The impacts of compression ratio on the performance and emissions of ice powered by oxygenated fuels: A review

Omar I. Awada, a, *, Rizalman Mamata a, b, M.M. Noora a, b, Thamir K. Ibrahim a, I.M. Yusri a, A.F. Yusop a

a Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Malaysia
b Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Malaysia

Article info
Article history:
Received 12 May 2016
Received in revised form 19 September 2016
Accepted 26 September 2016
Available online 29 September 2016

Keywords:
Oxygenated fuel
Spark ignition engine
Compression ignition engine
Ethanol fuel
Engine emissions

Abstract
Energy sources are becoming a governmental issue, with cost and stable supply as the main concern. Oxygenated fuels production is cheap, simple and eco-friendly, as well as can be produced locally, cutting down on transportation fuel costs. Oxygenated fuels are used directly in an engine as a pure fuel, or they can be blended with fossil fuel. The most common fuels that are conceded under oxygenated fuels are ethanol, methanol, butanol Dimethyl Ether (DME), Ethyl tert-butyl ether (ETBE), Methyl tert-butyl ether (MTBE) and biodiesel that have attracted the attention of researchers. Due to the higher heat of vaporization, high octane rating, high flammability temperature, and single boiling point, the oxygenated fuels have a positive impact on the engine performance, combustion, and emissions by allowing the increase of the compression ratio. Oxygenated fuels also have a considerable oxygen content that causes clean combustion. The aim of this paper was to systematically review the impact of compression ratio (CR) on the performance, combustion and emissions of internal combustion engines (ICE) that are operated with oxygenated fuels that could potentially replace petroleum-based fuels or to improve the fuel properties. The higher octane rating of oxygenated fuels can endure higher compression ratios before an engine starts knocking, thus giving an engine the ability to deliver more power efficiently and economically. One of the more significant findings to emerge from this review study was the slight increases or decreases in power when oxygenated fuel was used at the original CR in ICE engines. Also, CO, HC, and NOx emissions decreased while the fuel consumption (FC) increased. However, at higher CR, the engine performance increased and fuel consumption decreased for both SI and CI engines. It was seen the NOx, CO and CO2 emissions of oxygenated fuels decreased with the increasing CR in the SI engine, but the HC increased. Meanwhile, in CI engine, the HC, CO and NOx decreased as the CR increased with biodiesel fuel.

© 2016 Energy Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The demand on energy is increasing from time to time due to the increase of economic activities and quality of life. Oxygenated fuels produced from renewable resources, including alcohols (those including higher than two C atoms) and many other oxygenated compounds, have been proposed as blend components in gasoline and diesel to decrease fossil oil consumption and emissions. The most common fuels that are conceded under oxygenate fuels are alcohols such as ethanol, methanol, butanol. Also, ethers such as dimethyl ether (DME), ethyl tert-butyl ether (ETBE), methyl tert-butyl ether (MTBE) as well as biodiesel have been considered to be one of the oxygenated fuels that attract the global attention of researchers and companies [1–7]. Biodiesel and alcohols produce significant decreases in greenhouse gasses emissions, in comparison to gasoline and diesel fuels [8,9]. Due to the low content of pollutants such as sulfur in oxygenates, the emissions from them are significantly less than that of fossil fuels [10,11]. Donahue et al. [12] studied the impact of oxygen content on emissions in a diesel engine, and they found that the improvement of emissions depended on the level of oxygen concentration in the fuel. Furthermore, the addition of oxygenated organic compounds to fossil fuel is useful in enhancing diesel and gasoline combustion and emissions [13–16].

* Corresponding author.
E-mail address: omaribr78@gmail.com (O.I. Awad).

http://dx.doi.org/10.1016/j.joei.2016.09.003
1743-9671/© 2016 Energy Institute. Published by Elsevier Ltd. All rights reserved.