Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids

K. Abdul Hamida, W.H. Azmiab, M.F. Nabila, Rizalman Mamatd, K.V. Sharmac

aFaculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
bAutomotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
cCentre for Energy Studies, Department of Mechanical Engineering, JNTUH College of Engineering Kukatpally, Hyderabad 500085, India

ABSTRACT
In recent years, research is focused on enhancing the thermo-physical properties of single component nanofluids. Hence, the hybrid or composite nanofluids are developed to enhance the heat transfer performance. The thermo-physical properties of TiO2-SiO2 nanoparticles suspended in a base fluid of water (W) and ethylene glycol (EG) mixture with 60:40 vol ratio are investigated. The experiments were conducted for 1.0% volume concentration of TiO2-SiO2 nanofluids with different mixture ratios of 20:80, 40:60, 50:50, 60:40 and 80:20. The measurements of thermal conductivity and dynamic viscosity were performed in the temperature range of 30–80 °C by using KD2 Pro Thermal Properties Analyzer and Brookfield LVDV III Ultra Rheometer respectively. The highest thermal conductivity for TiO2-SiO2 nanofluid was obtained with a ratio of 20:80 and the maximum enhancement exceeded up to 16% higher than the base fluids. The nanofluids with a ratio of 50:50 provided the lowest effective thermal conductivity. Meanwhile, the dynamic viscosity variation for all mixture ratios is always lower than the ones with a ratio of 50:50. The properties enhancement ratio suggests that TiO2-SiO2 nanofluid with 1.0% volume concentration will aid the heat transfer for all mixture ratios except for the ratio of 50:50. As a conclusion, the optimum mixture ratios for TiO2-SiO2 nanofluids are attained with 40:60 and 80:20 ratios where the combination of enhancement in thermal conductivity and dynamic viscosity had more advantages to heat transfer as compared to other ratios.

KEYWORDS:
Thermal conductivity; Dynamic viscosity; TiO2-SiO2 nanofluids; Water-ethylene glycol mixture; Mixture ratio