

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Hydrothermal syntheses of tungsten doped TiO₂ and TiO₂/WO₃ composite using metal oxide precursors for charge storage applications

ALLOYS AND COMPOUNDS

贉

Bhupender Pal^a, Bincy Lathakumary Vijayan^a, Syam G. Krishnan^a, Midhun Harilal^a, Wan Jeffrey Basirun^b, Adrian Lowe^c, Mashitah M. Yusoff^a, Rajan Jose^{a,*}

^a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan,

Malaysia

^b Department of Chemistry, Faculty of Science, University of Malaya, 50603, Malaysia

^c Research School of Engineering, Australian National University, Canberra, 0200, Australia

ARTICLE INFO

Article history: Received 2 August 2017 Received in revised form 29 December 2017 Accepted 4 January 2018 Available online 5 January 2018

Keywords: Green synthesis Energy Storage Materials Renewable energy Battery type electrode Supercapacitors

ABSTRACT

Synthesis of advanced functional materials through scalable processing routes using greener approaches is essential for process and product sustainability. In this article, syntheses of nanoparticles of titanium dioxide (TiO₂), tungsten trioxide (WO₃), WO₃-doped titanium dioxide (W-TiO₂) and TiO₂/WO₃ composite at hydrothermal conditions using corresponding metal oxide precursors are described. Electrochemical charge storage capabilities of the above materials are measured using cyclic voltammetry, charge-discharge cycling and electrochemical impedance spectroscopy in aqueous KOH electrolyte. The TiO₂ and the WO₃ nanoparticle showed a specific charge (Q) of ~12 and ~36 mA h g⁻¹ at a current density of 2 A g⁻¹ in 6 M KOH, respectively. The Q of TiO₂ increased upon W doping up to 25 mA h g⁻¹ for 5 wt% W-TiO₂ and the WO₃/TiO₂ composite showed the highest storage capability (Q ~40 mA h g⁻¹). Changes in the charge storage capabilities of the doped and composite materials have been correlated to materials properties.

© 2018 Elsevier B.V. All rights reserved.

* Corresponding author. E-mail address: rjose@ump.edu.my (R. Jose).

4

5