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Abstract

This study is conducted with the aims to develop a new ranking method

for multi-criteria decision making problem with conflicting criteria. Such a

problem has a set of Pareto solutions, where the act of improving a value

of one solution will result in depreciating some of the others. Thus, in this

type of problem, there is no unique solution. However, out of many avail-

able options, the Decision Maker eventually has to choose only one solution.

With this problem as the motivation, the current study develops a compro-

mise ranking algorithm, namely a trade-off ranking method. The trade-off

ranking method able to give a trade-off solution with the least compromise

compared to other choices as the best solution. The properties of the algo-

rithm are studied in the thesis on several test cases. The proposed method is

compared against several multi-criteria decision making methods with rank-

ing based on the distance measure, which are the TOPSIS, relative distance

and VIKOR. The sensitivity analysis and uncertainty test are carried out to

examine the methods robustness. A critical criteria analysis is also done to

test for the most critical criterion in a multi-criteria problem. The decision

making method is considered further in a fuzzy environment problem where

the fuzzy trade-off ranking is developed and compared against existing fuzzy

decision making methods.

Keywords: Trade-off, ranking, multi-objective optimization, multi-criteria

decision making, Pareto optimal solution, directed search domain algorithm
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1. INTRODUCTION

SECTION ONE

1 Introduction

1.1 Background, motivation and scope

Life is about making decisions. Most people attempt to make the best de-

cision within a specified set of possible options. Thus, in a decision making

process, the first task to do is to determine the criteria needed and the al-

ternatives available. The alternative should satisfy the criteria constraints.

In a multi-objective optimization problem, by presenting the criteria as the

objective functions, a set of feasible solutions (alternatives) satisfying a set

of constraints given can be generated. Once the Decision Maker (DM) is

presented with the alternatives, he/she now have to choose the best option.

Choosing the best solution might be difficult if there are many available

options with almost the same quality. In particular, in the problem with

conflicting multi-criteria, where there are no unique solutions and each so-

lution is a trade-off of its criterion. For example, in order to decrease the

purchase price of an item, the DM has to decrease its quality as well. How-

ever, in reality, DM always wants to opt for the best quality item in cheapest

price available. Having the best quality of all things is the nature of human

beings. In a situation where it is impossible to have all the best quality at

once, the DM may opt for his/her preference. This is the part where the

DM placed his/her preference value in each criterion. Referring the previous

example of purchasing an item, a DM who prefers the purchase price over

the quality may choose the item which is the cheapest, while a DM who

opt for the quality may choose an item with the best quality regardless the

price. There is no right or wrong in making choices. In the end, it would

up to the DM. However, there are few methods available in helping the DM

in this task. Each method stands by its own property and background. By

this means, there is no single method that can cater for all types of decision
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1.1 - Background, motivation and scope

making problems or all types of DMs.

The DM attribution in achieving the optimal solution is divided into four

classes: no preference method, priori method, posteriori method and interac-

tive method (Hwang and Masud, 2012). In no preference method, a neutral

compromise solution is identified without the DM preference information. In

priori method, the DM preference information is first asked and then the best

solution satisfying the preference is found. While in posteriori, a represen-

tative set of Pareto optimal solutions is first found and then the DM must

choose one of them. In interactive methods, the decision maker is allowed

to iteratively search for the most preferred solution. In this study, no DM

is involved physically, however we take into account the DM preferences by

imposing the criteria weights. Hence, we can say that we imply the priori

method in the study.

In helping the DM to choose the appropriate decision making methods,

each method should be tested for its robustness and sensitivity towards a

change in the problem. A multi-criteria decision making (MCDM) problem

may have uncertainty towards its data. In this case, the change may occur

in the input data, i.e. the criteria parameters or the DM preference. Once

the sensitivity analysis and the robustness test are done, the DM is now able

to distinguish each method in its strength and weakness towards the specific

problem. Note that different problem may be better solved by the means of

different methods. After the sensitivity analysis is done, the DM is now able

to choose the most suitable method to seek for the best option according to

him/her.

Once obtaining the best option, the DM may want to change his/her

preference. Let say, instead of preferring the quality of an item, the DM

now prefers the purchase price. The analysis of the preference change after

getting the solution may give insight to the DM of how much of the change

value that would affect the current solution. In a situation where there are

few criteria considered, the DM can know whether the alternative stays as
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1.1 - Background, motivation and scope

the best solution if he/she change the preference of one criterion over the

others. If there is no change occurs, the DM may be delighted to know that

the solution is not only satisfies his/her previous preference, but also his/her

change of preference. If there is a change occurs, the DM may know by

how much of the change that would affect the previous solution. With the

knowledge of sensitivity of the methods, the uncertainty test of the problem

and the change of a criterion preference, the DM is now able to make an

efficient decision making process.

Now, consider a problem with conflicting criteria in a fuzzy environment.

The fuzzy decision making consists of the fuzziness in the performance value

of an alternative in each criterion and the fuzziness in the preference towards

each criterion. It is the same as the uncertainty part mentioned in previous

text, however in this problem the data are now consists of fuzzy numbers.

A decision making method that can solve the fuzzy problem would be the

help to the DM. In this problem, the fuzzy decision making method should

be considered rather than the conventional method.

The problem, that is considered is this study, is the conflicting multi-

criteria problem. This study is focused on the distance-based ranking tech-

niques for the decision making tools. Either it is the deterministic decision

making problem or the fuzzy decision making problem, the DM would be

able to choose the best solution in an efficient way. That is the ultimate aim

of this study. To achieve this aim, the objectives of this work are:

1. develop an efficient ranking algorithm based on a set of Pareto solu-

tions,

2. test the robustness of the ranking algorithm for uncertainties and sen-

sitivity analysis,

3. develop the ranking algorithm for a fuzzy multi-criteria problem,

4. apply the ranking algorithm to a design problem.

20



1.2 - Multi-Criteria decision making method

1.2 Multi-Criteria decision making method

In the real-life design it is required to improve different objectives simultane-

ously. A trade-off between the objectives is usually unavoidable because of

the conflicting objectives as well as the constraints. As a result, the optimal

solution is not unique and corresponds to a so-called Pareto solution. Each

Pareto solution is defined as a trade-off between the conflicting criteria, where

it is not possible to achieve the best score of a criterion without downgrading

the score of some other criteria. In the objective space all Pareto solutions

create a Pareto frontier. For a practical decision making analysis the Pareto

frontier is represented by a Pareto set that contains a finite number of op-

timal solutions. Eventually, the DM has to choose only one solution. This

leads to the problem of ranking because the definition of the Pareto fron-

tier does not presume any preferences. The Decision Making analysis can

be based on a ranking procedure to select the best solution among formal

candidates representing the Pareto set. An additional algorithm is required

to introduce the ranking.

In 1881, Edgeworth is the first to define an optimum for multi-criteria

economic decision making (Edgeworth, 1881). He does so for the multi-utility

problem within the context of two consumers, P and π, where it is required

to find a point (x, y) such that in whatever direction we take, an infinitely

small step, P and π do not increase together but that, while one increases, the

other decreases. In 1906, a civil engineer turns economist, Pareto, creates his

infamous theory, the Pareto optimum (Pareto, 1906). The theory states that

the optimum allocation of the resources of a society is not attained so long as

it is possible to make at least one individual better off in his own estimation

while keeping others as well off as before in their own estimation. After the

translation of Pareto’s Manual of Political Economy into English, the notion

of Pareto optimality begins to be applied to the fields of engineering and

science (Pareto, 1971).

In the multi-criteria decision analysis, the decision making methods have
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1.2 - Multi-Criteria decision making method

been developed for more than 50 years (Triantaphyllou, 2013). However,

there are no universal approaches. Each method stands on its own back-

ground and principles. The most natural approach is to introduce individual

preferences. One of the basic and simplest multi-criteria decision analy-

sis techniques is the sum of weight calculation model. In this technique, a

weight is assigned to each criterion to denote its importance. Each aggregate

function is then calculated as the sum of weight criteria. A classic work on

the weight determination is by Eckenrode (1965). Eckenrode worked with

twenty-four expert judges, who were required to put a weight on six criteria

in a specified experiment related to an air-defence system.

Another well-known decision making method is the Analytic Hierarchy

Process (AHP). AHP was proposed by Saaty (1980). The essence of this

method is that a human judgement is used in performing evaluations. AHP

structures a decision problem into an hierarchy with the goal, decision crite-

ria, and alternatives. Then, it uses the pairwise comparison and the expert

judgement, where these judgements are converted into a numerical evalua-

tion. However, a human can lack of consistency in judging (influenced by

emotional, experience, etc.) and different people have different preferences.

AHP works best for decision making process in a group of people having

consensus. Many authors used AHP in the decision making process (e.g.

Kablan, 2004; Herath, 2004; Randall et al., 2004; Bascetin, 2007; Brent et al.,

2007; Iwanejko, 2007; Wu et al., 2007; Srdjevic, 2007; Contreras et al., 2008;

Dabaghian et al., 2008; Ercanoglu et al., 2008; Thapa and Murayama, 2008;

Chatzimouraddis and Pilavachi, 2009; Chen, 2009). Current work on AHP

is by Zaidan et al. (2015). They imposed the AHP method, integrated it

with other MCDM techniques, to select the right software for open-source

electronic medical record.

The Analytic Network Process (ANP) is an extension of AHP also pro-

posed by Saaty (1996). Apart from structuring the multi-objective problem

as an hierarchy, ANP treats it as a network. The decision criteria in AHP
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1.2 - Multi-Criteria decision making method

assume to be independent from each another, while ANP allows interdepen-

dence of those criteria. Several authors used ANP in their research (e.g.

Levy, 2005; Cheng and Li, 2007; Banar et al., 2007; Khan and Faisal, 2008;

Tseng et al., 2008; Gomez-Navarro et al., 2009; Boj et al., 2014).

The Multi-Attribute Utility Theory (MAUT) by Keeney and Raiffa (1976)

is among the classical methods of multi-criteria decision analysis. It follows

the utility axioms of Von Neumann and Morgenstern (1944). MAUT is a

structured methodology designed to handle the trade-off among multiple ob-

jectives. MAUT assigns a utility value to each action and its quantifying

individual’s preferences. The result of using this method is a set of choices

that represents the decision maker’s preferences. MAUT was employed in

the decision making by Ananda and Herath (2005).

The Elimination and Choice Expressing Reality (ELECTRE) was pro-

posed by Bernard Roy in 1960s. There are several extensions of the method

(ELECTRE I, II, III, IV, IS and TRI). The original version of ELECTRE,

ELECTRE I, is an outranking method that discards unacceptable alterna-

tives using a binary relation. It was designed to lead to ”choice-type” results

(Bouyssou, 2008). A limited set of alternatives that are obtained saves much

of selecting time. Another outranking method is PROMETHEE (Prefer-

ence Ranking Organization Method for Enrichment Evaluations), which is

a modified approach of ELECTRE proposed by Brans and Vincke (1985).

PROMETHEE is a much simpler version of the outranking technique that

uses pairwise comparison of alternatives via a preference index. PROMETHEE

consists of three tools: the PROMETHEE I (partial ranking), the PROMETHEE

II (complete ranking) and the PROMETHEE-GAIA (geometrical analysis for

interactive aid). Several authors applied the outranking method to multi-

criteria decision problems (e.g. Goumas and Lygerou, 2000; De Leeneer and

Pastijn, 2002; Soltanmohammadi et al., 2009; Oberschmidt et al., 2010;

Petrović et al., 2014).

The genetic algorithm (GA) has also been used as a MCDM method.
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1.2 - Multi-Criteria decision making method

Several authors employed GA for this purpose (e.g. Fonseca and Fleming,

1993; Tanaka et al., 1995; Feng et al., 1997; Hegazy, 1999; Zheng et al., 2005).

They used GA prior to the decision making process to obtain the Pareto

solutions. The foundation of GA lies in the survival of fitted individuals

that mimics the process of the natural selection. Several natural selection

techniques such as mutation, selection and crossover are implemented. This

approach proved to be efficient. However, in the algorithm, the solutions

can bias towards some regions and the method also produces non Pareto

solutions. The algorithm generates a large number of solutions. Eventually,

most of them appear to be redundant. Massive number of solutions, including

the redundant ones, make the ranking procedure problematic.

Wang and Yang (2009) used another natural behaviour algorithm, the

particle swarm optimization (PSO), combined with the preference order pro-

cedure to determine a ranking order for the MCDM problem. The PSO was

inspired by the movement of bird flock or fish school. Particle swarm im-

proves the search ability of GA for the best alternatives by having a better

convergence to the Pareto frontier. However, as shown by Wang and Yang

(2009), PSO requires up to 30,000 iterations to solve the problem. Therefore,

it might be time consuming.

The Technique for Order Preference by Similarity to the Ideal Solution

(TOPSIS) was first proposed by Hwang and Yoon (1981). The TOPSIS

method embed the priori weights which are specified beforehand by the DM.

The core of the ranking for this method lies in the distance of alternatives

to the ideal and anti-ideal solutions. An alternative that is ”closer to ideal”

and ”farther from anti-ideal” holds a higher ranking. However, the TOPSIS

method produces an inconsistent ranking between the ”closer to ideal” and

”farther from anti-ideal”. Many authors have used the TOPSIS method as a

decision making method (e.g. Chen, 2000; Chu and Lin, 2003; Jahanshahloo

et al., 2006; Liu et al., 2006; Yong, 2006; Shih et al., 2007; Wang and Chang,

2007; Gumus, 2009; Kilic et al., 2014).
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1.2 - Multi-Criteria decision making method

Kao (2010) addresses the disadvantages of inconsistency ranking in the

TOPSIS and proposes a consistent ranking between the ”closer to ideal” and

”farther from anti-ideal”. In contrast to the TOPSIS, Kao suggests a relative

distance ranking method and introduces the posteriori weights obtained from

the data.

All the existing methods consider the value of each Pareto solution sepa-

rately without its position with respect to the others in the objective space.

The ranking is obtained as the result of such individual evaluations. Mean-

while, any Pareto solution is a trade-off solution. It seems natural to mini-

mize the level of trade-off to identify ”the best” design. In this study, a new

ranking method, namely trade-off ranking, that reflects the level of compro-

mise between different Pareto solutions is developed. It is clear that it is not

practical and even unrealistic to consider the trade-off with all Pareto solu-

tions. However, it is quite realistic to minimize the level of compromise for

a selected Pareto set that represents the entire Pareto frontier well enough.

It is worth noting that this kind of ranking is non-local because the value of

each Pareto solution depends on its position with respect to the others in the

objective space. In this way, the task is reduced to two problems. First, the

Pareto set to be analyzed should represent the entire Pareto frontier. Second,

a ranking algorithm should be identified to rearrange the Pareto set accord-

ing to preferences that are beyond the original formulation of the problem.

The former problem can be resolved via generating an evenly distributed

Pareto set. It is well known that such a task is far from trivial. However,

there are a few techniques that are able to tackle this problem such as the

Normal Boundary Intersection (NBI) method (Das and Dennis, 1998), the

Normal Constraint (NC) method (Messac et al., 2003; Messac and Mattson,

2004) and the Directed Search Domain (DSD) algorithm (Utyuzhnikov et al.,

2005, 2009; Erfani and Utyuzhnikov, 2011; Erfani et al., 2013). The DSD al-

gorithm is capable of generating a well distributed Pareto set on the entire

Pareto frontier in a quite general formulation. Eventually, it provides a set of
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limited optimal choices for the DM for handling trade-off between multiple

criteria.

1.3 Uncertainty analysis in multi-criteria decision

making process

There is a considerable existing research on sensitivity analysis in the de-

terministic multi-criteria decision making (MCDM) methods. Barron and

Schmidt (1988) proposed two procedures - an entropy based procedure and

a least square technique - to test the sensitivity of the attributes (criteria)

weights in the multi-attribute value theory (MAVT) method. It is assumed

that in the former approach the weights are nearly equal, whilst the latter

requires a set of arbitrary weights of the criteria.

Von Winterfeldt and Edwards (1986) defined the Flat Maxima Principle

to test sensitivity analysis on the multi-attribute utility theory (MAUT)

method. Rios Insua (1990) described a sensitivity analysis in the traditional

MCDM Bayesian model.

