

Available online at BCREC Website: https://bcrec.undip.ac.id

BCREC

Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1), 2018, 57-73

Research Article

Syngas Production from Catalytic CO₂ Reforming of CH₄ over CaFe₂O₄ Supported Ni and Co Catalysts: Full Factorial Design Screening

M. Anwar Hossain¹, Bamidele V. Ayodele¹, Chin Kui Cheng^{1,2,3}, Maksudur R. Khan^{1,2*}

¹Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia ²Rare Earth Research Centre, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia ³Center of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

Received: 5th May 2017; Revised: 8th August 2017; Accepted: 9th August 2017 Available online: 22nd January 2018; Published regularly: 2nd April 2018

Abstract

In this study, the potential of dry reforming reaction over CaFe₂O₄ supported Ni and Co catalysts were investigated. The Co/CaFe₂O₄ and Ni/CaFe₂O₄ catalysts were synthesized using wet impregnation method by varying the metal loading from 5-15 %. The synthesized catalysts were tested in methane dry reforming reaction at atmospheric pressure and reaction temperature ranged 700-800 °C. The catalytic performance of the catalysts based on the initial screening is ranked as 5%Co/CaFe₂O₄ < 10%Co/CaFe₂O₄ < 5%Ni/CaFe₂O₄ < 10%Ni/CaFe₂O₄ according to their performance. The Ni/CaFe₂O₄ catalyst was selected for further investigation using full factorial design of experiment. The interaction effects of three factors namely metal loading (5-15 %), feed ratio (0.4-1.0), and reaction temperature (700-800 °C) were evaluated on the catalytic activity in terms of CH₄ and CO₂ conversion as well as H₂ and CO yield. The interaction between the factors showed significant effects on the catalyst performance at metal loading, feed ratio and reaction temperature of 15 %, 1.0, and 800 °C. respectively. The 15 wt% Ni/CaFe₂O₄ was subsequently characterized by Thermogravimetric (TGA), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS), N2-physisorption, Temperature Programmed Desorption (TPD)-NH3, TPD-CO2, and Fourier Transform Infra Red (FTIR) to ascertain its physiochemical properties. This study demonstrated that the CaFe₂O₄ supported Ni catalyst has a good potential to be used for syngas production via methane dry reforming. Copyright © 2018 BCREC Group. All rights reserved

Keywords: Cobalt; Nickel; CaFe₂O₄; Methane dry reforming; Syngas

How to Cite: Hossain, M.A., Ayodele, B.V., Cheng, C.K., Khan, M.R. (2018). Syngas Production from Catalytic CO₂ Reforming of CH₄ over CaFe₂O₄ Supported Ni and Co Catalysts: Full Factorial Design Screening. *Bulletin of Chemical Reaction Engineering & Catalysis*, 13 (1): 57-73 (doi:10.9767/bcrec.13.1.1197.57-73)

Permalink/DOI: https://doi.org/10.9767/bcrec.13.1.1197.57-73

* Corresponding Author.

E-mail: mrkhancep@yahoo.com (Khan, M.R.) Telp.: +609 5492872, Fax.: +609 5492889