Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach

Puranjan Mishra a, Sveta Thakur a, Durga Madhab Mahapatra b, Zularisam Ab Wahida a, Hong Liub, Lakhveer Singh b,*

a Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
b Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 97331, USA

A R T I C L E   I N F O
Article history:
Received 26 September 2017
Received in revised form
25 November 2017
Accepted 15 December 2017
Available online 6 January 2018
Keywords:
Nickel and cobalt oxides nanoparticles
Hydrogen production
Palm oil mill effluent
COD

A B S T R A C T
In the present study, hydrogen production from palm oil mill effluent (POME) was investigated with the incorporation of nanoparticles (NPs) comprising of nickel (NiO) and cobalt oxides (CoO). The NPs of NiO and CoO were prepared using hydrothermal method and were further applied to analyse, their effect on hydrogen production. The results demonstrated that, a maxima volumetric hydrogen production rate of 21 ml H2/L-POME/h with the hydrogen yield of 0.563 L H2/g-CODremoved was obtained with 1.5 mg/L concentration of NiO NPs. On the other hand, the addition of CoO NPs produced maximum volumetric hydrogen production rate of 18 ml H2/L-POME/h with a hydrogen yield of 0.487 L H2/g-CODremoved with 1.0 mg/L of CoO NPs. Results showed that addition of optimal concentration of NiO and CoO NPs to the POME enhances the hydrogen yield by 1.51 and 1.67 fold respectively. Besides, this addition of NiO and CoO enhanced the COD removal efficiency by 15 and 10% respectively as compared to an un-additive NPs POME. The toxicity of NPs was also tested using bacterial viability test, which revealed that application of 3.0 mg/L of NiO and CoO NPs to modified Luria-Bertani (LB) medium had 63% and 83% reduction in bacterial cell growth. The results concluded that supplementation of NiO and CoO NPs under an optimal range to the wastewater can improve the hydrogen productivity.

Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.

Introduction

Bioenergy production from renewable biomass mitigates the problems associated with fossil fuel combustion such as fossil fuel depletion and increased greenhouse effect. Hydrogen as a renewable energy source is considered as the one of the carbon free fuel to have the highest energy density by masses (142 MJ/kg), which is about 2.75 times more than other hydrocarbon fuels [1–3]. Statistics reveals that more than 48% of hydrogen is generated from natural resources, while 30%, 18% and 4% are from petroleum, coal, and water electrolysis, respectively [4]. Hydrogen derived from the organic waste has gained significant attention due to advantages such as stabilization of organic waste and energy production from wastes...