In addition, there also exist several sensitivity analyses on the Analytic

Hierarchy Process (AHP). The AHP is developed by Saaty (Saaty, 1980).

Masuda (1990) studied the effect of changes in the entire decision matrix

vectors on the ranking of the alternatives in the AHP method. Further re-

search was done by Armacost and Hosseini (1994), who presented a procedure

for determining the most critical criterion for the AHP problem. There is

also a software package for the AHP, named Expert Choice, developed in

1990, to carry out the sensitivity analysis of the method where the user can

alter the weights of the decision criteria and see how the ranking changes.

Triantaphyllou and Sanchez (1997) carried out a sensitivity analysis on

the weights of the decision criteria and the performance values of the alter-

natives to three MCDM methods: Weighted Sum Model, Weighted Product

Model and AHP. They determined the smallest changes of the current weights

that would affect the existing ranking.
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Alinezhad and Amini (2011) carried out a sensitivity analysis on the

TOPSIS method. They changed the weight of a criterion and observed its

effect on the final score of the alternatives. Simanaviciene and Ustinovichius

(2010) also presented a sensitivity analysis on the TOPSIS method. They

carried out a comparison with the simple additive weighting (SAW) method.

They found out that the TOPSIS method is more sensitive to the differ in

criteria value than the SAW method.

The existing papers, which are related to uncertainty in the MCDM

process, address the sensitivity of MCDM models to the change of criteria

weights. However, the first task in any decision making process is to identify

the set of alternatives for the DM to make the choice. Thus, it is also essen-

tial to examine the uncertainty in this task of the decision making process,

and to determine how it affects the ranking. This thesis examines both un-

certainties in the MCDM process using the new ranking method, trade-off

ranking, as well as other MCDM methods classified as the distance-based

ranking techniques.

1.4 Critical criterion in multi-criteria decision making

In MCDM process, the DM may prefer one criterion more than the others.

The preferences can be reflected via the weights of criteria. Once a decision

ranking has been obtained, the DM may want to change their preferences.

The change may or may not affect the current decision ranking. The smallest

change in the preferences value that affects the current ranking may deter-

mine the critical criterion. To seek for the critical criterion, the sensitivity

of ranking to various criteria weights is analysed.

The weights, which represent the importance of each criterion in terms of

the DMs preferences, are used in the ranking calculation process. To date,

there are many procedures proposed in the determination of the weights.

For instance, Von Winterfeldt and Edwards (1986) have proposed the ratio

method and the swing method to determine the average weights. Meanwhile,
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Butler et al (1997) have suggested three types of weights; random weight,

rank order weight and response distribution weight. On the other hand, Ol-

son (2004) introduced the equal weights, the weights generated by ordinal

rank and the weights generated by a regression technique. Moreover, Kao

(2010) calculated the weights by minimising the sum of squared distances

from the alternatives to the ideal solution. The terminology of the ideal so-

lution is explained further in the thesis. However, the most popular approach

used to obtain the weights is the one carried out by the DMs themselves (e.g.

Eckenrode, 1965; Saaty, 1980; Hwang and Yoon, 1981; Saaty, 1996). Once

a ranking is obtained, the DMs may be interested in the sensitivity of the

ranking to the criteria weights. The analysis of the weight changing versus

the current ranking is considered in this thesis. The idea of the analysis came

from the work of Triantaphyllou & Sanchez (1997) in which they carried out

a sensitivity analysis for three decision making methods; the weighted sum

model, the weighted product model and the analytic hierarchy process.

1.5 Fuzzy multi-criteria decision making method

The real-world design is usually related to the inevitable uncertainties in the

input data, parameters, etc. The uncertainty in the MCDM (MCDM) prob-

lem includes the imprecision of criteria values, vagueness in the importance

of criteria (weights), and dealing with qualitative, linguistic or incomplete

information.

The concept of fuzziness, first introduced by Zadeh (1965), has proved to

be an efficient tool to include uncertainties in MCDM problems. Numerous

fuzzy MCDM methods have been developed, including the fuzzy TOPSIS

(Chen, 2000; Wang and Elhag, 2006; Wang and Lee, 2007; Krohling and

Campanharo, 2011) and fuzzy VIKOR (Vise Kriterijumska Optimizacija I

Kompromisno Resenje) (Opricovic and Tzeng, 2004; Opricovic, 2007, 2011)

- they utilize the fuzzy numbers in the formulation of their fuzzy MCDM

methods.
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Apart from the fuzzy TOPSIS and fuzzy VIKOR methods, several authors

have implemented the fuzzy theory in other MCDM methods and applica-

tion problems (e.g. Cakir and Canbolat, 2008; Gungor et al., 2009; Amiri,

2010; Buyukozkan et al., 2011; Kilincci and Onal, 2011; Torlak et al., 2011;

Buyukozkan and Cifci, 2012; Rouhani et al., 2012).

There are two options to solve the fuzzy MCDM problem (Perny and

Roubens, 1998): (i) utilizing the fuzzy MCDM method, and (ii) pre-defuzzifying

the fuzzy MCDM problem and solving it by a conventional MCDM method.

The defuzzification process converts the fuzzy numbers into crisp values; in

both options, the defuzzification process is essential, since the MCDM solu-

tion must provide a crisp result. Many defuzzification methods can be used,

including the center of sum and the center of gravity (Van Leekwijck and

Kerre, 1999; Wang and Luoh, 2000). Both options to solve the fuzzy MCDM

problem are used in this thesis for the proposed method, namely a fuzzy

trade-off ranking method, for solving the fuzzy MCDM problem.

1.6 Research contributions and thesis structure

This thesis is divided into three main parts concerning the conventional

multi-criteria decision making methods, uncertainty and sensitivity analy-

sis in the multi-criteria decision making process and multi-criteria decision

making in a fuzzy environment. In the next section, Section 2, the focus is

on distance-based ranking techniques. In particular, a new ranking method,

called trade-off ranking is introduced. In the beginning of Section 2.1, a brief

introduction to the Pareto optimality is presented. Next, the main princi-

ples of two distance-based ranking methods, the TOPSIS and the relative

distance ranking are described in Section 2.2 and Section 2.3, respectively.

After that, a proposed algorithm of the trade-off ranking method is discussed

in Section 2.4. Lastly, in Section 2.5, different test cases are considered with

analysis and comparison between the methods.

In Section 3 of the thesis, the uncertainty and sensitivity analysis in multi-

29



1.6 - Research contributions and thesis structure

criteria decision making process are discussed. In particular, two types of

uncertainty are considered. The beginning of Section 3 starts with the trade-

off ranking modification in Section 3.1. Next, the first type of uncertainty,

the uncertainty in the input data, is discussed in Section 3.2. In this first

type, a robust set of alternatives is obtained by adding a new robustness

function into the multi-objective optimization problem. The second type of

uncertainty - in the decision makers preference is presented in Section 3.3.

Section 3.4 identifies the critical critical in multi-criteria decision making.

Both sections 3.3 and 3.4 involve the analysis in the criterion weight, i.e. the

decision makers preference.

Apart from conventional decision making method, the fuzzy method is

also considered in Section 4 of the thesis. The beginning of the section

reviews the properties of fuzzy numbers that are used in the fuzzy decision

making method. The fuzzy decision making methods begin with the proposed

methods, the trade-off ranking with defuzzification and the fuzzy trade-off

ranking in Section 4.2 and Section 4.3, respectively. Two fuzzy decision

making methods, the fuzzy TOPSIS and the fuzzy VIKOR are reviewed

in Section 4.4 and Section 4.5, respectively for a comparison purpose and

the validation of the proposed methods. The analysis and comparison are

discussed in Section 4.6.

The last section wraps up the thesis, where the summary of research

findings are given in Section 5.1 and the future research implications are

recommended in Section 5.2.
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2. DISTANCE-BASED RANKING METHODS IN
MULTI-CRITERIA DECISION MAKING

May your choices reflect your hopes,

not your fears

-Nelson Mandela.

SECTION TWO

Parts of this section have been published online on 29th December 2016

in the Journal of Multi-criteria Decision Analysis. Doi:10.1002/mcda.1600

2 Distance-based ranking methods in

multi-criteria decision making

Multi-criteria decision analysis presumes trade-off between different criteria.

As a result, the optimal solution is not usually unique. A trade-off between

the objectives is usually unavoidable because of the constraints. If the Deci-

sion Making preferences are not priori formulated, then the optimal solution

is not unique. It is usually represented by a so-called Pareto solution. A

Pareto solution usually represents a trade-off between different objectives.

Despite there are unlimited number of Pareto optimal options, the DM even-

tually has to choose only one solution. Such a choice has to be made with

the use of additional preferences not included in the original formulation of

the optimization problem.

This section of the thesis represents a new approach to an automatic

ranking that can help the DM. In contrast to the other methodologies, the

proposed method is based on the trade-off minimization between different

Pareto solutions. To be realized, the approach presumes the existence of a

well-distributed Pareto set representing the entire Pareto frontier. In the

thesis, such a set is generated with the use of the Directed Search Domain

algorithm (Erfani and Utyuzhnikov, 2011). The proposed method is applied

to a number of test cases and compared against two existing alternative

approaches, the relative distance ranking and the TOPSIS methods. Both
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methods are used for comparison with the new proposed method as they

all imply the distance formula in their ranking algorithm which lead to an

automatic ranking that does not presume an immediate selection based on

subjective experts opinion.

Both methods, the TOPSIS and the relative distance, imply the same idea

of having the alternative that is ”closer to an ideal” and ”farther from an

anti-ideal”. One difference is in the calculation of the distance. The TOPSIS

uses the Euclidean distance L2-metric from an alternative to the ideal and

the anti-ideal solutions. In contrast, the relative distance ranking is based

on the measure that represents a relative position of an alternative from the

origin to the ideal, deduced into the L1-metric. Another difference is in the

calculation of the weights. The TOPSIS uses the priori weights obtained

beforehand by the DM, whilst the relative distance ranking exploiting the

posteriori weights obtained from the data.

For further consideration, assume that there are q alternatives. Then,

a multi-criteria decision analysis problem can be expressed via a trade-off

matrix form as

Criterion

Alternative Y1 Y2 Y3 ... Ym

A1 Y11 Y12 Y13 ... Y1m

A2 Y21 Y22 Y23 ... Y2m

A3 Y31 Y32 Y33 ... Y3m

: : : : : :

Aq Yq1 Yq2 Yq3 ... Yqm

where the value of Yij denotes the performance of alternative i in terms of

criterion j.
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2.1 - Pareto optimality

2.1 Pareto optimality

Let the design space be presented by X ⊂ Rn. Consider m objective func-

tions, forming an objective space Y ⊂ Rm. For each x ∈ X, there exists a

point in Y corresponding to mapping Rn 7→ Rm.

Multi-objective optimization problem is formulated by

Minimize Y = {Y1(x), Y2(x), ..., Ym(x)},

subject to x ∈ X∗. (2.1)

Here, X∗ ⊆ X is the feasible design space defined as the set of elements

x ∈ X∗ satisfying all the constraints. The feasible objective space Y ∗ is

defined as the set {Y (x) | x ∈ X∗}.
A design vector x ∈ X∗ is called Pareto optimal iff there does not exist

any a ∈ X∗ such that

Y (a) ≤ Y (x) and exists k ∈ 1, ...,m : Yk(a) < Yk(x).

2.2 Relative distance ranking

In the relative distance approach, the first task is to identify the ideal solution

I+R , and the anti-ideal solution I−R . In general, the ideal solution is the solution

with the best score in all criteria. In turn, the anti-ideal solution is the

solution with the worst score in every criteria. Consider a minimization

problem. Thus, the ideal I+R and the anti-ideal I−R solutions in the relative

distance method are determined as follows:
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2.2 - Relative distance ranking

I+R = (Y +
1 , Y

+
2 , ..., Y

+
m ), (2.2)

I−R = (Y −1 , Y
−
2 , ..., Y

−
m ), (2.3)

where

Y +
j = min {Yij, i = 1, ..., q},

Y −j = max {Yij, i = 1, ..., q}, (j = 1, ...,m).

In turn, for the maximization problem, the ideal I+R and the anti-ideal I−R
solutions are defined as:

I+R = (Y +
1 , Y

+
2 , ..., Y

+
m ), (2.4)

I−R = (Y −1 , Y
−
2 , ..., Y

−
m ), (2.5)

where

Y +
j = max {Yij, i = 1, ..., q},

Y −j = min {Yij, i = 1, ..., q}, (j = 1, ...,m).

The next task of the algorithm is to determine the weights for each crite-

rion. According to Kao (2010), the weight is determined by minimizing the

quadratic problem:

Minimize

q∑
i=1

[
m∑
j=1

wj|Y +
j − Yij|

]2

subject to
m∑
j=1

wj|Y +
j − Y −j | = 1

wj|Y +
j − Y −j | ≥ ε, j = 1, ...,m,

ε > 0. (2.6)
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2.3 - TOPSIS

where wj is the weight or importance of the j-th criterion. The objective

function is the total distances between the ideal solution and each alternative

in the objective space. The aim is to obtain a set of optimal weights that

minimizes the distances. The small quantity ε is suggested to avoid any

criterion being neglected.

Using the weights obtained from formula (2.6), the distance of each al-

ternative to the ideal solution and the anti-ideal solution is then calculated

respectively by the formulas (Kao, 2010)

dR+
i =

m∑
j=1

wj|Y +
j − Yij|, i = 1, ..., q, (2.7)

dR−i =
m∑
j=1

wj|Y −j − Yij|, i = 1, ..., q. (2.8)

The alternative with the shortest distance to the ideal and the longest

distance to the anti-ideal is ranked the highest.

2.3 TOPSIS

In the TOPSIS (technique for order preference by similarity to ideal solution),

the first step is to standardize the data set. The step can be skipped if the

data are already in the standard form. The data standardization is done by

the formula:

rij =
Yij√∑m
j=1 Y

2
ij

, i = 1, ..., q, j = 1, ...,m.

Next task is the data weighting process using the formula:
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2.3 - TOPSIS

vij = wjrij, where
m∑
j=1

wj = 1.

As mentioned earlier, the weights for each criterion in the TOPSIS method

might be determined by the DM. However, in this study the DM is not in-

volved. Therefore, the same approach to calculate the weights as in the

relative distance ranking method is imposed.

The ideal and the anti-ideal solutions in the TOPSIS are then determined

by:

I+T = (v+1 , v
+
2 , ..., v

+
m), (2.9)

I−T = (v−1 , v
−
2 , ..., v

−
m), (2.10)

where

v+j = min {vij, i = 1, ..., q},

v−j = max {vij, i = 1, ..., q}, (j = 1, ...,m).

In a similar way with the relative distance approach, the ideal I+T and the

anti-ideal I−T solutions are defined as reverse from the above definitions for

maximization problem.

The distance from an alternative solution to the ideal solution is then

calculated using the Euclidean distance as follows:

dT+
i =

√√√√ m∑
j=1

w2
j (v

+
j − vij)2, i = 1, ..., q. (2.11)

In turn, the distance from an alternative solution to the anti-ideal solution

is calculated by formula (2.12):
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2.4 - Trade-off ranking method

dT−i =

√√√√ m∑
j=1

w2
j (v
−
j − vij)2, i = 1, ..., q. (2.12)

As proven by Kao (2010), the TOPSIS ranking with respect to the ideal

solution is different from the ranking with respect to the anti-ideal solution.

The full ranking in the TOPSIS is expressed by formula (Hwang and

Yoon, 1981):

D+
i =

dT−i
dT+

i + dT−i
. (2.13)

The largest value of D+
i is accepted as the best solution, while the smallest

value is regarded as the worst solution.

In the next section, the trade-off ranking approach is introduced. The

method is then compared against the TOPSIS and the relative distance rank-

ing.

2.4 Trade-off ranking method

In this section, the key steps of the proposed method are described. The

trade-off ranking is based on the property that the set of Pareto points is a

set of trade-off solutions.

In the default trade-off ranking, there is no weights calculation that saves

much calculation time. The importance of each criterion is assumed to be

equal.

To demonstrate some justifications to the approach, consider a simple

example with two sets of Pareto solutions, as shown in Figure 2.1.

