STUDY ON PROPERTIES OF HYBRID REINFORCED COMPOSITE USING CARBON FIBER AND KENAF FIBER

NURIZZATI BINTI IDRIS

Bachelor of Applied Science (Hons) Material Technology

UNIVERSITI MALAYSIA PAHANG

STUDIES ON PROPERTIES OF HYBRID REINFORCED COMPOSITE USING CARBON FIBER AND KENAF FIBER

NURIZZATI BINTI IDRIS

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Applied Science (Hons) Material Technology

> Faculty of Industrial Sciences & Technology UNIVERSITI MALAYSIA PAHANG

> > JANUARY 2017

SUPERVISORS' DECLARATION

I hereby declare that I have checked the thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Applied Science (Honor) Material Technology.

Signature		
Name of Supervisor	:	DR. NURJANNAH BINTI SALIM
Position	:	SENIOR LECTURER
Date	:	

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for the award of another degree.

Signature	:	
Name	:	NURIZZATI BINTI IDRIS
ID Number	:	SC13053
Date	:	

DEDICATION

I would like to dedicate this project report especially to my beloved parents, IDRIS BIN TALIB and HASHIMAH BINTI HASAUDIN.

Further, the report also dedicates this project to my supervisor, DR.NURJANNAH BINTI SALIM who has provided support and guidance me for completing this project report.

Without patience, understanding, support and guidance from them, this project report cannot be done. All of them are always with me in every step either in difficult moments nor easy do we overcome together.

ACKNOWLEDGEMENTS

First and foremost, I praised to Allah S.W.T, the Almighty for the strenghth and health that he gives me to initiate my step in all the way until Ihave finished up my undergraduate research project. Additionally, I also want to give my pleasure to God because enabling me to prepare my thesis within the short time instead of exploring, understanding, gaining more knowledge which related to my research study as well.

Indeed, I want to take this opportunity to give a big thanks and heartfelt appreciation to my supervisor Dr.Nurjannah binti Salim for her kind supervise, constant encouragement and inspiring guidance throughout my research project progression. After all, I also want to give warmest appreciation to University Malaysia Pahang (UMP) staff of Faculty of Industrial Science and Technology (FIST) for their kind cooperation to help me when I'm lost or need something that I required to know in handling of chemical, equipment and laboratory during finishing this research project.

Moreover, I am glad to express my sincere appreciation to my family especially my parents for their blessing and my fellow friends that always prayed for me and assisted me directly or indirectly for successful completion of this research project.

At last, a lot of thanks also for other final year project students either those who under the same supervision with me or not. Thank you for helping each other's and also solved the problems together during the project. All the hardship we had go through together are greatly remembered.

TABLE OF CONTENTS

Page

SUPERVISOR	RS' DECLARATION	iii
STUDENT'S I	DECLARATION	iv
DEDICATION	N	v
ACKNOWLE	DGEMENTS	vi
ABSTRACT		vii
ABSTRAK		viii
TABLE OF C	ONTENTS	ix
LIST OF TAB	ELES	xi
LIST OF FIG	URES	xii
LIST OF SYN	IBOLS	xiii
LIST OF ABB	REVIATIONS	xiv
CHAPTER 1	INTRODUCTION	1
1.1	BACKGROUND OF STUDY	1
1.2	PROBLEM STATEMENT	1
1.3	OBJECTIVES OF RESEARCH	3
1.4	SCOPE OF RESEARCH	3
CHAPTER 2	LITERATURE REVIEW	4
2.1	INTRODUCTION	4
2.2	HYBRID COMPOSITE	5
	2.2.1 Matrix Materials	6
	2.2.2 Kenaf Fiber	7
	2.2.3 Carbon Fiber	8
2.3	HYBRID COMPOSITE FABRICATION	9
	2.3.1 Resin Transfer Molding (RTM)	9
2.4	PROPERTY EVALUATION OF HYBRID COMPOSITE	9
	2.4.1 Tensile Test	9
	2.4.2 Impact Behaviour	10
	2.4.3 Density	10

