STUDY THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NICKEL-ALUMINIUM INTERMETALLIC ALLOY

SYAKILA BINTI MOHAMAD SODIKIN

UNIVERSITI MALAYSIA PAHANG

STUDY THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NICKEL-ALUMINIUM INTERMETALLIC ALLOY

SYAKILA BINTI MOHAMAD SODIKIN

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Applied Science (Honours) Material Technology

> Faculty of Industrial Sciences & Technology UNIVERSITI MALAYSIA PAHANG

> > JANUARY, 2017

SUPERVISORS' DECLARATION

I hereby declare that I have checked the thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Applied Science (Honours) Material Technology.

Signature	:	
Name of Supervisor	:	MADAM SITI AISAH BINTI HARUN
Position	:	LECTURER
Date	:	DECEMBER 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duty acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	SYAKILA BINTI MOHAMAD SODIKIN
ID Number	:	SC13011
Date	:	DECEMBER 2016

DEDICATION

It is with my deepest gratitude and warmest affection that I dedicate this thesis to my beloved parents Mohamad Sodikin Bin Salimin and Siti Sabariah Binti Rohani Who give constant source of knowledge and inspiration in finishing my thesis

.

ACKNOWLEDGEMENTS

I am grateful and would like to express my sincere gratitude, love and respect to my supervisor, Madam Siti Aisah Binti Harun, Lecturer of Faculty of Industrial Science & Technology (FIST) for her helpful guidance, germinal ideas, continuous encouragement, patience and constant consultation in making this research possible. I would not have completed this research work without her support and inspiration. I also sincerely thanks for the time spent proofreading and correcting my mistakes.

My sincere thanks go to all my labmates and members of the staff in FIST Laboratory, who helped me in many ways especially in handling various instrumental facilities and made my stay at UMP pleasant and unforgettable. Many special thanks go to my course lecturers notably Dr Rasidi Bin Roslan, Prof Agus Geter, Dr Ahmad Salihin and Dr Izan Izwan Misnon for their never ending help in giving suggestions, teaching and inspiration me in completing this thesis.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. Special thanks should be given to my coursemate. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this study.

TABLE OF CONTENTS

SUPERVISO	R'S DECLARATION	iii
STUDENT'S	DECLARATION	iv
DEDICATIO	Ν	v
ACKNOWLE	EDGEMENTS	vi
ABSTRACT		vii
ABSTRAK		viii
TABLE OF C	CONTENTS	ix
LIST OF TAI	BLES	xi
LIST OF FIG	URES	xii
LIST OF SYN	MBOLS	xiii
LIST OF ABI	BREVIATIONS	xiv
CHAPTER 1	INTRODUCTION	1
1.1	BACKGROUND OF THE PROBLEM	1
1.2	STATEMENT OF THE PROBLEM	2
1.3	OBJECTIVES OF THE STUDY	
1.4	SCOPE OF THE STUDY	3
1.5	ORGANIZATION OF THE THESIS	3
CHAPTER 2	LITERATURE REVIEW	4
2.1	METAL	4
2.2	CLASSIFICATION OF ALLOY	4
2.3	NICKEL ALUMINIUM INTERMETALLIC ALLOY	5
2.4	PREPARATION OF ALLOY	6
	2.4.1 CASTING METHOD	6
	2.4.2 FORGING METHOD	6
	2.4.3 MECHANICAL ALLOYING METHOD	7
	2.4.4 AGATE MORTAR-PESTLE GRINDING METH	IOD 7
2.5	HEAT TREATMENT	7