The first set consists of points F, G and H while the other set contains

points F, I and J. The lines FH and FJ are two different Pareto frontiers,
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2.4 - Trade-off ranking method

Figure 2.1: Two sets of Pareto solutions

but both contain the same point F as one of the three alternatives. Con-

sider the minimization problem. Then, the ideal solution for the example

is I+ = (0, 0). The anti-ideal solution for the first set is I− = (2, 4) and

for the second set is I− = (2, 5). In the first Pareto frontier, FH, point F

is the closest to the ideal solution and farthest from the anti-ideal solution.

Hence, in the two ranking approaches considered above, point F is the most

preferable solution out of the alternatives G and H. Consider now another

Pareto frontier, FJ. Point F holds the shortest distance to the ideal solution

and the longest distance to the anti-ideal solution. Thus, point F still holds

the highest ranking versus the other points I and J. As a consequence, the

ranking captures the same solution regardless the entire Pareto frontier.

The key principle of the trade-off ranking is to prefer the solutions with
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2.4 - Trade-off ranking method

less compromise with the others. The trade-off minimization can be achieved

by calculating the distance from one point to all other points in the objective

space. The distance reflects the degree of trade-off between the solutions.

The general formula for the distance between point (alternative) A1 =

(A
(1)
1 , A

(1)
2 , ..., A

(1)
m ) and point A2 = (A

(2)
1 , A

(2)
2 , ..., A

(2)
m ) is:

d(A1, A2) =

[
m∑
j=1

(
A

(1)
j − A

(2)
j

)2]1/2
(2.14)

Then, the sum of distances from one point to the other points is considered

as the degree of trade-off:

DTk =

q∑
i=1

[d(Ak, Ai)] , k = 1, 2, ..., q (2.15)

The trade-off ranking of each solution is determined by the value of DT

with respect to the others. The least value of DT holds the highest ranking.

For the trade-off analysis, it is efficient to have an evenly distributed set

representing the entire Pareto frontier. Thus, the first step in the trade-off

ranking is generating an evenly distributed Pareto set. Evenly distributed

solutions give the maximum information of the Pareto frontier to the DM.

As an example, consider Figure 2.1 again with two different sets of evenly

distributed Pareto solutions F(2,0), G(1,2), H(0,4), I(1,2.5) and J(0,5). The

results of the trade-off ranking are given in Table 2.4 and Table 2.4. In

this simple example, solutions G and I seem more preferable because they

better represent the entire Pareto frontier. In addition, it is easy to see that

they correspond to the minimized trade-off among the other Pareto solutions.

The trade-off ranking method can be applied to find the best compromise

solution in any set of Pareto alternatives. However, it is better to have a set of

whole and evenly distributed Pareto solutions as it is the best set of solutions
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Table 2.1: Trade-off ranking for Pareto frontier FH

Distance
between each F G H DT Ranking
Pareto points

F 0
√

5
√

20 3
√

5 2

G
√

5 0
√

5 2
√

5 1

H
√

20
√

5 0 3
√

5 2

Table 2.2: Trade-off ranking for Pareto frontier FJ

Distance
between each F I J DT Ranking
Pareto points

F 0
√

29/4
√

29
√

145/4 2

I
√

29/4 0
√

29/4
√

29/2 1

J
√

29
√

29/4 0
√

145/4 2

in helping the DM to make an efficient decision in time-saving environment.

The integration of the trade-off ranking method with the property of an even

distributed alternatives give the best solution with the most balance value

in all criteria.

As a practical analogy, consider the examples shown in Figure 2.2.

Figure 2.2 represents two different real-life trade-off problems: (a) risk

over return in a share investment, and (b) price over quality in a car purchase.

For a share investment, DM usually wants a low risk investment that

generates a high return. However, such a situation seems almost unrealistic.

As shown in Figure 2.2(a), investments offer possibility I and II as the

extreme solutions, a low risk with a low return or a high risk with a high

return. Apart from these extreme solutions, there is a yellow area which gives

acceptable solutions with a return higher than in I and a risk lower than in
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Figure 2.2: Practical examples for the trade-off ranking

II. The trade-off ranking method provides the best compromise solution III

as the best choice.

The same situation occurs in problem (b). In case (b), it is almost im-

possible to buy a high quality car with a minimal price. On the market there

is a choice in a wide range between cheap second-hand cars I and expensive

luxury cars II. Many buyers prefer intermediate solutions that correspond

to options in III, cheaper than II and higher quality than I. The trade-of

ranking method can ensure that the optimal solution is in the yellow area

III.

Now, for brief comparison between the methods, consider two arcs, A and

B, represent two different Pareto frontiers as shown in Figure 2.3. In both

Pareto frontiers, the top solutions for the trade-off ranking are situated in the

middle of each frontier. For the TOPSIS and the relative distance method,
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the top solutions in B situated in the middle of the frontier as well, as they

are closer to the ideal solution. However, their top solutions in A disperse

between two extreme cases (areas I and II in Figure 2.2) as the middle area

is no longer closer to the ideal solution.

Figure 2.3: Results for the top ranking with the TOPSIS, relative distance
and trade-off methods

Next, consider another two different graphs (a) and (b) as shown in Figure

2.4. In both graphs, the line C is the original Pareto frontier. In Figure

2.4(a), as F1 changes from the original value F1 = 4, the top solutions for

the TOPSIS and the relative distance approach retain. In this example, the

best choice in the TOPSIS and relative distance methods might not reflect the

other alternatives. For the trade-off ranking method, the top solutions change

according to the new Pareto frontier, nevertheless maintain in the middle of

the frontiers. In Figure 2.4(b), as the value of F2 changes from F2 = 2, the

top solutions for the TOPSIS and the relative distance method change as

well. However, the solutions merely situated on the extreme cases (areas I

and II in Figure 2.2). The example demonstrate that a small variations of

the Pareto frontier can lead to a sharp replacement of the best choice in the

TOPSIS/relative distance methods. For the trade-off ranking method, the

top solutions retain in the middle of each frontier (area III in Figure 2.2).
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Figure 2.4: Results for the top ranking with the TOPSIS, relative distance
and trade-off methods

In each example shown, the trade-off ranking method able to capture the

best compromise solution of all alternatives provided.

In general, the steps for the trade-off ranking are as follows:

1. Generate an evenly distributed Pareto set.

2. Calculate the distance from one alternative to the others.

3. Calculate the degree of trade-off, DT .

4. Repeat steps 1 and 2 for all other alternatives from the Pareto set.

5. Alternative with less value of DT holds a higher ranking.

The concepts of distance measure in the trade-off ranking and TOPSIS

methods are further illustrated in Figure 2.5.

Figure 2.5 shows the difference in the distance measure between the TOP-

SIS and the trade-off ranking method in evaluating three Pareto alternatives

A1, A2, and A3. The TOPSIS uses the distance between an alternative to
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Figure 2.5: Distance measures in TOPSIS and trade-off ranking

the ideal/anti-ideal solutions as a ranking measure, which are denoted in

Figure 2.5 as d(Ai, I+) and d(Ai, I−), respectively, for i = 1, 2, 3. In turn,

the trade-off ranking method uses the distance from an alternative to the

other alternatives to determine the ranking. In Figure 2.5, such distances

are marked as d(A1, A2), d(A2, A3) and d(A1, A3). The ranking determina-

tion in the trade-off ranking method depends on the sum of the distances

between those alternatives. The example in Figure 2.5 also shows that al-

ternative A2, which is the closest to the ideal solution, is also the closest to

the anti-ideal solution, compared to alternatives A1 and A3. In this case, a

violation occurs in the aim of the TOPSIS method to have the best solution

as the closest to the ideal solution and the farthest to the anti-ideal solution.

2.5 Test cases: analysis and comparison

In this section, the trade-off ranking is applied to six test cases. The TOPSIS

and the relative distance ranking approaches are also used for a comparison.

The trade-off ranking is applicable to n-dimensional problems. It is impor-
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tant to have a set that represents well enough the entire Pareto frontier.

This problem can be talked by the DSD algorithm (Erfani and Utyuzhnikov,

2011). The number of candidate-solutions should depend on the problem.

In this general test case, the DSD approach (Erfani and Utyuzhnikov, 2011)

was used for generation of an evenly distributed Pareto set. The evenness

property ensures that the limited optimal set obtained represents the whole

Pareto frontier. The problem formulations for the test cases are given in the

Appendix A.

2.5.1 General Test Cases

TNK problem: this test case is introduced by Tanaka et al. (1995). The test

case considers a discontinuous Pareto frontier with significant gaps. Despite

the discontinuity, DSD algorithm gives an evenly distributed Pareto solutions

(Erfani and Utyuzhnikov, 2011). The results for the most preferable Pareto

solutions in TNK problem, identified by each method, are shown in Figure

2.6.

For this test case, the ideal solution for the TOPSIS and the relative

distance method is I+ = (0, 0) and the anti-ideal solution is I− = (1.1, 1.1).

As can be seen in Figure 2.6, the trade-off ranking approach gives prefer-

able solutions in the middle range of both criteria x1 : [0.55, 0.60] and

x2 : [0.75, 0.80]. The other two methods, the TOPSIS and the relative dis-

tance ranking, give the same level of ranking with much higher values for

criterion x2 : [0.95, 1.00]. The weights obtained in this test case using for-

mula (2.6) are w1 = 0.71 and w2 = 0.29.

ZDT1 problem: this test case is introduced by Zitzler et al. (2000). The

test case has a convex Pareto optimal frontier. The results of each ranking

method for ZDT1 problem are shown in Figure 2.7.

The ideal solution for the TOPSIS and relative distance method in ZDT1

is I+ = (0, 0) and the anti-ideal solution is I− = (1, 1). In Figure 2.7,
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Figure 2.6: Results of the highest ranking for TNK

the preferable alternatives in the trade-off ranking are in the range of F1 :

[0.3, 0.4] and F2 : [0.4, 0.45]. The TOPSIS provides the ranking closest to

the trade-off ranking method such that highest ranking solutions are ranging

from F1 : [0.2, 0.3] and F2 : [0.45, 0.5]. It is worth noting that the highest

ranked solution in the trade-off approach is only ranked the thirteenth in the

TOPSIS method. On the contrary, the first choice in the TOPSIS is ranked

the tenth in the trade-off ranking. A similar situation occurs between the

TOPSIS and the relative distance method. The most preferable alternative

in the relative distance method is ranked the eleventh in the TOPSIS. The

weights obtained for the ranking calculation in the relative distance method

and the TOPSIS using formula (2.6) are w1 = 0.54 and w2 = 0.46.

ZDT2 problem: this test case is introduced by Zitzler et al. (2000). The
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2.5 - Test cases: analysis and comparison

Figure 2.7: Results of the highest ranking for ZDT1

test case has a non-convex Pareto optimal frontier. The results for the best

solutions in ZDT2 for each ranking approach are shown in Figure 2.8.

The ideal solution of the test case, for both the TOPSIS and relative

distance method, is I+ = (0, 0) and the anti-ideal solution is I− = (1, 1).

As shown in Fig. 2.8, a higher ranking alternatives in the trade-off ranking

algorithm are situated in the middle of the Pareto set within the range of

F1 : [0.5, 0.6] and F2 : [0.7, 0.8]. The TOPSIS and the relative distance ap-

proach have the same ranking alternatives at the top rank. Both methods

have the most preferable solutions in the range of F1 : [0, 0.1] and F2 : [0.9, 1].

The weights obtained for ZDT2 using formula (2.6) are w1 = 0.69 and

w2 = 0.31.

ZDT6 problem: this test case is taken from Shukla and Deb (2007). The

test case has non-uniform density solutions on a non-convex Pareto optimal
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Figure 2.8: Results of the highest ranking for ZDT2

frontier. The results for the most preferable alternatives of ZDT6 problem

for each ranking approach are shown in Figure 2.9.

The ideal solution for ZDT6 is I+ = (0.38, 0) and the anti-ideal solution

is I− = (1, 0.88). They are applied in both the TOPSIS and relative distance

method. In Figure 2.9, it can be seen that the top ranked alternatives in the

trade-off ranking are in the range between F1 : [0.7, 0.75] and F2 : [0.4, 0.5].

In this test case, similar to TNK and ZDT2, the preferable alternatives in

the TOPSIS and the relative distance method coincide. Both methods give

alternatives with greater values for criterion F1 : [0.95, 1] and smaller values

for criterion F2 : [0, 0.1]. The weights for the test case, calculated from for-

mula (2.6) are w1 = 0.1 and w2 = 0.9.

DTLZ5 problem: this three-dimensional test case is introduced by Deb et

al. (2005). The test case has only two anchor points despite there are three-
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Figure 2.9: Results of the highest ranking for ZDT6

objective functions (Erfani and Utyuzhnikov, 2011). The best alternatives

for each ranking method are shown in Figure 2.10.

Figure 2.10: Results of the highest ranking for DTLZ5
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For this problem, in both the TOPSIS and the relative distance method,

the ideal solution is I+ = (0, 0, 0) and the anti-ideal solution is I− = (0.71, 0.71, 1).

As shown in Figure 2.10, the highest ranking alternative in the trade-off rank-

ing is in the middle of the set of Pareto points. The TOPSIS and the relative

distance method have close ranking results with greater values in criterion

F3. The weights obtained for ranking of the relative distance method and

the TOPSIS are w1 = 0.59, w2 = 0.39 and w3 = 0.02.

2.5.2 Application Test Case

Consider an example from Jacquet-Lagreze and Siskos (1982) as given in

Table 2.3. The data correspond to ten cars evaluated via six criteria: max-

imum speed, horse power, space of the car, gas consumption in town, gas

consumption at 120 km/h and the price.

Table 2.3: Input data for car selection example and the results of ranking

In this example, the first three criteria (maximum speed, horse power and

space) are maximized while the last three criteria (gas consumption in town,

gas consumption at 120 km/h and price) are minimized. Clearly the problem

is having a conflicting criteria. The solutions given are the general Pareto
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2.5 - Test cases: analysis and comparison

solutions. In general, the ideal solution is I+ = (182, 13, 8.47, 7.2, 7.3, 24.8)

while in turn, the anti-ideal solution is I− = (117, 3, 5.11, 14.5, 12.95, 75.7).

However, in this application test case, the criterion value is not in standard

form. To standardized the criterion value, formulae (2.2)-(2.5) and formulae

(2.9)-(2.10) are used. After the weight calculation using the standardize

values and formula (2.6), the weights 0.6346, 0.01, 0.01, 0.01, 0.01 and 0.3254

for each criterion, respectively are obtained (Kao, 2010). The cars are ranked

with the trade-off ranking, the TOPSIS and the relative distance ranking

method. The results are shown in the last three columns in Table 2.3.

The rankings obtained by the TOPSIS and the relative distance method

are different from those in the proposed method, i.e. the trade-off ranking.

The trade-off method ranked car no. 1 as the best choice while the relative

distance method ranked it as the second and the TOPSIS ranked it as the

fourth. In turn, the best choice in the relative distance approach is the sec-

ond one in both the trade-off ranking and the TOPSIS. Car no. 3 is ranked

the highest with the TOPSIS method, while the third with both the trade-off

ranking and the relative distance method. To justify the best solution of the

trade-off ranking approach in this application problem, refer to the Table 2.4.

Table 2.4: Preference ranking for each criterion in the car example
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2.5 - Test cases: analysis and comparison

Notice that each criterion is ranked according to its value from the input

data (Table 2.3). For the first three criteria, they are ranked from the highest

value to the lowest value since they are the benefits criteria. It is vice versa

for the last three criteria, the cost criteria, where they are ranked from the

smallest value to the largest one. As can be seen in Table 2.4, car no.1

holds the most balance ranking in all criteria out of the ten cars. It is

an evident that the trade-off ranking approach gives the less compromise

solution compare to the others in a general Pareto set of solutions.

52



3. UNCERTAINTY AND SENSITIVITY ANALYSIS IN
MULTI-CRITERIA DECISION MAKING PROCESS

Good decisions come from experience.

Experience comes from making bad decisions.

-Mark Twain, Literary icon.

SECTION THREE

Parts of this section have been (i)presented in the 2016 International

Conference on Natural Science and Applied Mathematics, 7-9th April 2016,

Dubai, UAE, (ii)published in the International Journal of Applied Physics

and Mathematics, vol. 6, no. 3, pp. 129-137, 2016, and (iii)presented in the

2nd International Conference of Mathematics: Pure, Applied and Computa-

tion, 23rd November 2016, Surabaya, Indonesia.

