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ABSTRACT 

 

The performance of compact fin-and-flat tube heat exchangers (HE) can be affected by 

many geometrical and processing factors and one of them is tube inclination angle. 

However, the effect of flat tube inclination angle on the thermal-hydraulic performance 

of the HE is not fully examined. This paper investigates the effects of flat tube inclination 

angles on heat transfer and pressure drop characteristics of fined flat tube HE when the 

tubes are deployed in in-line and staggered arrangements. A symmetric numerical method 

based on FLUENT software was carried out with six different tube inclination angles (0°, 

30°, 60°, 90°, 120°, and 150°) in moderately high Reynolds number. From the results, it 

was observed that heat transfer coefficient increased with the augmentation of the tube 

inclination angle from 0o to 90o and decreased for 120o and 150o. With the increase of 

tube inclination angle, the average Nusselt number rose by 36.3%. This might be due to 

the reason that the tube surface area increases with the inclination angle, which also 

results in the largest increment of the pressure drop by 42.0%. Overall, the 90o tube 

inclination angle showed the highest enhancement in heat transfer for both inline and 

staggered configurations with a maximum enhancement of 41.2% for in-line and 32.2% 

for staggered arrangements. However, the heat transfer enhancements were accompanied 

by high-pressure drop penalties of up to 44.2% and 42.6% for in-line and staggered 

arrangements, respectively. Therefore, inclining the tubes at 90o is recommended where 

high heat transfer is required. On the other hand, 0o tube inclination angle is recommended 

where pumping power is a crucial issue.   

 

Keywords: Numerical methods; heat exchangers; heat transfer; pressure drop; turbulent 

flow   

 

INTRODUCTION 

 

In many industrial and engineering applications, high thermal efficiency and economic 

competitiveness can be achieved by heat exchangers (HE) with special thermal properties, 

better flow, and heat characters. The performance of a HE affects the effectiveness of the 

heat exchange and this makes HE an important issue in studies of energy saving [1]. Since 

global energy consumption is negatively affecting the environment and causing ozone 

depletion, an increasingly more intelligent use of the available energy is required. As a 

result, the increased competitiveness of the manufacturing cost becomes a significant 

issue. Thus, all manufacturers are trying to design HE with high energy efficiency and 

lower manufacturing costs. Consequently, there are a large number of scientific research 

in recent times on the maximisation of the utilisation of the available energy [2, 3], and 
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enhancement of air-side heat transfer performances. Among the many types of HE in 

recent years, performance improvements in its compact designs have become a common 

engineering topic. Compact HE has been widely used in many industrial applications due 

to its compactness, low weight, high competence and low cost. It includes two sorts of 

HE either fin-and-tube or plate-and-fin [4-8]. Fin and tube HE, in particular, has been 

used in engineering fields such as chemical engineering, petrochemical, heating 

ventilation and air conditioning, compressors, and fan coils. Moreover, they play 

important role in electronics cooling. Compact HE has substantial small sizes due to the 

reason that the highest thermal resistance occurs in the air side of the HE compared to the 

tube side and wall conductive thermal resistance, which makes the air side heat transfer 

coefficient relatively small [4, 9-11]. Hence, to decrease the size of HE, significant 

improvements have been employed on the air side. As the dominant air side thermal 

resistance can reach up to 90% of the total thermal resistance, researchers have devoted 

their effort to enhance the heat transfer process by attaching fins on the tube surface which 

augments the heat transfer rate by increasing the heat transfer surface area [12, 13]. 

Moreover, the pressure drop penalty associated with attaching the fins has been given 

attention. Therefore, the current challenge faced by the researchers is to improve the fin 

geometry in order to enhance the transfer of heat associated with the low-pressure drop 

across HE. 

In general, the thermal hydraulic diameter of flat tube HE is smaller than that of 

circular tubes of the same cross-sectional area [14]. Using circular tubes in HE has many 

drawbacks such as high drag on the tube and low heat transfer on the fin behind the tubes 

due to the fact that the flow accelerates around the heated tube and forms a low-velocity 

wake region behind the tubes. Thus, the heat transfer coefficient of the fin is not uniform 

and depends on the fin position. These drawbacks can be overcome by using either oval 

or flat tube. Compared to round tube HE, flat tube HE has better air-side heat transfer 

coefficient and lower pressure drop due to small wake area behind the tubes [15]. 

