification

on different test cases and the results were promising by giving the least
compromised option as the best solution. However, not every DM opt for
the least compromised option. Thus, the trade-off method can be improved
considering the extreme options (Figure 2.2) as the solution in a case if the
DM opt for that option. In this way, the trade-off ranking modification is
suited for every DM preferences. The modification is described in the next

subsection.

3.1 Trade-off ranking modification

Recall from Section 2.4, in a conflicting multi-criteria problem, it is not
possible to determine an alternative that possess the best value for all the
criteria, hence it is wise to seek a compromise solution between those criteria.
The formulation of the trade-off ranking method in Section 2.4 ensures the
best trade-off solution. Formally, each criterion is assumed to be equally
important; however, the weighting may be enforced in the trade-off ranking
method formulation.

An even and well distributed set of Pareto solutions is a pre-requisite
for the method. Such a set efficiently represents the whole Pareto frontier.
Thus, a DM is able to make an efficient decision based on the limited set
within a time-constraint situation. Such a set can be obtained from opti-
mization methods such as the Normal Boundary Intersection (NBI) method
(Das and Dennis, 1998), the Normal Constraint (NC) method (Messac et al.,
2003; Messac and Mattson, 2004) and the Directed Search Domain (DSD)
algorithm (Erfani and Utyuzhnikov, 2011; Erfani et al., 2013).

Now, consider ¢ alternatives and m criteria. In this study, we only con-
sider a limited set of ¢ alternatives. Suppose that ¢ > m. In the trade-off

ranking method, the criteria performance Y;; and the criteria weights w; are
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3.1 - Trade-off ranking modification

normalised by the formulae:

Yi; — min Y,
J . .
i = - 9 = ]_./...q ) = ]_,...7 s 3].
fij o — mi @ J m (3.1)
J J

o Wy o
w; = A = | (3.2)

The normalization guarantees that the range belongs to [0,1], and elimi-
nates the units of criteria functions. The normalisation step can be ignored
if the performance scores vary in the same range and Z;nzl w; = 1 with
w; >0, g=1,...,m.

Ideally, the set of alternatives includes the anchor points of the multi-
objective problem (2.1). The anchor point is a solution for a single-objective
problem. Such a solution is called an extreme solution in the trade-off ranking
method, i.e. a solution with the best value in at least one criterion (Figure
2.2. We presume that the number of extreme solutions in MCDM problem
is equal to m. Practically, a k-th extreme solution, Ay, k = 1,...,m is the

alternative with the optimal j-th criterion:

AR {{2121 fij}, 3 =1,....n for the cost criteria, or
<i<q

Af = {rlg?i(qfij}, j = 1,...,n for the benefit criteria. (3.3)

The benefit criteria are those to be maximized, such as profit, while the
cost criteria are those to be minimized, such as price.

The trade-off ranking modification has two levels of selection. The first

level is the trade-off between each alternative and the extreme solutions. In

this first level, the ranking measure for the trade-off method is the total

distance from an alternative, A, = (fa1, fa2s o fam)?, @ =1,....q, to all the
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3.1 - Trade-off ranking modification

extreme solutions, A% = (fx1, fr2, s fam)'s k= 1,...,m, given by formulae:

DTl :Zw}[dTORl(AmAZ)L o= 17 54,

J=1
m

Zw; =

j=1

wh, >0, 7=1,...,m, (3.4)

/
J
where wf, j = 1,...,m is the normalized weight of criterion j. The drori (., )

denotes the distance formula between two points in Lo-metric such as:

m

1/2
drori(Aa, A1) = [Z (fo; — fkj)2] ,a=1,¢ k=1,....m. (3.5)

P

An alternative with the minimum value of DT'1, i.e. the degree of first
trade-off, is the best alternative with the trade-off ranking method. Such an
alternative is the closest option to all the extreme solutions. We choose the
extreme solution as the point of reference since it represents the best solution
in a single-criterion problem. In a conflicting multi-criteria problem, it is
not possible to have a solution that simultaneously satisfies all the criteria.
Hence, by obtaining the best solution in most of the criteria, if not all, is
considered as a reasonable compromise solution in the conflicting criteria
problem.

In the case of the same minimum value of D71, the trade-off ranking
formulation is further applied to the second level of selection. In this level,
the ranking measures a distance between the alternatives as in Section 2.4
with weights imposed. The general formula for the weighted distance between

an alternative A, = (fa1, fa2s s fam)T, & =1,...,q, and an alternative Ag =
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(fﬁlvfﬁ?a ---7f,3m)T7 5 = 17 - q, Is:

dTORQ Aou Aﬂ

w; 20, j=1,..,m. (3.6)

Here, a, 6 = 1, ..., q, where ¢ is the number of alternatives. The distance
formulae droga(.,.) in the trade-off ranking method implies the distance be-
tween two alternatives in terms of weighted criteria values.