3 Uncertainty and sensitivity analysis in

multi-criteria decision making process

Data in the multi-criteria decision making are often imprecise and change-

able. Therefore, it is important to carry out sensitivity analysis test for

the multi-criteria decision making problem. This part of the thesis aims to

present a sensitivity analysis for some ranking techniques based on the dis-

tance measures in multi-criteria decision making. Two types of uncertainties

are considered for the sensitivity analysis test. The first type is related to the

input data, while the second type is towards the DM preferences (weights).

Several test cases are considered to study the performance of each ranking

technique in both types of uncertainties.

The ranking techniques considered in this study are TOPSIS, the relative

distance and trade-off ranking methods. Recall from Section 2, the TOPSIS

and the relative distance method measure a distance from an alternative to

the ideal and anti-ideal solutions. In turn, the trade-off ranking calculates

a distance of an alternative to the other alternatives. The trade-off ranking

method in its original form as illustrated in Section 2.4 has been tested
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3.1 - Trade-off ranking modification

on different test cases and the results were promising by giving the least

compromised option as the best solution. However, not every DM opt for

the least compromised option. Thus, the trade-off method can be improved

considering the extreme options (Figure 2.2) as the solution in a case if the

DM opt for that option. In this way, the trade-off ranking modification is

suited for every DM preferences. The modification is described in the next

subsection.

3.1 Trade-off ranking modification

Recall from Section 2.4, in a conflicting multi-criteria problem, it is not

possible to determine an alternative that possess the best value for all the

criteria, hence it is wise to seek a compromise solution between those criteria.

The formulation of the trade-off ranking method in Section 2.4 ensures the

best trade-off solution. Formally, each criterion is assumed to be equally

important; however, the weighting may be enforced in the trade-off ranking

method formulation.

An even and well distributed set of Pareto solutions is a pre-requisite

for the method. Such a set efficiently represents the whole Pareto frontier.

Thus, a DM is able to make an efficient decision based on the limited set

within a time-constraint situation. Such a set can be obtained from opti-

mization methods such as the Normal Boundary Intersection (NBI) method

(Das and Dennis, 1998), the Normal Constraint (NC) method (Messac et al.,

2003; Messac and Mattson, 2004) and the Directed Search Domain (DSD)

algorithm (Erfani and Utyuzhnikov, 2011; Erfani et al., 2013).

Now, consider q alternatives and m criteria. In this study, we only con-

sider a limited set of q alternatives. Suppose that q > m. In the trade-off

ranking method, the criteria performance Yij and the criteria weights wj are
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3.1 - Trade-off ranking modification

normalised by the formulae:

fij =
Yij −min

j
Yij

max
j
Yij −min

j
Yij

, i = 1, ..., q; j = 1, ...,m, (3.1)

w′j =
wj∑n
j=1wj

, j = 1, ...,m. (3.2)

The normalization guarantees that the range belongs to [0,1], and elimi-

nates the units of criteria functions. The normalisation step can be ignored

if the performance scores vary in the same range and
∑m

j=1wj = 1 with

wj ≥ 0, j = 1, ...,m.

Ideally, the set of alternatives includes the anchor points of the multi-

objective problem (2.1). The anchor point is a solution for a single-objective

problem. Such a solution is called an extreme solution in the trade-off ranking

method, i.e. a solution with the best value in at least one criterion (Figure

2.2. We presume that the number of extreme solutions in MCDM problem

is equal to m. Practically, a k-th extreme solution, A∗k, k = 1, ...,m is the

alternative with the optimal j-th criterion:

A∗k = {min
1≤i≤q

fij}, j = 1, ..., n for the cost criteria, or

A∗k = {max
1≤i≤q

fij}, j = 1, ..., n for the benefit criteria. (3.3)

The benefit criteria are those to be maximized, such as profit, while the

cost criteria are those to be minimized, such as price.

The trade-off ranking modification has two levels of selection. The first

level is the trade-off between each alternative and the extreme solutions. In

this first level, the ranking measure for the trade-off method is the total

distance from an alternative, Aα = (fα1, fα2, ..., fαm)T , α = 1, ..., q, to all the
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3.1 - Trade-off ranking modification

extreme solutions, A∗k = (fk1, fk2, ..., fkm)T , k = 1, ...,m, given by formulae:

DT1α =
m∑
j=1

w′j[dTOR1(Aα, A
∗
k)], α = 1, ..., q,

m∑
j=1

w′j = 1,

w′j > 0, j = 1, ...,m, (3.4)

where w′j, j = 1, ...,m is the normalized weight of criterion j. The dTOR1(., .)

denotes the distance formula between two points in L2-metric such as:

dTOR1(Aα, A
∗
k) =

[
m∑
j=1

(fαj − fkj)2
]1/2

, α = 1, ..., q; k = 1, ...,m. (3.5)

An alternative with the minimum value of DT1, i.e. the degree of first

trade-off, is the best alternative with the trade-off ranking method. Such an

alternative is the closest option to all the extreme solutions. We choose the

extreme solution as the point of reference since it represents the best solution

in a single-criterion problem. In a conflicting multi-criteria problem, it is

not possible to have a solution that simultaneously satisfies all the criteria.

Hence, by obtaining the best solution in most of the criteria, if not all, is

considered as a reasonable compromise solution in the conflicting criteria

problem.

In the case of the same minimum value of DT1, the trade-off ranking

formulation is further applied to the second level of selection. In this level,

the ranking measures a distance between the alternatives as in Section 2.4

with weights imposed. The general formula for the weighted distance between

an alternative Aα = (fα1, fα2, ..., fαm)T , α = 1, ..., q, and an alternative Aβ =
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3.1 - Trade-off ranking modification

(fβ1, fβ2, ..., fβm)T , β = 1, ..., q, is:

dTOR2(Aα, Aβ) =

[
m∑
j=1

w′2j (fαj − fβj)2
]1/2

,

m∑
j=1

w′j = 1,

w′j > 0, j = 1, ...,m. (3.6)

Here, α, β = 1, ..., q, where q is the number of alternatives. The distance

formulae dTOR2(., .) in the trade-off ranking method implies the distance be-

tween two alternatives in terms of weighted criteria values.

The sum of distances from one alternative to all the others, i.e. the degree

of second trade-off, is calculated as:

DT2α =

q∑
i=1

[dTOR2(Aα, Ai)] , α = 1, 2, ..., q. (3.7)

The value of DT2α implies the total distances of an alternative α to the

other alternatives. A smaller values implies a shorter accumulative distances.

Hence, an alternative with a smaller value of DT2 has a less compromise with

the other alternatives, or a less degree of trade-off for an alternative. Here,

the trade-off ranking is determined further by the value of DT2 where the

least value holds the highest ranking.

Thus, the best solution in the trade-off ranking is the solution with the

least compromise in regards to (i) the extreme solutions, and (ii) the other

alternatives. As an analogy, consider the price and quality as two conflicting

criteria. The best quality item is usually offered for a higher price. In turn,

the cheapest item is a trade-off of its quality. Given all the feasible options,

including those two extreme cases, the trade-off ranking method is able to

give the least trade-off option according to the DM as the best solution.

The distance measures in the trade-off ranking modification is illustrated in
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3.1 - Trade-off ranking modification

Figure 3.1.

The difference in distance measures between the trade-off ranking modi-

fication, the TOPSIS and the relative distance method is also illustrated in

Figure 3.1.

Figure 3.1: Difference in distance measures between the trade-off ranking,
TOPSIS and the relative distance method

Figure 3.1 shows the distance measures of the TOPSIS, the relative dis-

tance and trade-off ranking methods. Consider four alternatives A,B,C,D,

where A and D are the extreme solutions, the ideal and anti-ideal solu-

tions as shown in Figure 3.1. The intervals between alternatives [B,A] and

[B,D] contribute to the distance in the first level of trade-off ranking method

where the sum of the distances is DT1B as formula (3.4). The second level of

trade-off measures the distance of an alternative to all other alternatives, i.e.

[B,A], [B,C] and [B,D], using the weighted distance formula in L2-metric.

The sum of them, DT2B, is the basis for the second level trade-off ranking

as in formula (3.7). The intervals [I+, D] and [I−, D], represented by dT+

and dT− respectively, show the distance in the TOPSIS and are also con-

sidered in L2-metric. For the relative distance method, consider line PQ for

calculating a relative measurement of each alternative to the ideal/anti-ideal
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3.2 - Uncertainty in the input data

solutions. The line PQ is determined by constructing a straight line with

the slope= −w1/w2 that passing through the ideal solution I+. Consider

line P ′Q′ with the same slope passing through the alternative C and suppose

the interval [I−, I+] intersects the line P ′Q′ at point Co as shown in Figure

3.1. Then, CoI− is the relative distance of alternative C to the anti-ideal

solution, while CoI+ is the relative distance of alternative C to the ideal

solution. Due to the relative measures, the distance in the relative distance

method is calculated using the L1 distance metric.

3.2 Uncertainty in the input data

In this section, the first uncertainty in the MCDM process, uncertainty in

the input data, is considered. This first type of uncertainty can occur due

to a variety of reasons, such as imprecise input parameters, lack of data or

inaccurate data during the design process. In multi-objective optimization,

the input data are used to generate a set of alternatives for MCDM process.

Thus, the uncertainty in the input data may generate a different set of al-

ternatives and give a different ranking solution. In this study, the sensitivity

of the MCDM methods to the uncertainty in the input data is considered by

using the fuzzy set theory (Zadeh, 1965), which allows the multi-objective

problem to be formulated in a more flexible way for practical applications.

The fuzzy theory was used by Erfani and Utyuzhnikov (2010) to handle the

uncertainty in the variables and to develop a robust design of the multi-

objective optimization problem by finding a less sensitive solution to the

uncertainty of the model. There are several other authors who implemented

the fuzzy theory in MCDM methods and application problems (Amiri, 2010;

Torlak et al., 2011; Buyukozkan and Cifci, 2012).

By using fuzzy numbers, problem (2.1) can be transformed into a multi-
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3.2 - Uncertainty in the input data

objective fuzzy constrained problem as:

Minimize Ỹ = {Ỹ1(x), Ỹ2(x), ..., Ỹm(x)},

subject to g̃k(x) ≤ b̃k, , k = 1, ..., p,

x ∈ D, (3.8)

where the tilde denotes that the problem is modelled using fuzzy variables.

The fuzzy problem (3.8) is solved by transforming the fuzzy numbers into

a crisp value. To do so, the crisp possibilistic mean value is used (Carlsson

and Fuller, 2001). The crisp possibilistic mean value of fuzzy numbers is

given by the formula:

Mean(A) = a+
c− b

6
. (3.9)

Using formula (3.9) (see Appendix B), the fuzzy problem (3.8) is then

converted into a deterministic formulation by substituting the fuzzy variables

with their crisp values. Thus, problem (3.8) is reduced to

Minimize Y mp = Y mp
1 (x), Y mp

2 (x), ..., Y mp
m (x)

subject to gmpk (x) ≤ bmpk , k = 1, ..., p,

x ∈ D, (3.10)

where the mp notation denotes the possibilistic mean values.

Solution to the deterministic problem (3.10) gives a set of solutions called

the Possibilistic Mean Pareto optimal solution according to the following

definition:

Definition: (Possibilistic Mean Pareto Optimality) Vector x∗ ∈ D is

called the Possibilistic Mean Pareto optimal of problem (3.10) iff there does

not exist any h ∈ D such that Y mp
j (h) ≤ Y mp

j (x∗) for any j = 1, ...,m and

exists l ≤ m : Y mp
l (h) < Y mp

l (x∗).

The set of optimal solutions for problem (3.10) is then treated as Pareto
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alternatives in MCDM process, where a ranking algorithm is imposed to find

the best option.

3.2.1 Robust Set of Alternatives

The DM may prefer a robust (stable) set of solutions, which minimizes the

variation of input parameters, rather than an optimal one. In finding for a ro-

bust set of solutions, a new function, the measure of robustness, is introduced

(Erfani and Utyuzhnikov, 2010), and is defined as follows:

R =
1

nm

m∑
j=1

n∑
k=1

σYj
σxk

, (3.11)

where n is the number of design variables/parameters which vary, and m is

the number of objective functions. The denominator σxk, which denotes the

standard deviation of the parameter, is calculated by the variance of fuzzy

number (Carlsson and Fuller, 2001) given by (see Appendix B):

Var(A) =
(b+ c)2

24
. (3.12)

In turn, the numerator σYj, which is the standard deviation of the ob-

jective function, is calculated using the first order Taylor series (Parkinson

et al., 1993) as follows:

σ2
Yj

=
m∑
j=1

(
∂Yj
∂p

)2

σ2
p, (3.13)

where p is the uncertain parameters of the model. Here, formula (3.12) is

also used to calculate the variance of the parameters, σ2
p.

Formula (3.11) is minimized to find a robust set of solutions, since min-

imization of R leads to a smaller value of σYj, despite having greater value

of σxk. Hence, R is added as a new objective function for multi-objective
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problem (3.10). Therefore, in searching for a robust set of solutions in multi-

objective optimization, problem (3.10) is then converted to

Minimize Y mp = {Y mp
1 (x), Y mp

2 (x), ..., Y mp
m (x)},

Minimize R,

subject to gmpk (x) ≤ bmpk , k = 1, ..., p,

x ∈ D. (3.14)

The set of robust solutions is then ranked with the MCDM methods.

The rankings for both, Possibilistic Mean Pareto and robust solutions, are

demonstrated with a test case in the next subsection.

3.2.2 Test Case: Two-bar Truss Structure

In this subsection, a test case is considered to see the difference in the ranking

solutions with the alternatives obtained from the Possibilistic Mean Pareto

design (3.10) and the robust design (3.14). The difference reflects the ranking

effect of each MCDM method with respect to the uncertainty in the input

data.

The test case is introduced by Messac and Ismail-Yahaya (Messac and

Ismail-Yahaya, 2002) and is shown in Figure 3.2. The design variables are

the diameter of members x1, and the height of structure x2. There are two

conflicting objective functions to be considered, which are to minimize the

total mass of truss members, and to minimize the deflection due to the load

F = (150, 20, 30) kN. The parameters of the problem are: member thickness,

t = (2.5, 0.5, 1.5) mm, structure width, w = (750, 100, 50) mm, mass density,

ρ = 7.8 × 10−3 gr/mm3 and elastic modulus, E = 210000 Nmm2. The

constraints are as follows: the normal stress has to be less than the buckling

stress, 1 ≤ x1 ≤ 100 and 10 ≤ x2 ≤ 1000. As can be seen, there are three

uncertain variables/parameters in this problem, F , t and w, have been set

as the triangular fuzzy numbers.
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Figure 3.2: Two-bar truss structure

The full formulation of the problem is as follows:

Minimize Mass, F1 = 2πptx1

√
w2 + x22,

Minimize Deflection, F2 =
F (w2 + x22)

3/2

(2πtEx1x2)2
,

subject to s ≤ 1

8
π2E

t2 + x21
w2 + x22

,

1 ≤ x1 ≤ 100,

10 ≤ x2 ≤ 1000,

where

s =
F

2πtx1x2

√
w2 + x22.

The triangular fuzzy parameters are substituted by their crisp possibilistic

mean values of F = 151.6 kN, t = 2.66 mm and w = 741.6 mm (3.9). Using

these deterministic values of F , t and w, problem (3.10) is then solved to

obtain the Possibilistic Mean Pareto solutions.

The robust measure is constructed with the variance of 1020.6, 0.4 and
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30.61 for F , t and w, respectively, as follows:

R =
1

6

((
σF1

σF
+
σF1

σt
+
σF1

σw

)
+

(
σF2

σF
+
σF2

σt
+
σF2

σw

))
.

Both the numerators σF1 and σF2 are calculated using formula (3.13)

with respect to the uncertain parameters F , t and w.

Both problems (3.10) and (3.14) are solved with the Directed Search Do-

main (DSD) algorithm (Erfani and Utyuzhnikov, 2011). Erfani and Utyuzh-

nikov (2010) have tackled the robustness problem in their paper. Their work

here is now extended to the ranking problem. For each set of alternatives

obtained, the MCDM methods are then used to solve the ranking problem

with the assumption of equal weights.