Moreover, noise and vibration levels in flat tubes are expected to be lower than that of 

circular tubes [16, 17]. The performance of compact HE can be affected by many 

geometrical and processing factors. Some of the factors include tube and fin material, 

tube shape, tube spacing, tube inclination angle, fin spacing, and fin type. Some 

researchers have studied the effects of some of the aforementioned parameters on the 

thermal-hydraulic performance of flat tube HE. Numerous numerical and experimental 

studies have been done to determine the air-side thermal and flow performances using 

different types of tubes and fins [10, 18-22]. Nascimento and Garcia [23] reported that 

flat tube with a shallow square dimple enhanced the heat transfer considerably. More 

recently, Duan et al. [24] revealed that longitudinal and transversal vortices can be created 

by using intermittent wavy fins with the flat tube HE and producing great heat transfer 

enhancement. P. Wais [25] performed a three-dimensional simulation using ANSYS 

software with fixed inlet air velocity and fin spacing to analyse the effect of louver 

inclination angle of a car radiator having circular tubes. They found that heat transfer 

depends strongly on the louver angle and the maximum value of the outlet air temperature 

reaches at 45º. Generally, the performance of the HE can be affected by the variation of 

the geometrical parameters as documented in early experimental works by E. Sparrow 

and F. Samie [26]. They studied the influence of the number of tube rows and revealed 

that for one–row arrays, the Nusselt number increases with the decreasing tube transverse 

pitch. Furthermore, J. Dong et al. [27] experimentally investigated the effects of fin pitch 

on multi-louvered flat tube HE using 20 types of HE having different fin pitches. More 

recently, P. Wais [25] performed a three-dimensional simulation using ANSYS software 
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with fixed inlet air velocity and fin spacing to analyse the effect of louver inclination 

angle of a car radiator having circular tubes. The heat transfer strongly depends on the 

louver angle and the maximum value of the outlet air temperature reaches at 45º louver 

inclination angle. In another study, L. Yang et al. [28] numerically investigated the effect 

of fin height on the performance of HE with wavy fins and flat tubes. Their results showed 

that the Nusselt number (Nu) increased slightly with the increasing fin height, particularly 

at low Reynolds number. However, to the best of the authors’ knowledge, the effect of 

flat tube inclination angle on the thermal-hydraulic performance of fin-and-tube HE has 

not been fully examined. Thus, an extensive study focusing on the performance of finned 

and flat tube HE with the inclined flat tube is necessary.  

This paper aims to investigate the effect of tube inclination angle on the thermal 

and hydraulic performance of fined flat tube HE when the tubes are deployed in an in-

line and staggered three by three rows of arrays. A symmetric numerical method based 

on Ansys FLUENT software was carried out with six different tube inclination angles  

(0°, 30°, 60°, 90°, 120°, and 150°) in moderately high Reynolds number. The standard k–

ε model was used due to the fact that it is a widely used turbulence model for the solution 

of practical engineering flow problems. The findings of this study could help engineers 

in their decision at an angle should the tubes be inclined against the incoming air when 

designing compact HE for enhanced heat transfer and reduced pressure drop. Moreover, 

manufacturers who are trying to design HE with high energy efficiency might also benefit 

from this research work.  

 

METHODS AND MATERIALS 

 

Problem Description 

The schematic diagrams of cross-sections of the fin-and-tube compact HE with in-line and 

staggered configurations considered in this study are shown in Figure 1. Air flowed across 

the fin and tube surfaces while constant heat flux was supplied from the tube inner 

surfaces. The physical models consisted of flat tubes with overall length of 220 mm and 

tube hydraulic diameter of 15.1 mm and square fins with dimensions of 110 mm × 110 

mm × 0.6 mm. Other geometrical parameters such as tube transverse pitch (𝑃𝑡), tube 

longitudinal pitch (𝑃𝑙), fin pitch (S), and fin thickness (δ) are presented in Table 1. 

Moreover, schematic of the six different tube inclination angles against the incoming air 

considered for this study are shown in Figure 2. Since there is temperature variation 

through the fluid and the solid domains due to thermal interactions, such kind of heat 

transfer is known as conjugate heat transfer. Conjugate heat transfer has the ability to 

couple the heat transfer by conduction through solid domain while the heat transfer by 

forced convection [4, 29]. The computational domains for a three-row by three-column in-

line and staggered fin-and-tube HE considered for the numerical analysis are shown in 

Figure 3. Due to the symmetry nature of the geometries, the sections represented by the 

dashed lines in Figure 3 are selected as computational domains. Moreover, the 

computational domains are extended by one time tube transverse pitch (Pt) in the upstream 

side to ensure that there is no flow disturbance and the velocity profiles are uniform when 

they reach the fin and tube surfaces. In addition, the domains are extended six times the 

tube transverse pitch at the downstream to ensure that the outflow can be applied at the 

outlet and prevent flow recirculation [30]. Thus, the selected computational domains are 

seven times the actual heat transfer areas.      
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(a)               (b) 

Figure 1. Schematic diagrams of cross-sections of fin-and-tube HE with  

(a) in-line and (b) staggered arrangements (all dimensions are in mm). 

 

 
 

Figure 2. Angles of attack for the flat tube against the incoming air. 

 

Table 1. Computational domain geometric details. 