The sum of distances from one alternative to all the others, i.e. the degree

of second trade-off, is calculated as:

q

DT2 =Y [drora(Aa, A)],a = 1,2,...,q. (3.7)

=1

The value of DT2, implies the total distances of an alternative o to the
other alternatives. A smaller values implies a shorter accumulative distances.
Hence, an alternative with a smaller value of DT'2 has a less compromise with
the other alternatives, or a less degree of trade-off for an alternative. Here,
the trade-off ranking is determined further by the value of D72 where the
least value holds the highest ranking.

Thus, the best solution in the trade-off ranking is the solution with the
least compromise in regards to (i) the extreme solutions, and (ii) the other
alternatives. As an analogy, consider the price and quality as two conflicting
criteria. The best quality item is usually offered for a higher price. In turn,
the cheapest item is a trade-off of its quality. Given all the feasible options,
including those two extreme cases, the trade-off ranking method is able to
give the least trade-off option according to the DM as the best solution.

The distance measures in the trade-off ranking modification is illustrated in
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3.1 - Trade-off ranking modification

Figure 3.1.
The difference in distance measures between the trade-off ranking modi-

fication, the TOPSIS and the relative distance method is also illustrated in

Figure 3.1.
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Figure 3.1: Difference in distance measures between the trade-off ranking,
TOPSIS and the relative distance method

Figure 3.1 shows the distance measures of the TOPSIS, the relative dis-
tance and trade-off ranking methods. Consider four alternatives A, B, C, D,
where A and D are the extreme solutions, the ideal and anti-ideal solu-
tions as shown in Figure 3.1. The intervals between alternatives [B, A] and
[B, D] contribute to the distance in the first level of trade-off ranking method
where the sum of the distances is DT'1g as formula (3.4). The second level of
trade-off measures the distance of an alternative to all other alternatives, i.e.
[B, 4], [B,C] and [B, D], using the weighted distance formula in Lo-metric.
The sum of them, DT2p, is the basis for the second level trade-off ranking
as in formula (3.7). The intervals [I*, D] and [I~, D], represented by dT*
and dT'~ respectively, show the distance in the TOPSIS and are also con-
sidered in Lo-metric. For the relative distance method, consider line P for

calculating a relative measurement of each alternative to the ideal/anti-ideal
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3.2 - Uncertainty in the input data

solutions. The line P(Q) is determined by constructing a straight line with
the slope= —w;/w, that passing through the ideal solution I*. Consider
line P'Q)’ with the same slope passing through the alternative C' and suppose
the interval [I~, "] intersects the line P'Q’ at point C? as shown in Figure
3.1. Then, C°I~ is the relative distance of alternative C' to the anti-ideal
solution, while C°I" is the relative distance of alternative C' to the ideal
solution. Due to the relative measures, the distance in the relative distance

method is calculated using the L; distance metric.

3.2 Uncertainty in the input data

In this section, the first uncertainty in the MCDM process, uncertainty in
the input data, is considered. This first type of uncertainty can occur due
to a variety of reasons, such as imprecise input parameters, lack of data or
inaccurate data during the design process. In multi-objective optimization,
the input data are used to generate a set of alternatives for MCDM process.
Thus, the uncertainty in the input data may generate a different set of al-
ternatives and give a different ranking solution. In this study, the sensitivity
of the MCDM methods to the uncertainty in the input data is considered by
using the fuzzy set theory (Zadeh, 1965), which allows the multi-objective
problem to be formulated in a more flexible way for practical applications.
The fuzzy theory was used by Erfani and Utyuzhnikov (2010) to handle the
uncertainty in the variables and to develop a robust design of the multi-
objective optimization problem by finding a less sensitive solution to the
uncertainty of the model. There are several other authors who implemented
the fuzzy theory in MCDM methods and application problems (Amiri, 2010;
Torlak et al., 2011; Buyukozkan and Cifci, 2012).

By using fuzzy numbers, problem (2.1) can be transformed into a multi-
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objective fuzzy constrained problem as:

Minimize ¥ = {}A}l(x) 5;2(1;)7 ey ?m(x)},
subjeet to gi(z) < Zk, , k=1,..p,
z €D, (3.8)

where the tilde denotes that the problem is modelled using fuzzy variables.
The fuzzy problem (3.8) is solved by transforming the fuzzy numbers into
a crisp value. To do so, the crisp possibilistic mean value is used (Carlsson
and Fuller, 2001). The crisp possibilistic mean value of fuzzy numbers is
given by the formula:
c—>b

Mean(A) = a + - (3.9)

Using formula (3.9) (see Appendix B), the fuzzy problem (3.8) is then
converted into a deterministic formulation by substituting the fuzzy variables

with their erisp values. Thus, problem (3.8) is reduced to

Minimize Y™ = Y,""(z), Yy *(x), ..., Y, (x)
subject to g, " (z) < ", k=1,...,p,
z €D, (3.10)

where the mp notation denotes the possibilistic mean values.

Solution to the deterministic problem (3.10) gives a set of solutions called
the Possibilistic Mean Pareto optimal solution according to the following
definition:
Definition: (Possibilistic Mean Pareto Optimality) V