Figure 3.3: Results of the top ranking for Possibilistic Mean and robust
Pareto frontier

Figure 3.3 shows the results of the top ranking for Possibilistic Mean

and robust Pareto frontiers with three different MCDM methods: trade-off

ranking, relative distance method and TOPSIS. For these methods, the top
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3.3 - Uncertainty in the Decision Maker’s preference

ranking areas are marked by the circle, triangular and rectangular, respec-

tively. As can be seen from Figure 3.3, the top ranking solutions for both the

Possibilistic Mean Pareto frontier and the robust one are different for each

method. The DM has the option to choose between the Mean Pareto opti-

mal solution and the robust solution. The highest trade-off ranking for the

robust frontier is situated in the region, which differs significantly less from

the appropriate solutions on the Possibilistic Mean Pareto frontier, than that

for any other method. Therefore, it is advisable for the DM to opt for this

robust solution, as it is not only robust but also near to the mean Pareto op-

timal value, with a lower deflection and greater mass. The trade-off ranking

method selects the region on the Pareto frontier with the lowest reasonable

deflection. Any further decrease of deflection leads to a significant increase

of mass.

In the case of the TOPSIS and the relative distance, the top rankings

prove to be significantly different for the Possibilistic Mean and robust fron-

tiers. Intuitively, it is preferable to design a truss with a larger mass for

obtaining less deflection. This is consistent with the solution provided by

the trade-off ranking method in the indicated region of Figure 3.3. By test-

ing this first level of sensitivity analysis, the DM is able to determine a set

of robust alternatives in MCDM process. Moreover, the DM is able to gain

insight into different solutions provided by the MCDM methods and make

the best decision out of all solutions.

3.3 Uncertainty in the Decision Maker’s preference

In this section, another type of uncertainty in the MCDM process is consid-

ered. In the decision making process, the DM may be uncertain about their

preferences. The DM may have ambiguity, for instance, in which criterion

they prefer the most or how much the preference is, or they do not know

exactly how much they prefer a certain alternative. In the decision making

process, the weights assigned to the decision criteria represent the importance
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of the criteria or the preferences of the DM. The criterion with the highest

weight is the most important. The DM can make better decision if he/she is

able to determine how sensitive the current ranking of the alternatives to the

changes of the weights of the decision criteria. The problem can be tackled

via the sensitivity analysis of the criteria weights.

3.3.1 Computational Experiment

A computational experiment is undertaken to study how sensitive each MCDM

method to the changes of the weight of each criterion. A traditional approach

is used, where random weights under constraints are generated for the sensi-

tivity analysis. The random weights reflect the various techniques of weight

evaluations as applied to different MCDM processes (Einhorn and Hogarth,

1975; Hobbs, 1980; Stillwell et al., 1981; Schoemaker and Waid, 1982; Soly-

mosi and Dombi, 1986; Barron and Barrett, 1996; Olson, 2004; Kao, 2010;

Toloie-Eshlaghy et al., 2011). Regardless of the techniques used, the obtained

weights always have deterministic values. The results of the experiment are

shown in some extreme cases of weights using two of the test cases taken

from Section 2.5. For a ranking analysis, the trade-off ranking method is

compared against the TOPSIS and the relative distance method.

In all the test cases, shapes are used to show the top choices for each

method. The rectangular shape is used for the trade-off ranking method; the

triangular, for the relative distance approach; and the circle, for the TOPSIS.

In ZDT2 problem (Zitzler et al., 2000), the optimization problem gen-

erates a non-convex Pareto frontier as shown in Figure 3.4. The results for

the best solutions for each ranking approach for the selected weights are also

shown in the same figure.

The extreme solutions to this problem is (0,1) and (1,0). As seen in Figure

3.4, the preferable choices in the trade-off ranking method vary as the weight

changes. As F1 is more preferable than F2, i.e. w1 > w2, the top choices in

the trade-off ranking are skewed to the F2 area in the graph as the best value
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Figure 3.4: Top ranking for each method with each weight case for ZDT2

of criterion F1 (minimum) is situated in the area. In turn, if the DM opt

for criterion F2 than F1, the preferable choices are on the F1 area. As the

weights are equal (w1 = 0.5, w2 = 0.5), the top solutions are at the center of

the graph, implying a solution with the least compromise among others in

the two conflicting criteria problem. In the equal weights case, the second

level of trade-off is imposed as the first level calculation revealed the same

minimum value of DT1. The same ranking situation occurs in the relative

distance and the TOPSIS methods. They are only differ for the case of equal

weights between criteria.

Similar to the trade-off ranking method, as criterion F1 is more preferable

to criterion F2, the top choices for the relative distance and the TOPSIS

methods are situated on the left-hand side of the graph. Otherwise, the top

ranking alternatives are situated on the right-hand side region.

For the equal weights between criterion F1 and criterion F2 (w1 = 0.5, w2 =

0.5), the top choices for the relative distance method reveal two extreme
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cases, in which both solutions (0,1) and (1,0) give the same minimum value

for the ranking. There is a huge difference in choosing (0,1) as the oppo-

site to (1,0), which implies that it is necessary to choose one criteria while

completely ignoring the other. Such ranking solutions occur because the

problem has the same extreme values for both criteria, which are F1 = 1 and

F2 = 1. Thus, the rankings depend on the weights, i.e. the DM preferences.

Therefore, when the weights are equal, the two best solutions occur. In the

case of having two or more of the best solutions, the TOPSIS and the rela-

tive distance methods do not have an extra algorithm to tackle this kind of

problem.

The three dimensional test case, DTLZ5, is introduced by Deb et.al.

(2005). In this case, the same alternative, (0,0,1), is chosen twice as the

extreme solutions since it has the minimum value in two criteria, F1 and F2.

The third extreme solution, implies an alternative with the minimum value

in criteria F3, is (0.71,0.71,0). The best alternatives for each ranking method

with several chosen weight cases are shown in Figure 3.5. The chosen weights

are given in Table 3.1.

Table 3.1: Weight cases for DTLZ5

Weight case a b c d e f
w1 = 1 w1 = 0 w1 = 0 w1 = 1/3 w1 = 0.25 w1 = 0.3

Weights w2 = 0 w2 = 1 w2 = 0 w2 = 1/3 w2 = 0.25 w2 = 0.3
w3 = 0 w3 = 0 w3 = 1 w3 = 1/3 w3 = 0.5 w3 = 0.4
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Figure 3.5: Top ranking for each method with each weight case for DTLZ5

In Table 3.1, the weight cases a, b and c represent the importance in only

one criterion, either F1, F2 or F3, at a time. In turn, the case d represents an

equally importance criteria.

In Figure 3.5, the rectangular shapes represent the top choices for the

specified weight cases in the trade-off ranking method. The triangular shapes

imply the top rankings for the relative distance approach, and the circles

denote the top ranking for the TOPSIS. From the results shown, it follows

that the top ranking in the trade-off ranking method, the TOPSIS and the

relative distance approach are the extreme solutions (0,0,1) and (0.71,0.71,0)

as the weight changes. In this problem, the trade-off ranking method gives

the same top solution as the TOPSIS and the relative distance method. In

the cases of a, b and c, the top solution in the trade-off ranking method is an

alternative with the best value in each important criterion, respectively. For

example, (0,0,1) is the best solution for the cases a (w1 = 1) and b (w2 = 1)

as it has the minimum values at F1 = 0 and F2 = 0.

Apart from other similar ranking results with the TOPSIS and the relative

distance approach, the trade-off ranking gives the middle point as the best

solution in a specific weights case e, which are w1 = 0.25, w2 = 0.25 and w3 =
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0.5. In the case e, the extreme solutions are said to be equally preferred by

the DM as the weights w1 and w2 represent the importance of the same

extreme solution (0,0,1). In this weight case, the trade-off ranking algorithm

is imposed further to the second level, i.e. DT2, and hence the middle

solution. The result of this weight case is different for the other two methods,

in which they give (0.71,0.71,0) as the best solution. Supposedly, in the

relative distance method and the TOPSIS, it is an alternative that closest to

the ideal (0,0,0) and farthest from the anti-ideal (0.71,0.71,1) solutions.

For the equal weights case d, the three MCDM methods give the same

top solution (0,0,1). The equal weights represent equally important criteria

among the three F1, F2 and F3. Again, in the trade-off ranking method,

the weights w1 = 1/3 and w2 = 1/3 represent the importance of the same

extreme solution (0,0,1) since it is the alternative with the best value in

criteria F1 as well as F2. Therefore, whenever the preferences towards both

criteria F1 and F2 exceed the preference towards the third criteria F3, the

extreme solution (0,0,1) is the top solution with the trade-off ranking method.

As an example, in the weight case d, the extreme solution (0,0,1) is preferred

2/3 times more than the extreme solution (0.71,0.71,0). The same ranking

occurs in the weight case f where the importance of extreme solution (0,0,1)

is 0.6 (w1 +w2) compared to the extreme solution (0.71,0.71.0) which is only

0.4 (w3).

3.3.2 Objective Weights via the Trade-off Ranking Method

There are two types of weights in a MCDM problem, the subjective and ob-

jective weights. The subjective weight is the weight determined by the DM

since the human judgements may be affected by their past experience, intu-

ition, biased and etc. On the other hand, the objective weight is calculated

from the data. By obtaining the weight via a data calculation, we minimize

the uncertainty in the DM preference, giving a set of weights that would

optimize the ranking calculation. In this section, we show how to determine
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the objective weights using the trade-off ranking method.

The weights are determined by minimizing formula (3.4) such as:

Minimize

q∑
i=1

[
m∑
j=1

wj[dTOR1(Ai, Ak)]

]
, i = 1, ..., q; k = 1, ...,m,

subject to
m∑
j=1

wj = 1,

wj > 0, j = 1, ...,m,

where

dTOR1(Ai, Ak) =

[
m∑
j=1

(fij − fkj)2
]1/2

,

fij =
Yij −min

j
Yij

max
j
Yij −min

j
Yij

. (3.15)

The result of optimization problem (3.15) is a set of weights that would

minimize the total distances of the alternatives and the extreme solutions.

Therefore, if the data are skewed to one of the extreme solutions, the result

is a set of optimal weights that would give such an extreme solution as the

best option. As examples of the optimization results, consider the two trivial

data sets as shown in Figure 3.6.

Figure 3.6 shows two graphs, 3.6(a) and 3.6(b), as examples of the ob-

jective weights calculation using the trade-off ranking method for problem

(3.15). In Figure 3.6(a), the Pareto solutions are skewed to the extreme

solution F2, while the data in Figure 3.6(b) show otherwise. By solving op-

timization problem (3.15) using the set of alternatives in Figure 3.6(a), we

obtain the optimal weights of w1 = 1 and w2 = 0. The optimal weights give

the extreme solution (0,1) as the best option out of three Pareto alternatives

in Figure 3.6(a) with the trade-off ranking method. As can be seen, the ex-

treme solution (0,1) is situated in the F2 area, which is the area where the
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Figure 3.6: Examples for the objective weights calculation

data in Figure 3.6(a) are skewed.

On the other hand, data in Figure 3.6(b) give w1 = 0 and w2 = 1 as the

optimal weights. Such weights give the extreme solution (1,0) as the best

option in Figure 3.6(b). The results are consistent with the data in Figure

3.6(b) which are scattered towards the F1 area. Thus, the optimization

result for problem (3.15) depends on the distribution of the data set on the

Pareto frontier. Therefore, if the data (i.e. the alternatives) are evenly

distributed, the optimization problem (3.15) may gives finitely many sets of

optimal weights as the result. In such a case, formulae (3.6) and (3.7) should

be employed for the ranking calculation using the equal weights.

As mentioned before, imposing the objective weights may minimize the

uncertainty in the DM preferences. However, when the DM preferences are

available, the subjective weights should be considered instead of the objective

weights.

3.4 Critical criterion analysis in multi-criteria decision

making

In this section, we seek for a critical criterion in a multi-criteria decision

making problem via analysing the sensitivity of ranking method to various
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criteria weights. Prior to this section, the DM may already defined the best

solution according to their preferences (criteria weights) with the trade-off

ranking, the TOPSIS and the relative distance method. Now, let say the

DM want to change those preferences. The change may or may not affect

the current best solution. The critical criterion is determined by analysing

the smallest change in the preferences value that affects the current solution.

Again, the trade-off ranking, the relative distance method and the TOPSIS,

are used for comparison in the analysis.

3.4.1 Methodology

The methodology used for the analysis is given in this section. Let ð1 denotes

the change in the current weight w1 associated with criterion C1. Thus, a new

weight for criterion C1 is w∗1 = w1 + ð1 where ð1 ≥ −w1 since w∗j ≥ 0 (j =

1, ,m). Note that the weights wj are normalised such that
∑m

j=1wj = 1.

Hence, the new normalised weights, w
′
j (j = 1, ..,m) for the case of the

weight change in criterion C1 are then given by the formulae:

w
′

1 =
w∗1

w∗1 + w2 + + wm

w
′

j =
wj

w∗1 + w2 + + wm
for j 6= 1. (3.16)

The new ranking is calculated by substituting the new normalised weights,

which are formulae (3.16) into formulae (2.7) and (2.8) for the relative dis-

tance method, formulae (2.11) and (2.12) for the TOPSIS and formulae (3.4)

or (3.7) for the trade-off ranking. The weight change analysis is done for each

criterion Cj (j = 1, ,m) with any possible value ðj (j = 1, ,m). Formula

(3.16) are replaced by a different value of j according to the new weight in

each analysis case.

The critical criterion is determined after the whole analysis has been

completed. The critical criterion is defined by referring to Triantaphyllou
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& Sánchez (1997). Triantaphyllou & Sánchez introduced four definitions of

critical criterion based on absolute term, relative term, top ranking and any

ranking. In this study, the critical criterion is defined as a criterion with the

smallest changes in the current weight, which affects the current ranking.

The smallest change is determined by the utilization of absolute value.

3.4.2 Critical criterion analysis

Consider the data shown in Table 3.2 taken from Triantaphyllou & Sánchez

(1997). The data consist of four alternatives and four criteria with associated

weights. It can be seen that the criterion C1 has the largest weight, while C4

has the smallest.

Table 3.2: Data of the problem

C1 C2 C3 C4

w1 = 0.3277 w2 = 0.3058 w3 = 0.2876 w4 = 0.0790
A1 0.3088 0.2897 0.3867 0.1922
A2 0.2163 0.3458 0.1755 0.6288
A3 0.4509 0.2473 0.1194 0.0575
A4 0.0240 0.1172 0.3184 0.1215

Table 3.3: Current ranking for each method

Alternative Trade-off ranking TOPSIS Relative distance method
A1 1 4 4
A2 2 2 3
A3 3 3 2
A4 4 1 1

Table 3.3 presents the current ranking for each decision making method

calculated using the respective ranking formulae. The current ranking for

the trade-off method is different compared to the other two methods; the

TOPSIS and the relative distance ranking. The best alternative in the trade-

off method (without modification) is ranked the lowest in the other two
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methods. In turn, their best solution is ranked the worst in the trade-off

approach.

The analysis on changes in each of the weights (w1, w2, w3, w4) separately

may give insight in determining the critical criterion. The results of the

analysis are given in Tables 3.4-3.7.

Table 3.4: New ranking for each method with weight change in w1

I = Trade-off ranking; II = TOPSIS; III = Relative distance

Table 3.4 shows the result of rankings for the weight changes in w1 for

criterion C1 analysis. As can be seen, the current ranking for the trade-off

ranking method starts to change with ð1 = −0.3. The DM may analyse the

change in the range of ð1 = [−0.3,−0.2] to determine the smallest change in

w1 that affects the current trade-off ranking.

The current ranking by the TOPSIS does not retain with any of the

changes in w1. However, the best solution for the TOPSIS (alternative A4)

is to remain the first ranking until ð1 = −0.3 where it starts downgrading

into the second choice in contrast to alternative A3. A drastic change in

the TOPSIS ranking for alternative A3 starts to occur in the range of ð1 =

[−0.1, 0.2] as it changes from the worst option to the second one. Further

analysis in the specific range is required if the DM wants to determine the

exact value of ð1 at which the change occurs.