 

Name  Value (mm) Symbol  

Tube transverse pitch  30  𝑃𝑡 
Tube longitudinal pitch  30  𝑃𝑙 
Tube outside diameter  11.59 𝐷𝑜 
Tube hydraulic diameter  15.1 𝐷ℎ 
Fin thickness  0.6 δ 

Fin spacing  20 S 

Tube and fin material  - Aluminium (al) 

 

Mathematical Formulation 

Governing Equations 

The mathematical formulation is based on the assumptions that the flow field is 

incompressible, turbulent, non-isothermal, and steady. Moreover, the physical properties 

are assumed to be constant, the thermal radiation and heat dissipation are neglected, and 

the fin surfaces are assumed to be smooth. Based on these assumptions, therefore, the 

continuity, momentum, and energy governing equations are solved along with the 

transport equations of the turbulent kinetic energy and its dissipation rate. The continuity, 

momentum, and energy equations will be in the following form: 
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𝛻. (𝑽) = 0 (1) 

𝜌𝛻. (𝑽𝑽) = −∇𝑃 + ∇.   (2) 

𝜌𝐶𝑝𝛻. (𝑇𝑽) = 𝑘𝛻. 𝑇 (3) 

 

where V is the velocity vector, ρ  is the density, p is the hydrostatic pressure,  is the fluid 

shear stress, and T is the temperature. The terms k and CP represent the thermal 

conductivity and constant-pressure of the specific heat.  

 

 
                       (a) 

 
(b)  

 

Figure 3. Computational domain for (a) in-line and (b) staggered configurations. 

 

The transport equations for the standard k model can be written as [31, 32]:  
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where tμandμ,ε,k,  are the turbulence kinetic energy, rate of dissipation, dynamic 

viscosity of air, and turbulent (eddy) viscosity, respectively. The term 𝐺𝑘 is the generation 

of turbulent kinetic energy caused by the mean velocity gradient, 𝐺𝑏is the generation of 

turbulence kinetic energy as a result of the buoyancy, and 𝑌𝑀 denotes the contribution of 

 
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the fluctuating dilatation in compressible turbulence to the overall dissipation rate. The 

turbulent viscosity can be computed as: 

 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜖
         (6) 

 

The other parameters, 𝐺1𝜖 , 𝐺2, 𝜎𝑘 and 𝜎𝜖 are constants and their default values are 

1.44, 1.92, 1, and 1.3, respectively. 

 

Parameter Definitions 
Heat transfer and pressure drop characteristics for compact HE depend on the conditions 

of the air flow and geometry of the HE. Thus, the flow and heat transfer parameters namely 

Reynolds number, Nusselt number, Colburn factor, and friction factor are used to describe 

the thermal-hydraulic performance of the compact HE. The Reynolds number (Re), 

Colburn factor (j), and friction factor (f) can be defined using Equation (7), (8), and (9), 

respectively [30]. 

 

𝑅𝑒 =
𝜌𝑢𝑚𝑎𝑥𝐷ℎ

𝜇
 (7) 

𝑗 =
ℎ

𝜌𝑢𝑚𝑎𝑥𝐶𝑃
𝑃𝑟

2
3 (8) 

𝑓 =
𝐷ℎ

𝐿

2∆𝑝

𝜌𝑢𝑚𝑎𝑥
2
 (9) 

 

where, Pr is Prandtl number, ∆𝑝 is the pressure drop, and L is the air flow length. The 

heat transfer coefficient between the finned flat tube and air is determined as: 

 

ℎ =
𝑞

(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑚𝑒𝑎𝑛 )
   (10) 

  

where h is the heat transfer coefficient, q is the rate of heat flux at the tube wall, 𝑇𝑤𝑎𝑙𝑙 is 

the tube surface wall temperature, and 𝑇𝑚𝑒𝑎𝑛  is the free fluid mean temperature at the 

particular location around the tube. The mean temperature of the air at any particular 

position of the computational domain can be computed using the following equation [33]: 

 

𝑇𝑚𝑒𝑎𝑛 =
∫𝑇𝜌𝑢⃗  . 𝑑𝐴̅ 

∫ 𝜌𝑢⃗  . 𝑑𝐴̅ 
 (11) 

 

The average Nu number can be obtained by averaging the values of local heat 

transfer coefficients for all surfaces involved in the heat transfer: 

 

𝑁𝑢 =
ℎ𝐷ℎ

𝑘
 (12) 

 

where Dh and 𝑘 are the hydraulic diameter and thermal conductivity, respectively.  

 

 

The boundary conditions used in the computations are shown as follows:  
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i) Uniform velocity and temperature (300 K) are assigned to the inlet boundary.  

ii) No slip conditions are used on all tube walls. Symmetry conditions are assigned to 

the lateral surfaces of the test section.  

iii) The tube wall temperatures are fixed at 373 K.  

iv) The computational domain is extended downstream for fully developed outlet 

boundary condition. 

v) Symmetrical boundary conditions are assigned to other surfaces. 

 

Mesh Generation and Independence Test 

The Navier-Stokes and energy equations outlined in Equation (1-5) with the corresponding 

boundary conditions were solved using Fluent 15 computational fluid dynamics software. 