	2.4.4 Water Absorption	10	
	2.4.5 Scanning Electron Microscopy (SEM)	11	
	2.4.6 Thermal Gravimetric Analysis (TGA)	11	
CHAPTER 3	MATERIALS AND METHODS	12	
3.1	APPARATUS AND MATERIALS	12	
3.2	RESEARCH METHODOLOGY	13	
3.3	PHASE 1: SAMPLE PREPARATION 1		
3.4	PHASE 2: SAMPLE CHARACTERIZATIONS	15	
3.5	PHASE 3: DATA ANALYSIS	17	
CHAPTER 4	RESULT AND DISCUSSION	18	
4.1	MECHANICAL PROPERTIES	18	
	4.1.1 Tensile Test	18	
	4.1.2 Impact Behaviour	20	
4.2	PHYSICAL PROPERTIES	21	
	4.2.1 Density	21	
	4.2.2 Water Absorption	21	
4.3	STRUCTURAL AND CHARACTERISATION PROPERTIES	23	
	4.3.1 Scanning Electron Microscopy (SEM)	23	
	4.3.2 Thermal Gravimetric Analysis (TGA)	27	
CHAPTER 5	CONCLUSION AND RECOMMENDATION	28	
5.1	CONCLUSION	28	
5.2	RECOMMENDATIONS		
REFERENCE	ES	30	
APPENDICE	S	33	

LIST OF TABLES

Table 3.1:	List of apparatus and materials	12
Table 4.1:	Tables of difference in energy and angular displacement	
	for three different samples	20
Table 4.2:	Weight of the sample soaked into water for 1 day	22
Table 4.3:	Weight of the sample soaked into water for every	
	2 hours	22

LIST OF FIGURES

Figure 2.1: Kenaf Fiber	7
Figure 2.2: Carbon Fiber	8
Figure 3.1: Kenaf-carbon fiber reinforced composite before and after	
added resin	13
Figure 3.2: Resin Transfer Molding (RTM)	14
Figure 3.3: Kenaf-carbon fiber reinforced composite	15
Figure 3.4: Universal Testing Machine (UTM) and Izod Charpy	
Impact Test	16
Figure 3.5: Scanning Electron Microscopy (SEM) and	
Thermal Gravimetric Analysis (TGA)	17
Figure 4.1:Tensile strength of the kenaf-carbon hybrid composite	19
Figure 4.2: The SEM micrograph of overal structure of carbon and	
kenaf fiber composite under 100x magnification	24
Figure 4.3:The SEM micrograph of carbon fiber and polyester resin	
composite; (a) 250x magnification (b) 500x magnification	25
Figure 4.4: The SEM micrograph of kenaf fiber and polyester resin	
composite; (a) 250x magnification (b) 500x magnification	26
Figure 4.5: Graph of the result in TGA	27

LIST OF SYMBOLS

cm	-	centi-meter (10^{-2})
g	-	grams
h	-	hour
k	-	kilo
kg	-	kilograms
ml	-	mili-litre
min	-	minute
mm	-	mili-meter (10 ⁻³)
MDo		Maga Pascal
Ivii a	-	Mega Fascal
N N	-	Newton
N nm	-	Newton nano-meter (10^{-9})
N nm ρ	- -	Newton nano-meter (10 ⁻⁹) density
N nm ρ t	- - -	Newton nano-meter (10 ⁻⁹) density time
N nm ρ t μ	- - - -	Newton nano-meter (10 ⁻⁹) density time micron (10 ⁻⁶)
N nm ρ t μ		Newton nano-meter (10 ⁻⁹) density time micron (10 ⁻⁶) degree celcius

LIST OF ABBREVIATIONS

МЕКР	-	Methyl ethyl ketone peroxide
СМС	-	Ceramic matrix composite
PMC	-	Polymer matrix composite
MMC	-	Metal matrix composite
CFRC	-	Ceramic fiber reinforced ceramic
RTM	-	Resin transfer molding
UTM	-	Universal testing machine
SEM	-	Scanning electron microscopy
TGA	-	Thermogravimetric analysis