The current ranking for the relative distance approach retains with ð1 =
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[−0.2,−0.1]. However, at ð1 = −0.3, the current ranking changes with the

switch on the first and second rankings. The first current option (alternative

A4) swaps with the second current option (alternative A3). With ð1 = 0.2,

the same shift occurs with the second and third rankings, while the best and

worst alternatives are retained. For ð1 = 0.4 and ð1 = 0.6, all the second,

third and fourth current rankings are changed while the first one remains.

The DM may want to analyse the changes in the whole ranking or may be

interested in looking into the changes of the best ranking only.

Table 3.5: New ranking for each method with weight change in w2

I = Trade-off ranking; II = TOPSIS; III = Relative distance

Table 3.5 displays the new rankings of the weight changes in w2 for cri-

terion C2 analysis. Current ranking for the trade-off ranking method is pre-

served in the range of ð2 = [0.2, 0.4]. If ð2 = 0.6, the second and third choices

of the current trade-off rankings swap their places. However, the alternative

A1 is remained as the first choice. Similarly, the current ranking is started

to change with ð2 = −0.1, where alternative A1 is no more the best option,

and is replaced by alternative A2. In the analysis conducted, the change of

ð2 = −0.1 is regarded as the smallest change in w2 that affects the ranking

for the trade-off ranking method.

For the analysis with the TOPSIS method, the current ranking is observed

to change from ð2 = 0.4, where the changes only occur in the second and
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third options. Meanwhile, the best and worst rankings retain as the same

alternatives. The same ranking changes also occur in the analysis with the

relative distance approach. The first and last choices are retained throughout

the changes. However, the ranking places of second and third options are

started to change at ð2 = −0.2.

Table 3.6: New ranking for each method with weight change in w3

I = Trade-off ranking; II = TOPSIS; III = Relative distance

Table 3.6 demonstrates the result of the rankings for the weight changes

in w3 for criterion C3. Current ranking for the trade-off method are changing

at ð3 = 0.2 onwards where alternative A2 becomes the first choice instead of

alternative A1. Further analysis in the range of ð3 = [−0.1, 0.2] can be done

to find the exact value where the changes start to occur. In this analysis,

the value of ð3 = 0.2 is the smallest change in w3 that affects the current

ranking.

The current ranking for the TOPSIS retains with ð3 = 0.2. As ð3 = −0.1,

the third and the fourth rankings have shifted toward each other, while the

highest ranking retains. In the relative distance method, the current ranking

is changed at ð3 = −0.2. Again, only the third and fourth options are

swapped. The highest ranking in the relative distance approach (alternative

A3) is downgraded into the second choice with ð3 = 0.6.

Table 3.7 presents the new rankings of weight w4 changes for criterion C4.
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Table 3.7: New ranking for each method with weight change in w4

I = Trade-off ranking; II = TOPSIS; III = Relative distance

The current ranking for the trade-off method is noticed to change at ð4 = 0.2.

However, the best alternative (alternative A1) is retained throughout the

changes. The affected rankings are the second, third and fourth ranks only.

The top ranking for the TOPSIS (alternative A4) is also retained throughout

the changes. However, the full current ranking is not preserved in any of

these changes. Even with the smallest change of ð4 = 0.1, the second and

third ranks are reversed. The same ranking situation occurs in the relative

distance approach. There are no changes in the weight that preserve the

current ranking. Nevertheless, from the change of ð4 = 0.1 onwards, the full

ranking of the relative distance method remains the same with alternative

A4 as the best option and alternative A2 as the worst one.

From the results of the analysis in Tables 3.4-3.7, the critical criterion in

the trade-off ranking method is the criterion C2 where the smallest change

of ð2 = 0.1 affects the current full ranking. For the TOPSIS, the changes

of the weights in criteria C1, C3 and C4 obtain the same critical value at

ð1 = ð3 = ð4 = 0.1. After further analysis, the critical criterion in the

TOPSIS is criterion C4 with the smallest change of ð4 = 0.07. Criterion

C2 is considered as the most non-critical criterion in the TOPSIS method.

In the relative distance approach, criterion C4 is the critical criterion with
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the smallest change of ð4 = 0.1 affecting the current full ranking. It is

interesting to note that criterion C1 has the largest weight in the current

data. However, it is not the critical criterion in the trade-off ranking, the

TOPSIS or the relative distance method.
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Making good decisions

is a crucial skill

at every level.

-Peter Drucker, The founder of modern management.

SECTION FOUR

Parts of this section have been submitted for publication to the Journal

of Soft Computing.

4 Fuzzy multi-criteria decision making method

The aim of this section is to present a trade-off ranking method in a fuzzy

multi-criteria decision making environment. The triangular fuzzy numbers

are used to represent the imprecise numerical quantities in the criteria values

of each alternative, and in the weight of each criterion. The fuzzy trade-off

ranking method is developed to solve the fuzzy multi-criteria decision making

problem with conflicting criteria. Recall from Section 2.4 and Section 3.1, the

trade-off ranking method tackles this type of multi-criteria problem by giving

the least-compromised solution as the best option. The proposed method for

the fuzzy decision making problems is compared against two other existing

fuzzy decision making approaches, fuzzy VIKOR and fuzzy TOPSIS.

The fuzzy trade-off ranking method is proposed to tackle the MCDM

problem in a conflicting fuzzy environment. This type of a problem has led

to the development of the trade-off ranking method, in order to give the

least-compromised solution as the best option. In comparison with the other

MCDM methods, the trade-off ranking method is based on the overall evalu-

ation score of an alternative with respect to the other alternatives, by taking

into account the position of each alternative. This strategy is essentially

different from VIKOR and TOPSIS; for example, the TOPSIS approach is

based on an individual evaluation score, in which an alternative is calculated
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based on its distance to the ideal and anti-ideal solutions. This type of eval-

uation is obviously the best suited to non-conflicting multi-criteria problems,

where the closest alternative is also the farthest from the anti-ideal solution.

However, in a conflicting multi-criteria problem, such an assumption cannot

always be realized. This drawback in TOPSIS is addressed in a few articles;

(Opricovic and Tzeng, 2004; Wang et al., 2009; Kao, 2010). Kao (2010) has

suggested the use of L1-norm distance formula as opposed to the L2-norm

in the conventional TOPSIS method to overcome the inconsistency problem,

while, Wang et al. (2009) proposed a merge of the fuzzy TOPSIS with the

fuzzy Analytical Hierarchy Process and the metric distance method to sur-

pass the problem. Nevertheless, TOPSIS is widely accepted and used due to

its simplicity.

4.1 Multi-criteria decision making and fuzzy numbers

A conventional MCDM problem can be expressed in a matrix form as

Criterion

Y1 Y2 Y3 ... Ym

Weight w1 w2 w3 ... wm

Alternative

A1 Y11 Y12 Y13 ... Y1m

A2 Y21 Y22 Y23 ... Y2m

A3 Y31 Y32 Y33 ... Y3m

: : : : : :

Aq Yq1 Yq2 Yq3 ... Yqm

,

where the performance of criterion j in alternative i is represented by Yij

and the weight of each criterion is denoted by wj, for i = 1, .., q, j = 1, ..,m.

Here, m is the number of criteria, and q is the number of alternatives.

Traditionally, MCDM solutions assume all Yij and wj values are crisp

numbers, but in reality, the values can be crisp, fuzzy or linguistic. Consider
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an example where two candidates are considered for an engineer position.

The criteria considered are creativity (Y1), communication skill (Y2) and

years of experience (Y3). The rating for the first two criteria, Y1 and Y2, are

represented by linguistic terms such as ”very good”, ”average”, ”poor”, and

so on. The rating for criteria Y3 can be some integer numbers. Furthermore,

for group decision making that has K number of decision makers (DMs), the

preferences towards each criterion may be different for every DM. In turn,

each DM has his/her own uncertainty on the importance of each criterion.

Thus, this MCDM problem contains a mixture of fuzzy, linguistic and crisp

data sets.

To tackle such a problem, the weights of the criteria, w̃j, j = 1, ...,m,

and the performance of the alternative, Ỹij, i = 1, ..., q, j = 1, ...,m, for the

fuzzy MCDM problems are considered as linguistic variables, expressed in

positive triangular fuzzy numbers, shown in Tables 4.1 and 4.2 respectively

(Chen, 2000). In turn, the membership function of linguistic variables in the

alternative performance is presented in Figure 4.1.

Table 4.1: Fuzzy numbers for the importance weight of each criterion

Very low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)
Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)
Medium high (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)
Very high (VH) (0.9, 1.0, 1.0)

Figure 4.1 shows the membership functions for the data stated in Table

4.2. As can be seen from Figure 4.1, the intervals to represent the linguistic

variables are chosen in order to have a uniform representation from 0 to 10

in the triangular fuzzy numbers. The intervals are not unique and can have

other representations (Zadeh, 1975a,b; Chen, 2000; Wang et al., 2009; Sodhi

and T V, 2012).
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Table 4.2: Linguistic variables for the alternative performance

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)
Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)
Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)
Very good (VG) (9, 10, 10)

Figure 4.1: Membership functions of the linguistic variables

Thus, a fuzzy MCDM problem can be expressed in a matrix form as
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Criterion

Ỹ1 Ỹ2 Ỹ3 ... Ỹm

Weight w̃1 w̃2 w̃3 ... w̃m

Alternative

Ã1 Ỹ11 Ỹ12 Ỹ13 ... Ỹ1m

Ã2 Ỹ21 Ỹ22 Ỹ23 ... Ỹ2m

Ã3 Ỹ31 Ỹ32 Ỹ33 ... Ỹ3m

: : : : : :

Ãq Ỹq1 Ỹq2 Ỹq3 ... Ỹqm

,

where the performance of criterion j in alternative i for i = 1, .., q, j = 1, ..,m

is now evaluated by the triangular fuzzy number Ỹij = (aij, bij, cij) and the

weight of each criterion is represented by the triangular fuzzy number w̃j =

(wj1, wj2, wj3). Again, m is the number of criteria, and q is the number of

alternatives.

For group decision making, consider a decision group that has K DMs.

Each DM is required to rate the performance of the alternatives, and the

weights of the criteria using the linguistic variables as in Tables 4.1 and 4.2.

The final values for the alternative performance with respect to each criterion

and the weight of each criterion are considered as the average values from

the rating scores, given by the formulae:

Ỹij =
1

K

[
Ỹ 1
ij ⊕ Ỹ 2

ij ⊕ ...⊕ Ỹ K
ij

]
, (4.1)

w̃j =
1

K

[
w̃1
j ⊕ w̃2

j ⊕ ...⊕ w̃Kj
]
. (4.2)

Here, Ỹ K
ij and w̃Kj are the fuzzy performances of the alternatives and the

fuzzy weight of each criterion, evaluated by the K-th decision maker (Chen,

2000). The operator ⊕, an addition of fuzzy numbers, is described further

in the next section.
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4.1 - Multi-criteria decision making and fuzzy numbers

4.1.1 Arithmetic operations on triangular fuzzy numbers

In this section, several basic definitions and notations of fuzzy sets are briefly

introduced. These definitions and notations are used in this section for each

fuzzy MCDM method.

Figure 4.2: Triangular fuzzy number f̃ = (a, b, c)

Figure 4.2 shows a triangular fuzzy number f̃ = (a, b, c), where a, b, c are

real numbers. The interval [a, c] reflects the fuzziness of the evaluation data

b, where a closer interval means a lower degree of fuzziness. The membership

function µf̃ (x) is defined as:

µf̃ (x) =


x−a
b−a , a ≤ x ≤ b

c−x
c−b , b ≤ x ≤ c

0, Otherwise

With given a real number r, some arithmetic operations on the fuzzy
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4.1 - Multi-criteria decision making and fuzzy numbers

numbers are defined as follows:

Addition:

k∑
l=1

⊕f̃l =

(
k∑
l=1

al,
k∑
l=1

bl,
k∑
l=1

cl

)
(4.3)

Scalar addition:

f̃ ⊕ r = (a+ r, b+ r, c+ r) (4.4)

Subtraction:

f̃1 	 f̃2 = (a1 − c2, b1 − b2, c1 − a2) (4.5)

Multiplication:

f̃1 ⊗ f̃2 = (a1 × a2, b1 × b2, c1 × c2) (4.6)

Scalar multiplication:

r × f̃ = (r × a, r × b, r × c) (4.7)

Scalar division:

f̃/r = (a/r, b/r, c/r), r > 0 (4.8)

Operator MAX:

MAX
l

f̃l = (max
l
al,max

l
bl,max

l
cl) (4.9)

Operator MIN:

MIN
l
f̃l = (min

l
al,min

l
bl,min

l
cl) (4.10)

Defuzzification:

Crisp(f̃) =
a+ 2b+ c

4
(4.11)

Distance of two fuzzy numbers:

d(f̃1, f̃2) =

√
1

3
[(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2] (4.12)

The distance between two triangular fuzzy numbers, formula (4.12), is

also known as a vertex method (Chen, 2000). In turn, the defuzzification,
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4.2 - Trade-off ranking method with defuzzification

formula (4.11), is known as the second weighted average formula (Opricovic,

2011). As mentioned in Section 1.5, the defuzzification process turns the

triangular fuzzy numbers into a crisp value. Such a process is the simplest

way of tackling the fuzzy MCDM problem.

The definitions and properties of the above operations, (4.3)-(4.11), are

discussed further in several articles (see Klir and Yuan, 1995; Giachetti and

Young, 1997; Chen, 2000; Chiu and Wang, 2002; Opricovic, 2011).

4.2 Trade-off ranking method with defuzzification

As mentioned in Section 2, the trade-off ranking method is developed to solve

the MCDM problem with conflicting criteria - such a problem gives a set of

Pareto solutions. Eventually, the DM has to choose only one solution out of

many. Therefore, an evenly-distributed Pareto set is important in the trade-

off ranking method. The evenness property gives a sufficient set of solutions

that represent the whole Pareto solutions for the DM to make a decision in

a limited time.

In a fuzzy MCDM problem, the simplest way of solving the problem is

by defuzzification, in which the fuzziness is dissolved at an early stage of the

decision making process. The defuzzification process turns the fuzzy numbers

into a crisp value.

Thus, the first task in solving the fuzzy MCDM problem is to defuzzify

the alternative performance Ỹij = (aij, bij, cij), i = 1, .., q, j = 1, ..,m and the

weight of each criterion w̃j = (wj1, wj2, wj3), j = 1, ..,m using formula (4.11).

Each defuzzification is then denoted as Yij and wj, respectively.

After the defuzzification process, the ranking of the alternatives is then

calculated using a conventional trade-off ranking method as in Section 3.1.

To conclude, the steps for the trade-off ranking algorithm are given as follows:
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4.2 - Trade-off ranking method with defuzzification

1. Normalization of Yij and wj where

fij =
Yij −min

j
Yij

max
j
Yij −min

j
Yij

, i = 1, ...q, j = 1, ...,m,

w′j =
wj∑n
j=1wj

, j = 1, ...,m.

2. Determination of the extreme solutions, A∗k, k = 1, ...,m i.e. solutions

with the best value in at least one criterion. Thus, a k-th extreme

solution is the alternative with the optimal j-th criterion, such as:

A∗k = {min
1≤i≤q

fij}, j = 1, ...,m for the cost criteria, or

A∗k = {max
1≤i≤q

fij}, j = 1, ...,m for the benefit criteria.

3. Calculation of the first level of ranking measures, distance of each al-

ternative to the extreme solutions. Alternative with the least value in

distance holds the highest ranking.

dTOR1(A
∗
k, Aα) =

[
m∑
j=1

(fkj, fαj)
2

]1/2
, α = 1, ..., q, k = 1, ...,m.

DT1Aα =
m∑
j=1

[w′j × dTOR1(A
∗
k, Aα)], α = 1, ..., q, k = 1, ...m.

4. Calculation of the second level of ranking measures, distance between

the alternatives, if needed. Alternative with the minimum value in
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4.3 - Fuzzy trade-off ranking

distance holds the highest ranking.

dTOR2(Aα, Aβ) =

[
m∑
j=1

w′2j (fαj − fβj)2
]1/2

, α, β = 1, ..., q,

DT2Aα =

q∑
i=1

[dTOR2(Aα, Ai)] , α = 1, ..., q.