The heat transfer and airflow over the tube bundles were treated using the standard K-ɛ 

turbulence module. The mesh around the tube walls was refined with great care in order 

to provide accurate results. The wall quantities (velocity gradients, pressure, etc.) are very 

important and the flow separation and reattachment are strongly dependent on an accurate 

prediction of the turbulence development near the walls. Due to this reason, enhanced wall 

treatment was selected in Fluent instead of standard wall function. Second-order upwind 

scheme was used to discretise the convective terms and SIMPLE-algorithm was applied 

to perform the coupling between the pressure and velocity terms. Absolute convergence 

criteria were chosen for the velocity and energy parameters with numerical values of 1×
10−4 and 1× 10−6 respectively. 

 

 
 

 

 
 

Figure 4. Grid distributions for the computations. 
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Figure 5. Nusselt number and pressure drop results for zero angle of attack and 

Re=3500 using different grid sizes. 

 

In this study, the grids were generated with great care. Firstly, the flow domain was 

divided into three subdomains according to the gradient level at the region. Thereafter, 

various strategies were employed for the subdomains in order to generate appropriate grid 

sizes. In order to provide accurate results, the grids around the flat tubes were refined with 

unstructured quadratic as shown in Figure 4. Prior to conducting the simulations to 

investigate the effect of tube inclination angle on the performance of heat transfer and 

pressure drop, it is necessary to examine whether appropriate grid density is adopted. This 

is to make sure that the relative changes in the velocity and pressure fields are less than 

5%. Consequently, a grid independence test was conducted using five different grid sizes, 

66550, 79244, 90242, 97634, and 108692 for the case where the tubes inclination angle is 

zero and Reynolds number is 3500. Figure 5 shows the mesh independency results for the 

different grid sizes. It was found that the difference in the average Nu number and ∆p 

between 90242 and 97634 grid sizes was 1.79% and 3.08%, respectively, which is less 

than 5%. Therefore, the final grid size adopted in this study was 90242 to discretise the 

whole computational domain. 

 

Validation of the Computational Model 

To check the reliability of the developed numerical model, the Nu results from the current 

model were compared against the results of other benchmark studies. Therefore, the results 

for air-side forced convection in finned circular tube HE obtained from the present model 

were validated against the benchmark experimental results by Zukauskas [34] and 

numerical solutions developed by Gholami et al. [35]. The circular tube HE used for the 

validation was three rows by four columns of tubes with geometrical details where the tube 

outside diameter was 10.55 mm, transverse pitch was 25.4 mm and the longitudinal pitch 

was 22 mm. Figure 6 shows a variation of average Nu with Reynolds number. A good 

agreement can be observed between the results of the present study and the other 

benchmark results for the Nu. The maximal deviations between the predicted values of Nu 

number by the present model and the values obtained by Zukauskas [34] experimental data 

and Gholami et al. [35] numerical solutions were 9.6% and 11.9%, respectively. This 

shows that the Nu results obtained by the present model are located within the allowable 

http://www.tandfonline.com/doi/full/10.1080/10407780902864623#F0003
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error range. Therefore, the good agreement between the simulated and published results 

indicate that the current numerical model is reliable to predict the heat transfer and pressure 

drop characteristics. 

 

 
Figure 6. Comparison of the present study simulation to Zukauskas [34] correlation and 

Gholami et al. [35] simulation. 

 

RESULTS AND DISCUSSION 

 

After successfully validating the numerical model, the next stage is to study the effect of 

inclination angle ( oo 1500  ) of flat tubes on the forced convection flow structure, 

heat transfer characteristics, and pressure drop in cross-flow flat tube HE. The analysis 

was conducted for Reynolds number ranging between 3500 and 7300. 

 

Effect of Tube Inclination Angle on Flow Structure  

Figure 7 and 8 are the effects of tube inclination angle on the flow structure for in-line 

and staggered arrangements, respectively. Both figures show the local velocity 

distributions for the case where Re = 3500. It can be clearly seen from the figures that 

there are recirculation zones after each tube for both in-line and staggered configurations 

as a result of tube blockage which leads to fluid separation. Wherever the flow separates 

at the back of the tube, it is rebound at the frontal segment of the subsequent tube to 

constitute a superior region in the middle of two adjacent tubes. Moreover, there are 

strong swirling flows behind the tubes on the tubes wake area and the swirling strength 

increases with increasing inclination angle from 0o to 90o. Similar results were obtained 

for elliptical tubes where the effects of the vortex formation and shedding on the velocity 

and thermal fields were more pronounced in the case when the angle of attack tend to be 

at a right angle with a lower value of the axis ratio [33]. This was due to the reason that 

as the angle of attack increases from 0o to 90o,the air departs from the first row of tubes 

as jets, which in turn enhances the degree of turbulence through the flat tube arrays 

passages, thus forming vortex shedding.  
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(a) 0o                                                                   (b) 90o 

         
(c) 30o                                                                 (d) 120o 

        
(e) 60o       (f) 150o  

 

Figure 7. Local velocity distribution for in-line configuration at Re=3500. 