CHAPTER 3	RESEARCH METHODOLOGY	9
3.1	INTRODUCTION	9
3.2	CHEMICALS AND SOLVENT	10
3.3	EQUIPMENT	10
3.4	SAMPLE PREPARATION	10
3.5	HEAT PROCESSING 11	
3.6	SAMPLE CHARACTERIZATION	12
	3.6.1 X-RAY DIFFRACTION (XRD)	12
	3.6.2 SCANNING ELECTRON MICROSCOPE (SEM)	13
	3.6.3 VICKERS HARDNESS TEST	14
	3.6.4 DENSITY DETERMINATION	14
3.4	FLOW CHART	15
CHAPTER 4	RESULTS AND DISCUSSION	16
4.1	REACTION BETWEEN NICKEL AND ALUMINIUM POWDER	16
4.2	MORPHOLOGY OF NI-AL ALLOY UNDER SEM	16
4.3	X-RAY DIFFRACTOMETER ANALYSIS	20
	4.3.1CALCULATION OF LATTICE PARAMETERS	20
	4.3.2 COMPUTATION OF WILLIAMSON-HALL PLOT	26
4.4	DENSITY OF NI-AL INTERMETALLIC ALLOY	29
4.5	HARDNESS ANALYSIS	30
CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	30
5.1	CONCLUSION	32
5.2	RECOMMENDATION FOR FUTURE WORK	33
REFERENCE	ES	35

LIST OF TABLES

Table 3.1: Parameters of heat treatment for Nickel-Aluminium intermetallic alloy	11
Table 4.1: The comparison result of density for Ni-Al intermetallic alloy	28
Table 4.2: Hardness testing result of Ni-Al alloy before and after sintered	30

LIST OF FIGURES

Figure 2.1: Schematic temperature/time cycle featuring the classical sintering process8
Figure 3.1: Binary phase diagram of Ni – Al system9
Figure 3.2: The schematic diagram of working principle of XRD instrument12
Figure 3.3: Interaction between electron and specimen in SEM instrument13
Figure 3.4: Flow chart of research activity15
Figure 4.1: XRD pattern for NiAl ₃ alloy after sintered at 800 °C17
Figure 4.2: XRD patterns for Ni ₂ Al ₃ alloy after sintered at 550 °C18
Figure 4.3: XRD pattern for NiAl alloy after sintered at 600 °C19
Figure 4.4: XRD pattern for Ni ₅ Al ₃ after sintered at 550 °C20
Figure 4.5: XRD pattern for Ni ₃ Al after sintered at 1100 °C21
Figure 4.6: Williamson-hall plot for NiAl ₃ alloy22
Figure 4.7: Williamson-hall plot for Ni ₂ Al ₃ alloy22
Figure 4.8: Williamson-hall plot for NiAl23
Figure 4.9: Williamson-hall plot for Ni ₅ Al ₃ alloy23
Figure 4.10: Williamson-hall plot for Ni ₃ Al alloy24
Figure 4.11: SEM images of NiAl ₃ alloy at (a) x2000 and (b) x20000 magnification25
Figure 4.12: SEM images of Ni ₃ Al alloy at (a) $x2000$ and (b) $x20000$ magnification25
Figure 4.13: SEM images of NiAl alloy at (a) x2000 and (b) x20000 magnification26
Figure 4.14: SEM images of Ni_5Al_3 alloy at (a) x2000 and (b) x20000 magnification26
Figure 4.15: SEM images of Ni_2Al_3 alloy at (a) x2000 and (b) x20000 magnification26
Figure 4.16: Hardness value of different composition of Ni-Al intermetallic alloy pallet
after sintering at their specific temperature

LIST OF SYMBOLS

~	-	Approximately
%	-	Percent
μ	-	Micron (10 ⁻⁶)
λ	-	Wavelength
20	-	Bragg angle
°C	-	Degree Celcius
F g ⁻¹	-	Farad per gram
π	-	3.14159
r	-	Radius
h	-	Height
g/cm ³	-	Gram per centimeter cube
kgf	-	Kilogram-force
HV	-	Vickers pyramid number
ρ	-	Density

LIST OF ABBREVIATIONS

NI-AL	-	Nickel Aluminium intermetallic Alloy
MA	-	Mechanical Alloying
XRD	-	X-ray Diffraction
SEM	-	Scanning Electron Microscopy