4.3 Fuzzy trade-off ranking

Another way to solve the fuzzy MCDM problem is using the fuzzy MCDM

method, where the fuzzy numbers are processed until the end of the algo-

rithms. In this way, the fuzzy information is preserved and the final solution

is more accurate. In a fuzzy MCDM method, the distance formula between

fuzzy numbers (4.12) is used for the ranking determination. An algorithm

for the fuzzy trade-off ranking (FTOR) method is presented in the following

steps:

1. Normalization of the performance of criterion j in alternative i, Ỹij =

(aij, bij, cij), by formulae:

f̃ij =
Ỹij 	 ã

max
j
cij −min

j
aij
, i = 1, ..., q, j = 1, ...,m,

where ã = (min
j
aij,min

j
aij,min

j
aij), i = 1, ..., q, j = 1, ...,m. The

operator 	 is the subtraction of the fuzzy numbers such as formulae

(4.5). The result of the normalized performance f̃ij is denoted as a

triangular fuzzy number f̃ij = (fij1, fij2, fij3).

2. Determination of the extreme solutions, Ã∗k, k = 1, ...,m, by formula:

Ã∗k = {max
1≤i≤q

fij3}, for the benefit criteria,

Ã∗k = {min
1≤i≤q

fij1}, for the cost criteria, j = 1, ...,m.
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4.3 - Fuzzy trade-off ranking

3. Calculation of the distance of an alternative α to an extreme solution

Ã∗k, denoted as dFTOR1(Ã
∗
k, Ãα), as follows:

dFTOR1(Ã
∗
k, Ãα) =

m∑
j=1

[d(f̃kj, f̃αj)],

α = 1, ...q, k = 1, ...,m. (4.13)

The distance between two fuzzy numbers, d(·, ·), is calculated using

formula (4.12).

4. Calculation of the first level of fuzzy trade-off, which is the trade-off

between an alternative with all the extreme solutions, is given by for-

mulae:

DFT1Ãα =
m∑
j=1

[w′j × dFTOR1(Ã
∗
k, Ãα)],

α = 1, ..., q, k = 1, ...m, (4.14)

where

w′j =
wj∑n
j=1wj

, j = 1, ...,m,

wj = Crisp(w̃j), j = 1, ...,m.

Here, wj is defuzzified using formulae (4.11). In turn, w̃j is the weight of

each criterion in the fuzzy MCDM problem, presented by a triangular

fuzzy number w̃j = (wj1, wj2, wj3), j = 1, ...,m. Similarly to DT1,

the alternative with the least DFT1 is regarded as the best option.

Again, in the case of the same DFT1 value, the fuzzy trade-off ranking

formulation is imposed further, as shown in Step 5 onwards.

5. Calculation of the distance of an alternative to the other alternatives
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4.3 - Fuzzy trade-off ranking

is determined by

dFTOR2(Ãα, Ãβ) =
m∑
j=1

[
d(P̃αj, P̃βj)

]
,

α, β = 1, ..., q, α 6= β (4.15)

where P̃ij = w̃j ⊗ f̃ij, i = 1, ..., q, j = 1, ...,m. The multiplication

of two fuzzy numbers is calculated using formula (4.6), while d(·, ·) is

the distance between two fuzzy numbers determined by formula (4.12).

The distance calculation represents the total trade-off in the quantity

of each criterion. Hence, the smallest distance value denotes the least

trade-off between the two alternatives.

6. Calculation of the second level of fuzzy trade-off, which is the trade-off

among the alternatives, is given by

DFT2Ãα =

q∑
i=1

[
dFTOR2(Ãα, Ãi)

]
, α = 1, ..., q. (4.16)

The degree of fuzzy trade-off DFT2 represents the sum of distances be-

tween one alternative, and all the other alternatives in a fuzzy problem.

The lowest value of DFT2 denotes the least value of compromise be-

tween the alternatives. Thus, the best alternative in the fuzzy trade-off

ranking contains the lowest value of DFT2 if DFT1 is the same.

In the next two subsections, the existing fuzzy MCDM methods, fuzzy

TOPSIS and fuzzy VIKOR, are briefly described. These two fuzzy meth-

ods are used for comparison with the proposed fuzzy trade-off ranking for

method’s validation.
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4.4 - Fuzzy TOPSIS

4.4 Fuzzy TOPSIS

The TOPSIS was first developed by Hwang and Yoon (1981). The TOPSIS

is based on the concept of having an alternative closest to the ideal solution,

and the farthest from the anti-ideal solution, as the best option. The ideal

and the anti-ideal solutions are considered as the artificial solutions. In

2000, Chen proposed an extension of the TOPSIS method for fuzzy decision

making process (Chen, 2000). Since then, a few researchers have been using

the fuzzy TOPSIS method for several applications, including the selection

problem (Yurdakul and Iç, 2009; Amiri, 2010; Zouggari and Benyoucef, 2012;

Rouyendegh and Saputro, 2014) and the performance evaluation (Sun and

Lin, 2009; Sun, 2010; Torlak et al., 2011; Yu et al., 2011).

The first step in the TOPSIS method is to normalize the decision matrix.

To avoid the complicated normalization formula used in classical TOPSIS,

here linear normalization is used in the fuzzy TOPSIS (Chen, 2000). There-

fore, the normalized fuzzy decision matrix R̃ is given by formulae:

R̃ = [r̃ij]q×m, i = 1, ..., q, j = 1, ...,m

where

r̃ij =

(
aij
c+j
,
bij
c+j
,
cij
c+j

)
and c+j = max

i
cij

for benefit criteria,

and

r̃ij =

(
a−j
cij
,
a−j
bij
,
a−j
aij

)
and a−j = min

i
aij

for cost criteria.

Next, the weighted normalized fuzzy decision matrix Ṽ is obtained by
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4.4 - Fuzzy TOPSIS

multiplying the weights w̃j with r̃ij as:

Ṽ = [ṽij]q×m

= [r̃ij ⊗ w̃j]q×m, i = 1, ..., q, j = 1, ...,m.

Formulae (4.6) is used for the multiplication of two fuzzy numbers. The Fuzzy

Positive Ideal Solution (FPIS), I+ and the Fuzzy Negative Ideal Solution

(FNIS), I− are then defined as follows:

I+ = (ṽ+1 , ṽ
+
2 , ..., ṽ

+
m),

I− = (ṽ−1 , ṽ
−
2 , ..., ṽ

−
m),

where ṽ+j = (1, 1, 1) and ṽ−j = (0, 0, 0) (Chen, 2000).

The distance for each weighted alternative to the FPIS and FNIS is com-

puted by:

d+i =
m∑
j=1

d(ṽij, ṽ
+
j ),

d−i =
m∑
j=1

d(ṽij, ṽ
−
j ), i = 1, ..., q

where d(·, ·) is the distance between two fuzzy numbers (4.12).

Finally, the closeness coefficient is calculated, to determine the ranking

order of all alternatives, as follows:

CCi =
d−i

d+i + d−i
, i = 1, ..., q.

The alternative with the highest closeness coefficient represents the best

solution.
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4.5 Fuzzy VIKOR

The fuzzy VIKOR method was developed to solve fuzzy multi-criteria prob-

lem with conflicting and different units criteria (Opricovic, 2011). Several

authors have used VIKOR to solve the fuzzy MCDM problem (Wu et al.,

2009, 2010). Assume that the alternatives and the weights are evaluated

by the triangular fuzzy numbers Ỹij = (aij, bij, cij) and w̃j = (wj1, wj2, wj3)

respectively for i = 1, ..., q, j = 1, ...,m. The ranking algorithm for fuzzy

VIKOR involves the following steps (Opricovic, 2011):

1. Determination of the ideal Ỹ +
j = (a+j , b

+
j , c

+
j ) and the anti-ideal Ỹ −j =

(a−j , b
−
j , c

−
j ) for j = 1, ...,m, where

(a) Ỹ +
j = MAX

i
Ỹij and Ỹ −j = MIN

i
Ỹij, if the j -th criteria represents

the benefit;

(b) Ỹ +
j = MIN

i
Ỹij and Ỹ −j = MAX

i
Ỹij, if the j -th criteria represents

the cost;

The MAX and MIN are fuzzy operators as in formula (4.9) and (4.10),

respectively.

2. Compute S̃i = (Sai , S
b
i , S

c
i ) and R̃i = (Ra

i , R
b
i , R

c
i ), i = 1, ..., q by the

equations

S̃i =
m∑
j=1

⊕(w̃j ⊗ d̃ij),

R̃i = MAX
j

(w̃j ⊗ d̃ij), j = 1, ...,m,

with

(a) d̃ij = (Ỹ +
j 	 Ỹij)/(c

+
j − a−j ), if the j -th criteria represents the

benefit;

(b) d̃ij = (Ỹ +
j 	 Ỹij)/(c−j −a+j ), if the j -th criteria represents the cost;
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where d̃ij is a normalized fuzzy difference, S̃ is a fuzzy weighted sum

as in formula (4.3) and R̃ is a fuzzy operator MAX (4.9).

3. Compute Q̃i = (Qa
i , Q

b
i , Q

c
i), i = 1, ..., q, by the equation

Q̃i =
v(S̃i 	 S̃+)

(S−c − S+a)
⊕ (1− v)(R̃i 	 R̃+)

(R−c −R+a)

where S̃+ = MIN
i

S̃i, S
−c = max

i
Sci , R̃

+ = MIN
i

R̃i, R
−c = max

i
Rc
i

and v is the weight of the maximum group utility, whereas 1− v is the

weight of individual regret. Normally, v = 0.5 (Opricovic and Tzeng,

2004). For the fuzzy MCDM problem, v is modified as v = (m+1)/2m

(Opricovic, 2011).

4. ”Core” ranking.

Rank the alternatives by sorting the values of Qb
i , i = 1, ..., q. A lower

value implies a higher ranking. The obtained ranking is denoted by

{Rank}Qb .

5. Fuzzy ranking.

The i-th ranking position in {Rank}Qb is confirmed if MIN
k∈`

Q̃(k) = Q̃(i),

where ` = {i, i+ 1, ..., q} and Q̃(k) is the fuzzy numbers for alternative

A(k) at the k-th position in {Rank}Qb . Confirmed ordering represents

fuzzy ranking {Rank}Q̃.

6. Defuzzification of S̃i, R̃i, Q̃i, i = 1, ..., q to convert the fuzzy numbers

into crisp value using formulae (4.11).

7. Defuzzification ranking.

Rank the alternatives by sorting the crisp values of S,R and Q in Step

6. A lower value implies a higher ranking. The results of the ranking

lists are denoted by {Rank}S, {Rank}R and {Rank}Q respectively.
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8. The best solution (A(1)) ranked in {Rank}Q is regarded as the best

compromise solution if the following two conditions are satisfied:

(a) C1. Suppose A(1) is the first rank alternative and A(2) is the

second rank in {Rank}Q, Adv ≥ DQ where DQ = 1/(q − 1) and

Adv = (Q(A(2))−Q(A(1)))/(Q(A(q))−Q(A(1))).

(b) C2. The alternative A(1) is also the best solution ranked by S

and/or R.

If one of the conditions is not satisfied, a set of compromise solutions

is then proposed compromising the following:

(a) Alternatives A(1) and A(2) if only condition C2 is not satisfied, or

(b) Alternatives A(1), A(2), ..., A(M) if condition C1 is not satisfied;

A(M) is determined by the relation Q(A(M)) − Q(A(1)) < DQ for

maximum M .

Further reading on the theoretical definitions of S and R values can be

made by referring to Opricovic and Tzeng (2004).

4.6 Analysis and comparison

Consider a numerical example of the personnel selection problem, where five

benefit criteria are considered in selecting one of three candidates, A1, A2 and A3,

for the post of system analysis engineer (Chen, 2000). The criteria considered

are stated as follows:

1. Emotional steadiness, Y1.

2. Oral communication skill, Y2.

3. Personality, Y3.

4. Past experience, Y4.
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5. Self-confidence, Y5.

Here, the fuzzy trade-off ranking, fuzzy TOPSIS and fuzzy VIKOR meth-

ods are used to solve the personnel selection problem. Suppose the rating

process of each alternative and the weight of each criterion are made by

three DMs. The results of the rating evaluations are shown in Tables 4.3 and

4.4. The rating value is described by the linguistic terms expressed in the

triangular fuzzy numbers as seen in Tables 4.1 and 4.2 (Section 4.1).

Table 4.3: Criteria weight by decision makers

DM1 DM2 DM3

Y1 H H H
Y2 VH VH VH
Y3 VH H H
Y4 VH VH VH
Y5 M MH MH

Table 4.4: Alternatives ratings by decision makers
A1 A2 A3

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

Y1 MG G MG G G MG VG G F
Y2 VG VG VG MG MG MG G G G
Y3 G G G F G G VG VG G
Y4 G G G VG VG VG VG G VG
Y5 G G G F F F G G MG

Formulae (4.1) and (4.2) are applied to each data in Table 4.3 and Table

4.4 respectively, to find the average performance of the alternative and the

average weight of each criterion. The fuzzy decision matrix of the problem

is then given in Table 4.5.

The defuzzified decision matrix using formula (4.11) is given in Table 4.6.
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Table 4.5: The fuzzy decision matrix for the personnel selection problem

Ỹ1 Ỹ2 Ỹ3 Ỹ4 Ỹ5
Weight (0.7,0.9,1) (0.9,1,1) (0.77,0.93,1) (0.9,1,1) (0.43,0.63,0.83)

Ã1 (5.7,7.7,9.3) (9,10,10) (7,9,10) (7,9,10) (7,9,10)

Ã2 (6.3,8.3,9.7) (5,7,9) (5.7,7.7,9) (9,10,10) (3,5,7)

Ã3 (6.3,8,9) (7,9,10) (8.3,9.7,10) (8.3,9.7,10) (6.3,8.3,9.7)

Table 4.6: Defuzzified decision matrix
Y1 Y2 Y3 Y4 Y5

Weight 0.875 0.975 0.908 0.975 0.630

A1 7.60 9.75 8.75 8.75 8.75
A2 8.15 7.00 7.53 9.75 5.00
A3 7.83 8.75 9.43 9.42 8.15

This problem aims to maximize all of the criteria. However, the conflicting

situation arises since none of the candidates possessed the best properties in

all criteria. According to Table 4.6, candidate A3 is ranked the second in

criteria Y1, Y2, Y4 and Y5, meanwhile, candidate A3 is ranked the first in

criterion Y3. Furthermore, candidate A1 is ranked the first in two criteria,

which are Y2 and Y5, but ranked the third in two other criteria, Y1 and Y4.

Meanwhile, candidate A2 is ranked the best in two criteria, Y1 and Y4, but

the worst in three other criteria, which are Y2, Y3 and Y5.

The normalized defuzzified decision matrix by the trade-off ranking method,

Step 1 in the trade-off ranking algorithm (Section 4.2), is given in Table 4.7.

Referring to Table 4.7 and using formula (3.3), the extreme solutions for

the trade-off ranking method are determined. As an example, an alternative

with the optimal value in criterion Y5 is the fifth extreme solution for the

problem, i.e. A∗5 = {0, 1, 0.64, 0, 1} since max
1≤i≤3

fi5 = 1.
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Table 4.7: Normalized defuzzified decision matrix by the trade-off ranking

Y1 Y2 Y3 Y4 Y5
Weight 0.201 0.223 0.208 0.223 0.144

A1 0 1 0.64 0 1
A2 1 0 0 1 0
A3 0.42 0.64 1 0.68 0.84

After calculating the data in Table 4.7 using formulae (3.4) and (3.5), and

the data in Table 4.5 by formula (4.13) and (4.14), the ranking by the trade-

off method with defuzzification, and the fuzzy trade-off ranking are given in

Table 4.8. As can be observed in Table 4.8, the best candidate ranked by

the fuzzy trade-off is candidate A3. Besides, it is also the best candidate

ranked by the pre-defuzzification approach in the trade-off ranking method.

Note that, even though candidate A3 is only ranked the first in one criterion,

he/she is not ranked the worst in the other criteria. Thus, this candidate has

the most balanced traits, i.e. the least compromise, out of all five criteria

compared to A1 and A2.