 

 

    
(a) 0o                                                                   (b) 90o 

   
 (c) 30o                                                                 (d) 120o 

    
   (e) 60o       (f) 150o  

 

Figure 8. Local velocity distribution for staggered configuration at Re=3500. 
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(a) α=0° 

 
(b) α=30° 

 
(c) α=60° 

 
(d) α=90° 

 
(e) Circular 

 

Figure 9. Contours of turbulent kinetic energy per unit mass for (a) α=0°,  

(b) α=30°, (c) α=60°, (d) α=90°, and (e) circular at Re=3500. 
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Nevertheless, for 120o and 150o, the swirling intensity reduced as depicted in Figure 

7 and 8 for both arrangements. Such strong swirling has a significant effect on the main 

flow in such a way that it might disturb the growth of the boundary layer on the fin 

surfaces, drag the fluid from the wake region and enhance the fluid mixing. Therefore, all 

these will result in a considerable enhancement of the heat transfer. It is obvious from the 

figures that the velocity magnitude on the rare area of the tubes was very low compared 

to the front flow. As the angle of inclination increased the momentum behind the tube 

became higher due to the high swirling, vortices formed which recirculated and 

compressed the fluid and therefore delayed the flow separation and reduced the tube wake 

area. For the flat tube with zero inclination angle (α=0°), the drag was found to be less 

than those obtained with the circular tube. This indicates that flat tubes have better 

aerodynamics.  

Virtually, the unique structure of the flat tubes enhanced the turbulence level and 

increased the air velocity over the tube banks. However, the intensity of the turbulence is 

dependent on the velocity of the incoming air and the tube inclination angle. As the air 

passed over the first row of tube bank the flow intensity increased behind the tubes. Thus, 

the flow behind the tubes wake area disturbed the development of the thermal boundary 

layer, which resulted in a considerable enhancement of the heat transfer coefficient. 

Figure 9 refers to the contours of the turbulent kinetic energy per unit mass for the finned-

flat tube HE with tube inclination angles of 0°, 30°, 60°, and 90° and finned-circular tube 

HE as well. It can be seen from the contours that the turbulent kinetic energy values 

increased with the increment of tube inclination angle. The highest value of the turbulent 

kinetic energy was achieved at tube inclination angle α=90°. On the other hand, the lowest 

value happened with the tube inclination angle α=0°. The turbulent kinetic energy 

produced by circular tube banks was less than the flat tube banks at all inclination angles. 

 

 
 

Figure 10. Variation of outlet temperature at various tube inclination angles. 

 

Effect of Tube Inclination Angle on Heat Transfer  
The outlet temperature at various tube inclination angles is presented in Figure 10. It can 

be clearly observed from the figure that the outlet temperature increased with the 

increasing tube inclination angle. This might be due to the reason that the temperature 

gradient was very small in the tube wake area at small inclination angles. On the other 

hand, when the angle of attack increased the temperature gradient was highly augmented 
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as a result of better mixing that occured in the area behind the tube. Consequently, the 

flux from the tube surfaces was higher which enhanced the heat transfer in the flow 

channel. Moreover, the accelerated flow due to better mixing behind the first tube 

impinged the second tube and resulted in high heat transfer. As expected, the outlet 

temperature values for the 150o tube inclination angle were slightly close to those 

obtained by 30o. Similar trends of temperature variation for 120 o and 60 o  were obtained. 

The highest outlet temperature was obtained at 90o tube inclination angle for all Reynolds 

numbers. Moreover, for all inclination angles, the temperature gained by the air at the 

outlet became small as the inlet velocity increased. For instance, at 0o, 90o, and 150o tube 

inclination angles, the temperature gained by the air outflow decreased by0.95%, 1.52%, 

and 1.08%, respectively, when the Reynolds number at inlet increased from 3417 to 7215. 

This might be due to the fact that the air molecules will absorb more energy at slow 

velocities than fast molecules to transfer energy to the wave. 

 

   
                                 (a)                                                              (b) 

 

Figure 11. Variation of Nusselt number with Reynolds number for (a) in-line (b) 

staggered configurations at different inclination angles. 

 

Figure 11 is a variation of the average Nusselt number (Nu) with Reynolds number 

for both in-line and staggered arrangements at various tube inclination angles. It can be 

clearly seen from the figure that there is a significant difference between the results of Nu 

for 0° and other tube inclination angles. In fact, the average Nu increased with the 

increasing Reynolds number at all angles. As expected, the average Nu values for tube 

inclination angles of 30° and 60° were close to the values for 120° and 150°, respectively, 

whilst the 90° inclination angle produced the highest Nu for both in-line and staggered 

arrangements. For in-line arrangement, considering the 0° inclination angle as reference, 

the maximum average Nu increments were 9.5%, 26.8%, 41.2%, 34.5%, and 14.4% for 

30°, 60°, 90°, 120°, and 150° inclination angles, respectively. Similarly, the maximum 

Nu increments for staggered arrangement were 11%, 27.2%, 32.2%, 24.2%, and 8.8% for 

30°, 60°, 90°, 120°, and 150° inclination angles, respectively. Comparing the Nu of the 

flat and circular tubes at Re= 3500, the Nu number for the circular tube was higher than 

that of the flat tubes with tube inclination angles of 0° and 30° by 14.3% and 5.8%, 

respectively. On the other hand, at 60° and 90 ° tube inclination angles, the Nu number 

for the circular tube was lower than that obtained by the flat tube by 8.7% and 21%, 
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respectively. It can also be observed from Figure 11 that the in-line arrangement provided 

better heat transfer enhancement than the staggered arrangement. This might be due to 

the reason that the staggered arrangement shows the formation of uneven (unsymmetrical) 

circulation around the tube walls. In general, for both in-line and staggered arrangements, 

inclining the flat tubes against the incoming air can increase the Nu. Again, this can be 

an indication of improved heat transfer performance by increasing the inclination angle 

of the tubes. 

 

Effects of Tube Inclination Angle on Pressure Drop  

Illustrated in Figure 12 are the pressure drop variations for different configurations of flat 

tube banks at various tube inclination angles. It can be observed from the figure that there 

is a significant increment in pressure drop when the inclination angle increases from 0o 

to 90o even at low Reynolds number. The maximum pressure drop was registered at 90° 

inclination angle and Re =7214 for both in-line and staggered arrangements with values 

of 57.2 Pa and 54.9 Pa, respectively. The high-pressure drop might be due to the reason 

that the surface area of the tubes that comes in contact with the incoming air is high for 

90o inclination angle causing extra drag to be induced and resulting tube blockage. 

Therefore, we can conclude that the heat transfer enhancement observed by tilting the 

tubes by a certain angle is associated with high-pressure drop penalty. 

   

  
                                  (a)                                                                 (b) 

 

 Figure 12. Variation of the pressure drop with different Reynolds number for (a) In-line 

and (b) staggered arrangements. 

 

Figure 13 and 14 present pressure drop contours for the finned flat tube HE with in-

line and staggered configurations at various tube inclination angles. The contours display 

that the pressure decreased along the tube banks. It can also be noted that staggered 

configuration provides low-pressure drop compared to in-line arrangement. 
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(a) 0o                                                                   (b) 90o 

         
(c) 30o                                                                   (d) 120o 

          
(e) 60o                                                                   (f) 150o 

 

Figure 13. Local pressure distribution for in-line configuration at Re=3500. 

 

   

             
(a) 0o                                                                   (b) 90o 

         
(c) 30o                                                                   (d) 120o 

          
(e) 60o                                                                   (f) 150o 

 

Figure 14. Local pressure distribution for staggered configuration at Re=3500. 

 

Effects of Tube Inclination Angle on the j Factor 

In fact, the heat transfer enhancement can be obtained using a dimensionless number such 

as a Nusselt number. Nevertheless, it provides a fractional indication of the overall 

performance. Thus, to see the overall performance of the HE, area goodness factor (j/f) 
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needs to be examined. Figure 15 shows a variation of the area goodness factor with 

Reynolds number at various tube inclination angles. It can be clearly seen that the j/f 

values decreased with the increasing Reynolds number. Therefore, among all the tube 

inclination angles, 0° had the highest j/f value for both configurations (in-line and 

staggered). As expected, the goodness factor for 30° and 150° and for 60° and 120° were 

close to each other. The lowest goodness factor was obtained at 90° as a result of the high-

pressure drop associated with 90o. 

 

  
                                (a)                                                                  (b) 

 

Figure 15. Area goodness factor for different tube inclination angles for (a) in-line and 

(b) staggered case arrangements. 

 

CONCLUSIONS 

 

In the present paper, two-dimensional numerical simulations were carried out to 

investigate the heat transfer and pressure drop in finned flat tube HE of different 

arrangements. The effects of tube inclination angles (0o, 30o, 60o, 90o, 120o, and 150o) on 

the thermal and hydraulic performances were investigated. The results of the numerical 

analysis led to the following conclusions. The numerical results confirmed that Nusselt 

number increased with the increasing flat tube inclination angle. Thus, the maximum and 

minimum Nusselt numbers were obtained at 90o and 0o, respectively. Similar results were 

achieved experimentally by other researchers for cross-flow HE without a fin. Flat tubes 

inclined at 90o provided the highest heat transfer enhancement and pressure drop for both 

configurations. Therefore, inclining the tubes at 90o is recommended where high heat 

transfer is required. On the other hand, 0o tube inclination is recommended where 

pumping power is a crucial issue. Tube inclination angle plays an important role on the 

heat exchanger performance such as slowing up the separation of the thermal boundary 

layer, reducing the wake area behind the tube, and thus enhancing the flow mixing behind 

the tube. As a result, a significant enhancement of heat transfer can occur. The accelerated 

flow behind the tube cannot merely reduce the wake area and delay the separation of the 

thermal boundary layer. Nevertheless, it can further impinge the downstream tube which 

will result in a slight increase of local heat transfer. Comparing the results obtained for 

in-line and staggered cases, both arrangements provided similar performances in terms of 

transfer. However, in terms of pressure drop, the staggered arrangement provided low-

pressure drop penalty. 