Table 4.8: Ranking by fuzzy trade-off

Ranking 1 2 3

Fuzzy trade-off A3 A1 A2

Defuzzification A3 A1 A2

Table 4.9: Results by fuzzy trade-off

A1 A2 A3

DFT1 1.027 1.039 0.984
DT1 1.090 1.105 1.030

Table 4.9 shows the results of the fuzzy trade-off DFT1 and the de-

fuzzification trade-off DT1. The indifference in the ranking by the trade-off
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method with defuzzification and the fuzzy trade-off ranking method is due to

the small range of fuzziness in the triangular fuzzy numbers, and the small

differences in the criteria ratings. The crisp values of the fuzzy numbers given

in Table 4.6 are significantly close to their middle values, bij, presented in

Table 4.5. A graphical explanation for this statement is given in Figure 4.3.

Figure 4.3: Triangular fuzzy numbers and their crisp values of each criterion
for alternative A2

The triangular fuzzy numbers of each criterion for alternative A2 and

their respective crisp values are shown in Figure 4.3. As can be seen, the

crisp values are situated close to the middle values of the triangular fuzzy

numbers. Hence, there is a small difference in the DFT1 and DT1 values for

each alternative and the indifference in the ranking solutions. In the fuzzy

MCDM problem, the final result is a crisp value since the MCDM method

must provide a deterministic solution.

Next, consider the ranking by fuzzy VIKOR as given in Table 4.10. The

fuzzy ranking {Rank}Q̃ in the fuzzy VIKOR method gives a partial ranking,

since the first position in {Rank}Qb is not confirmed (Step 5 in Section 4.5.

In the case of the ranking by VIKOR defuzzification, the final decision

is the set of compromise solutions {A3, A1, A2} (Step 8 in Section 4.5).

Eventually, since there are only three options, the defuzzification ranking by
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Table 4.10: Ranking by fuzzy VIKOR

Ordering 1 2 3

{Rank}Qb A3 A1 A2

{Rank}
Q̃

A1 A2

Defuzzification {Rank}Q A3 A1 A2

{Rank}S A3 A1 A2

{Rank}R A3 A1 A2

VIKOR gives a set of solutions with all three options. The results by the

fuzzy VIKOR are given in Table 4.11.

Table 4.11: Results by fuzzy VIKOR

A1 A2 A3

Sa -1.49 -1.02 -1.42

S̃ Sb 0.62 1.39 0.43
Sc 3.25 4.01 2.85

Crisp(S) 0.75 1.44 0.57

Ra -0.18 0 -0.17

R̃ Rb 0.33 0.6 0.2
Rc 1 1 0.85

Crisp(R) 0.37 0.55 0.27

Qa 0 0.11 0.01

Q̃ Qb 0.066 0.24 0
Qc 0.095 0.18 0

Crisp(Q) 0.057 0.193 0.003

Next, the ranking by the fuzzy TOPSIS is given in Table 4.12. This

method also identifies candidate A3 as the best candidate.

As can be seen from Table 4.12, an alternative A3 is the closest to the

ideal solution (d+ = 1.45). However, it is not the farthest from the anti-ideal

solution (d− = 3.93). In fact, the alternative farthest from the anti-ideal

solution is A1 (d− = 3.95). It shows that the concept of the TOPSIS method-

to have the best solution that is the closest to the ideal and the farthest
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Table 4.12: Ranking and results by fuzzy TOPSIS

Ranking 1 2 3

A3 A1 A2

d+ 1.45 1.48 1.87
d− 3.93 3.95 3.52
CC 0.731 0.728 0.653

from the anti-ideal solutions - is not realized in this conflicting multi-criteria

problem.

Now, suppose the DMs have changed their preference towards each cri-

terion. The new DMs preferences, presented by the linguistic variables, are

given in Table 4.13. According to Table 4.1 as well as formula (4.2) and

(4.11), the fuzzy and defuzzified weights associated with the new preferences

are shown in Table 4.14.

Table 4.13: New criteria weight by decision makers

DM1 DM2 DM3

Y1 MH H H
Y2 VL L VL
Y3 ML ML ML
Y4 H H VH
Y5 L VL L

Table 4.14: New fuzzy and defuzzified weights

Ỹj Ỹ1 Ỹ2 Ỹ3 Ỹ4 Ỹ5

w̃j (0.63,0.83,0.97) (0,0.03,0.17) (0.1,0.3,0.5) (0.77,0.93,1) (0,0.07,0.23)
wj 0.82 0.06 0.3 0.91 0.09
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As can be seen from Table 4.14, the DMs now prefer criteria Y1 (emotional

steadiness) and criteria Y4 (past experience) more than the other criteria.

The results by each fuzzy MCDM method for the new criteria weights are

given in Table 4.15.

Table 4.15: Results by the fuzzy MCDM methods with the new criteria
weights

A1 A2 A3

Fuzzy Trade-off
DFT1 1.700 0.354 1.272
DT1 1.799 0.364 1.334

Fuzzy VIKOR
Crisp(S) 0.662 0.411 0.357
Crisp(R) 0.405 0.276 0.253

Qa 0.007 0 0.016
Qb 0.145 0.024 0
Qc 0.188 0.045 0

Crisp(Q) 0.121 0.023 0.004

Fuzzy TOPSIS
d+ 3.283 3.215 3.184
d− 2.074 2.096 2.125
CC 0.387 0.395 0.400

From the results in Table 4.15, the best candidate identified by the fuzzy

trade-off ranking method is candidate A2. Note that, candidate A2 is ranked

the lowest with the previous criteria weights. The difference is related to the

DMs preferences. In the previous problem, the DMs preferences towards each

criterion are almost equal (Table 4.7). However, in the new weights problem,

the DMs prefer criteria Y1 and Y4 more than the others. According to Table

4.7, candidate A2 possesses the best score in both criteria preferred by the

DMs, hence, he/she is now regarded as the best choice. In turn, the worst

candidate is A1 since this candidate is ranked the lowest in both criteria Y1

and Y4.

103



4.6 - Analysis and comparison

Meanwhile, the fuzzy VIKOR method gives a set of compromise solutions

{A3, A2, A1} as a final ranking result for the new weights case. As for the

fuzzy TOPSIS, the best option for the new weights is the same as in the

previous weights case, i.e. candidate A3. The difference now is in the results,

such that an alternative that is closer to the ideal solution (d+) is also farther

from the anti-ideal solution (d−).
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5. CONCLUSIONS

Make a decision.

It doesn’t have to be a wise decision

or a perfect one.

Just make one.

-Seth Godin, Best selling author.

SECTION FIVE

5 Conclusions

In summary, the study contributes to the knowledge of the subject (multi-

criteria decision making) in developing a new automatic ranking method

that gives the least compromise solution as the best solution. In addition,

the new method comprehends with the DM preferences, either a risk-

taker, a risk-averse or the ones in-between. The study also introduces an

extra algorithm that tackles a situation in which more than one alterna-

tive happens to be the best solution. Moreover, the study extends the new

developed ranking to solve the fuzzy decision-making problem, in

which, a fuzzy trade-off ranking method is developed. The details summary

of each main section are given in the next subsection.

5.1 Summary of research findings

I Multi-criteria decision making

A trade-off ranking method has been proposed in this thesis. The method

minimizes compromise between the alternatives. The key property of the

proposed method is, that in contrast to the other methods, the ranking algo-

rithm is non-local. This means the ranking takes into account the position of

each alternative. The trade-off ranking can reflect the position of the Pareto

frontier. The application of the method has been tested on different test
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cases. The obtained results are compared against the rankings provided by

the TOPSIS and the relative distance ranking method.

The trade-off ranking method is based on different preference principals

than the TOPSIS and the relative distance method. The two latter methods

provide solutions which are closer to the ideal solution and farther from the

anti-ideal solution. The trade-off ranking method selects least compromise

solutions in comparison to the other techniques considered. Meanwhile, it

requires the presence of a well-distributed Pareto set. In comparison to the

TOPSIS and the relative distance approach, the trade-off ranking might be

more adequate for some classes of problems such as a multi-objective prob-

lem with conflicting criteria. In any contradiction between objectives, the

trade-off ranking method identifies the least compromise solution. As shown

in the thesis, the top ranking solutions obtained with the three methods;

the trade-off ranking, the relative distance and the TOPSIS; do not always

coincide because of the different principals utilized.

II Uncertainty in multi-criteria decision making

The uncertainty analysis of the distance-based ranking techniques, the

TOPSIS and the relative distance, including a new MCDM method, the

trade-off ranking, is also presented in the thesis. Two types of uncertainties

in MCDM process: in the data parameters/variables and in the preferences of

the DMs towards each criterion are tested. In the data-uncertainty analysis,

the fuzzy numbers have been implemented and a new objective function has

been introduced in finding a new robust set of alternatives. In the preference-

uncertainty analysis, different weights have been used to represent variation

in the preferences of the DM. The effects of the ranking solutions in each

analysis have been studied for several test cases.

The first analysis, uncertainty in the data variables, is important for the

DM since it provides a robust set of alternatives despite the perturbation in

the input data. The DM can also gain insight into different solutions pro-
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vided by the different MCDM methods. The second analysis, uncertainty in

the criteria weights, is valuable because it gives an overall view of the DM

preferences. In the second analysis the trade-off ranking method emphasizes

on the importance of the criteria. If the DM choose some criteria far greater

than the others, the trade-off ranking method is able to give a solution with

the best value in the preferred criteria, i.e. one of the extreme solution.

Thus, the trade-off ranking method can be acceptable to a different type of

DM preferences in the same problem. In comparison to the TOPSIS and the

relative distance method, the trade-off ranking method has an extra algo-

rithm to tackle a problem with more than one solution. The extra algorithm

in the trade-off ranking method is relevant to the conflicting criteria problem.

In such a problem, there is no unique solution. One solution may be better

than the other, depending on the criteria weights or the DM preferences.

Hence, when the criteria are equally preferred, the extra algorithm gives the

least-compromise option as the best solution. Finally, the trade-off ranking

method gives a solution that may preferred by the DM from the range of the

extreme solutions to the least compromise among alternatives.

The thesis also has presented the sensitivity analysis of weight changes in

three multi-criteria decision making methods; the trade-off ranking, TOPSIS

and the relative distance approach. The analysis has been done to determine

the critical criterion with the smallest changes in the weights that affect the

current ranking. The study has showed that, in the analysis with three deci-

sion making methods, the critical criterion in each method is not a criterion

with the most weight. Thus, it is not an important criterion. Due to that,

with the knowledge on the critical criterion, the DM may discard that crite-

rion in order to obtain a more robust ranking due to preference perturbation.

III Fuzzy multi-criteria decision making

A fuzzy trade-off ranking for the fuzzy MCDM problem has been proposed

in this thesis. This method has been utilised to find the best solution to
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the fuzzy conflicting multi-criteria problem. The fuzzy trade-off ranking

method is able to capture the solution with the least compromise. The fuzzy

trade-off ranking method is also able to comprehend the DM preferences in a

fuzzy conflicting MCDM problem. The proposed method has been compared

against two other fuzzy MCDM methods, known as fuzzy VIKOR and fuzzy

TOPSIS, in a personnel selection problem.

In contrast with the fuzzy trade-off ranking method, the fuzzy TOP-

SIS method is an individual performance method, where an alternative is

only compared against the ideal/anti-ideal solutions, which are the artificial

solutions. Such a ranking calculation is the best option for the mutual multi-

criteria problem, where an alternative, that is close to the ideal solution, is

also far from the anti-ideal solution. However, in a conflicting MCDM prob-

lem, such an assumption is not always realized; the best solution which is

the closest to the ideal solution may not be the farthest from the anti-ideal

solution. Conversely, the fuzzy VIKOR method gives a similar solution to

the fuzzy trade-off ranking, since fuzzy VIKOR was also developed to tackle

the conflicting MCDM problems. However, in some problems - as shown in

the numerical example - the fuzzy VIKOR gives a set of compromise solu-

tions rather than one single solution. In that matter, the DM still has to

choose one solution out of the compromise set proposed by the fuzzy VIKOR

method.

5.2 Future research implications

There are some other issues which were not fully addressed in the current

study. These issues are briefly discussed in this subsection as a motivation

for future research.

Decision making under uncertainty Decision making process can

provide very little guidance to the DMs beyond offering them some simple

decision rules to aid them in their analysis of uncertain situations. There are
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four basic rules for decision making under uncertainty: the maximax rule,

the maximin rule, the minimax rule, and the equal probability rule. The

maximax rule looks at the best that could happen under each action. In

turn, the maximin rule looks at the worst that could happen under each

action. The minimax decision making is based on opportunistic loss, i.e.

minimum worst potential regret. The equal probability rule assumes each

state of nature is equally likely to occur. It is interesting to see how the

proposed method works under each rule.

Decision making under risk Uncertainty and risk are not the same

thing. Uncertainty deals with possible outcomes that are unknown, making

the probabilities to the outcomes can not be assigned. Whereas, in risk

situation, the possible outcomes can be listed and the probabilities to the

outcomes can be assigned. The decision rules under conditions of risk are: the

expected value rule, the mean-variance rules and the coefficient of variation

rule. In the current study, we only consider the uncertainty in decision

making problem. Further research towards the behaviour of the trade-off

ranking method under risk situations may be explored.
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APPENDIX A

Appendix A Test problems formulation

TNK

Minimize (x1, x2)

s.t. g1(x) = x21 + x22 − 1− 0.1 cos (16 tan−1 (x1/x2)) ≥ 0

g2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

0 ≤ xi ≤ π (i = 1, 2)

ZDT1

Minimize (F1(x), F2(x))

s.t. 0 ≤ xi ≤ 1 (i = 1, 2, ..., n)

where

F1(x) = x1,

F2(x) = g(x)
(

1−
√
x1/g(x)

)
,

g(x) = 1 + 9/(n− 1)
n∑
i=2

x2i

ZDT2

Minimize (F1(x), F2(x))

s.t. 0 ≤ xi ≤ 1 (i = 1, 2, ..., n)

where

F1(x) = x1

F2(x) = g(x)
(
1− (x1/g(x))2

)
g(x) = 1 + 9/(n− 1)

n∑
i=2

x2i
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ZDT6

Minimize (F1(x), F2(x))

s.t. 0 ≤ xi ≤ 1 (i = 1, 2, ..., 10)

where

F1(x) = 1− exp−4x1 sin6 4πx1,

F2(x) = g(x)
(
1− (F1(x)/g(x))2

)
,

g(x) = 1 + 9

(
10∑
i=2

x2i /9

)1/4

DTLZ5

Minimize (F1(x), F2(x), F3(x))

s.t 0 ≤ xi ≤ 1 (i = 1, 2, 3)

where

F1(x) = (1 + g(x3)) cos(θ1) cos(θ2),

F2(x) = (1 + g(x3)) cos(θ1) sin(θ2),

F3(x) = 3 (1 + g(x3)) sin(θ1),

g(x) = (x3 − 0.5)2

θ1 =
π

2
(x1)

θ2 =
π

4 (1 + g(x2))
(1 + 3g(x3)x2)
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Appendix B Mean and variance of fuzzy numbers

Suppose A = (a, b, c) is a triangular fuzzy number where b > 0 and c > 0 are

the left and right-width of the fuzzy number centered at a. Therefore, the

α-cut of A is computed by,

Aα = [a− (1− α)b, a+ (1− α)c]∀α ∈ [0, 1].

The Possibilistic mean value of A is the arithmetic mean of its lower and

upper possibilistic mean value (Carlsson and Fuller, 2001), i.e.

Mean(A) =
(M(A) +M(A))

2
,

where

M(A) = 2

∫ 1

0

αAdα, M(A) = 2

∫ 1

0

αAdα.

Here, A and A are the upper and lower bounds of α-cut of fuzzy number A,

respectively. It is easy to prove that the possibilistic mean value of the fuzzy

number is given by

Mean(A) = a+
c− b

6
.

The variance of a fuzzy number is given by the formulae (Carlsson and Fuller,

2001),

V ar(A) =
1

2

∫ 1

0

α(A− A)2dα.

Again, it is easy to prove that the variance of fuzzy number A can be calcu-

lated as

V ar(A) =
(b+ c)2

24
.

126



APPENDIX C

Appendix C Data of the test cases

Table 5.1: Data for TNK problem (x1, x2)

Table 5.2: Data for ZDT1 problem (F1, F2)
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Table 5.3: Data for ZDT2 problem (F1, F2)

Table 5.4: Data for DTLZ5 problem (F1, F2, F3)
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