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

0.000

0.020

0.040

0.060

0.080

Re

j/
f

0 degree

30 degree

60 degree

90 degree

120 degree

150 degree

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

0.000

0.020

0.040

0.060

0.080

Re

j/
f

0 degree

30 degree

60 degree

90 degree

120 degree

150 degree



 

Investigation of thermal-hydraulic performance in flat tube heat exchangers at various tube inclination angles 

4558 

ACKNOWLEDGEMENTS 

 

The authors would like to be obliged to Faculty of Mechanical Engineering, University of 

Malaysia Pahang for providing the necessary support under project no. RDU150375. 

 

REFERENCES 
  

[1] Huang JM, Hsieh WC, Ke XJ, Wang CC. The effects of frost thickness on the 

heat transfer of finned tube heat exchanger subject to the combined influence of 

fan types. Applied Thermal Engineering. 2008;28:728-37. 

[2] Matos RS, Laursen TA, Vargas JVC, Bejan A. Three-dimensional optimization 

of staggered finned circular and elliptic tubes in forced convection. International 

Journal of Thermal Sciences. 2004;43:477-87. 

[3] Rao NT, Oumer AN, Jamaludin UK. State-of-the-art on flow and heat transfer 

characteristics of supercritical CO2 in various channels. The Journal of 

supercritical fluids. 2016;116:132-47. 

[4] Xie G, Wang Q, Sunden B. Parametric study and multiple correlations on air-side 

heat transfer and friction characteristics of fin-and-tube heat exchangers with large 

number of large-diameter tube rows. Applied Thermal Engineering. 2009;29:1-

16. 

[5] Tahseen TA, Rahman MM, Ishak M. Effect of tube spacing, fin density and 

Reynolds number on overall heat transfer rate for in-line configuration. 

International Journal of Automotive and Mechanical Engineering. 2015;12:3065-

75. 

[6] Tahseen TA, Rahman MM, Ishak M. Heat transfer and pressure drop prediction 

in an in-line flat tube bundle by radial basis function network. International 

Journal of Automotive and Mechanical Engineering. 2014;10:2003-15. 

[7] Tahseen TA, Rahman MM, Ishak M. An experimental study of air flow and heat 

transfer over in–line flat tube bank. International Journal of Automotive and 

Mechanical Engineering. 2014;9:1487-500. 

[8] Ishak M, Tahseen TA, Rahman MM. Experimental investigation on heat transfer 

and pressure drop characteristics of air flow over a staggered flat tube bank in 

crossflow. International Journal of Automotive and Mechanical Engineering. 

2013;7:900-11. 

[9] Pongsoi P, Promoppatum P, Pikulkajorn S, Wongwises S. Effect of fin pitches on 

the air-side performance of L-footed spiral fin-and-tube heat exchangers. 

International Journal of Heat and Mass Transfer. 2013;59:75-82. 

[10] Tang L, Zeng M, Wang Q. Experimental and numerical investigation on air-side 

performance of fin-and-tube heat exchangers with various fin patterns. 

Experimental Thermal and Fluid Science. 2009;33:818-27. 

[11] Tahseen TA, Ishak M, Rahman MM. A numerical study of forced convection heat 

transfer over a series of flat tubes between parallel plates. Journal of Mechanical 

Engineering and Sciences. 2012;3:271-80. 

[12] Han H, He YL, Li YS, Wang Y, Wu M. A numerical study on compact enhanced 

fin-and-tube heat exchangers with oval and circular tube configurations. 

International Journal of Heat and Mass Transfer. 2013;65:686-95. 

[13] Rusdin A. Computation of turbulent flow around a square block with standard and 

modified k-ε turbulence models. International Journal of Automotive and 

Mechanical Engineering. 2017;14:3938-53. 



 

Adam et al. / International Journal of Automotive and Mechanical Engineering 14(3) 2017   4542-4560 

 

4559 

[14] Wang L-B, Ke F, Gao S-D, Mei Y. Local and average characteristics of heat/mass 

transfer over flat tube bank fin with four vortex generators per tube. Journal of 

Heat Transfer. 2002;124:546-52. 

[15] Kim N-H, Kim S-H. Dry and wet air-side performance of a louver-finned heat 

exchanger having flat tubes. Journal of Mechanical Science and Technology. 

2010;24:1553-61. 

[16] Tahseen TA, Ishak M, Rahman M. Analysis of laminar forced convection of air 

for crossflow over two staggered flat tubes. International Journal of Automotive 

and Mechanical Engineering. 2012;6:755-67. 

[17] Gustafsson O, Hellgren H, Stignor CH, Axell M, Larsson K, Teuillieres C. Flat 

tube heat exchangers–Direct and indirect noise levels in heat pump applications. 

Applied Thermal Engineering. 2014;66:104-12. 

[18] Khoshvaght Aliabadi M, Gholam Samani M, Hormozi F, Haghighi Asl A. 3D-

CFD simulation and neural network model for the j and f factors of the wavy fin-

and-flat tube heat exchangers. Brazilian Journal of Chemical Engineering. 

2011;28:505-20. 

[19] Čarija Z, Franković B, Perčić M, Čavrak M. Heat transfer analysis of fin-and-tube 

heat exchangers with flat and louvered fin geometries. International Journal of 

Refrigeration. 2014;45:160-7. 

[20] Tahseen AT, Ishak M, Rahman MM. A Numerical study of forced convection 

heat transfer over a series of flat tubes between parallel plates. Journal of 

Mechanical Engineering and Sciences. 2012;3:271-80. 

[21] Nickolas N, Moorthy P, Oumer AN, Ishak M. A review on improving thermal-

hydraulic performance of fin-and-tube heat exchangers. IOP Conference Series: 

Materials Science and Engineering. 2017;257. 

[22] Kurnia JC, Sasmito AP. Heat transfer performance of non-circular coiled tubes - 

Research summary, challenges and directions. International Journal of 

Automotive and Mechanical Engineering. 2016;13:3710-27. 

[23] Nascimento IP, Garcia EC. Heat transfer performance enhancement in compact 

heat exchangers by using shallow square dimples in flat tubes. Applied Thermal 

Engineering. 2016;96:659-70. 

[24] Duan F, Song K, Li H, Chang L, Zhang Y, Wang L. Numerical study of laminar 

flow and heat transfer characteristics in the fin side of the intermittent wavy finned 

flat tube heat exchanger. Applied Thermal Engineering. 2016;103:112-27. 

[25] Wais P. Fin-tube heat exchanger performance for different louver angles2014. 

[26] Sparrow E, Samie F. Heat transfer and pressure drop results for one-and two-row 

arrays of finned tubes. International Journal of Heat and Mass Transfer. 

1985;28:2247-59. 

[27] Dong J, Chen J, Chen Z, Zhang W, Zhou Y. Heat transfer and pressure drop 

correlations for the multi-louvered fin compact heat exchangers. Energy 

Conversion and Management. 2007;48:1506-15. 

[28] Yang L, Tan H, Du X, Yang Y. Thermal-flow characteristics of the new wave-

finned flat tube bundles in air-cooled condensers. International Journal of Thermal 

Sciences. 2012;53:166-74. 

[29] Chu W, Yu P, Ma T, Zeng M, Wang Q. Numerical analysis of plain fin-and-oval-

tube heat exchanger with different inlet angles. Chemical Engineering. 

2013;35:481-6. 



 

Investigation of thermal-hydraulic performance in flat tube heat exchangers at various tube inclination angles 

4560 

[30] He Y, Han H, Tao W, Zhang Y. Numerical study of heat-transfer enhancement by 

punched winglet-type vortex generator arrays in fin-and-tube heat exchangers. 

International Journal of Heat and Mass Transfer. 2012;55:5449-58. 

[31] Oumer AN, Mamat O. A study of fiber orientation in short fiber-reinforced 

composites with simultaneous mold filling and phase change effects. Composites 

Part B: Engineering. 2012;43:1087-94. 

[32] Rao RT, Oumera AN, Jamaludin UK, Hassan I, Firdaus B. Model Validation for 

Flow and Heat Transfer Characteristics of Supercritical CO2 in Mini-Channels. 

ARPN Journal of Engineering and Applied Sciences. 2017;12:4312-7. 

[33] Ibrahim TA, Gomaa A. Thermal performance criteria of elliptic tube bundle in 

crossflow. International Journal of Thermal Sciences. 2009;48:2148-58. 

[34] Zukauskas A. Heat transfer from tubes in cross-flow. Advances in heat transfer. 

1987;18:87. 

[35] Gholami AA, Wahid MA, Mohammed HA. Heat transfer enhancement and 

pressure drop for fin-and-tube compact heat exchangers with wavy rectangular 

winglet-type vortex generators. International Communications in Heat and Mass 

Transfer. 2014;54:132-40. 

 

NOMENCLATURES 

𝐶𝑃  specific heat at constant pressure, (J/Kg.K) 

D circular tube diameter (mm) 

Do tube diameter (mm) 

𝐷ℎ  Hydraulic diameter of the tube (m) 

f friction factor, dimensionless 

h  convection heat transfer coefficient, (W/m2.K) 

J Colburn factor, dimensionless 

k thermal conductivity of the tube (W/m.k) 

L length of the tube (m) 

𝑃𝑙 Longitudinal tube pitch, (mm) 

𝑃𝑡 Transverse tube pitch, (mm) 

q heat flux, (W/m2) 

𝑆  fin pitch (mm) 

𝑇𝑤𝑎𝑙𝑙 tube wall temperature, (°C) 

𝑇𝑚𝑒𝑎𝑛 mean temperature, (°C)  

 𝑢𝑚𝑎𝑥  air speed at minimum free flow area (m/s)  

 

Dimensionless group 

Nu Nusselt number 

Re Reynolds Number  

Pr Prandtl number  

 

Subscripts  

HEs heat exchangers  

max  maximum 

Greek symbols 

𝛿 fin thickness (mm) 

𝜇  dynamic viscosity, (Kg/m.s) 

α tube inclination angle (degree) 

∆P pressure drop (Pa) 

ρ  density, (Kg/m3) 

 

 


