WIRELESS CHARGER

HARITH ISKANDAR BIN MOHD DIN

This thesis is submitted as partial fulfillment of the requirements for the award of the ${\it the}$

Bachelor Degree of Electrical Engineering (Power System)

Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

DECEMBER 2010

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE	
	DECLARA	TION OF THESIS'S STATUS	ii	
	DECLARA	TION OF SUPERVISOR	iii	
	TITLE		iv	
	DECLARA	TION	v	
	DEDICATI	ION	vi	
	ACKNOW	LEDGEMENT	vii xii	
	ABSTRAC	T		
	ABSTRAK		xi	
	TABLE OF	CONTENTS	xii	
	LIST OF T	ABLE		
	LIST OF F	IGURES		
	LIST OF A	PPENDICS		
1	INTRODU	CTION	1	
	1.1 Ove	erview	1	
	1.2 Back	ground	1	
	1.3 Obje	ectives	2	
	1.4 Proje	ect Scopes	3	
	1.5 Prob	lem Statement	3	
	1.6 Thes	sis Outline	4	

2	LITE	ERATU.	RE REVIEW	6
	2.1	Introd	luction	6
	2.2	Choos	sing Type of Transmission	7
		2.2.1	Radio Wave	7
		2.2.2	Inductive coupling	9
		2.2.3	Laser	10
		2.2.4	Ultrasonic	10
		2.2.5	Comparison	11
	2.3	Choos	sing of Equipment/Circuit	12
		2.3.1	Oscillator	12
			2.3.1.1 Colpitts Oscillator	12
			2.3.1.2 Hartley Oscillator	13
		2.3.2	Voltage Booster	14
			2.3.2.1 Voltage Doubler	14
3	МЕТ	THODO	LOGY	16
	3.1	Introd	luction	16
	3.2	Power	r Supply	17
	3.3	Oscill	ator	18
		3.3.1	Design	19
		3.3.2	Advantages and Disadvantages	21
		3.3.3	Design Challenge	21
	3.4	Power	r Amplifier	22
		3.4.1	Design	22
	3.5	Trans	mitter and Receiver	25
		3.5.1	Solenoid Design	25
		3.5.2	LC Arrangement	26

APPENDICES			46
REFERENCES			44
	5.3	Commercialization	42
	5.2	Future Recommendation	41
	5.1	Conclusion	40
5	CONCLUSION AND RECOMMENDATION		40
	4.6	Effect of The Type of Coil	38
	4.5	Voltage Doubler	37
	4.4	Transmitter and Receiver Coils	36
	4.3		35
	4.2	Oscillator	33
	4.1	Introduction	33
4	RES	ULT & ANALYSIS	33
		3.7.2 Advantages and Disadvantages	32
		3.7.1 Design	31
	3.7	Charging Circuit	31
		3.6.1 Design	30
	3.6	Voltage Doubler	30
		3.5.4 Type of Coil	28
		3.5.3 Inductance Determination	27

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 4.1	Transmitter and Receiver Voltage	36
Table 4.2	Booster Result Without LED Light	37
Table 4.3	Booster Result with LED	37
Table 4.4	Coil Effectiveness (C-to-O Transmitter)	38
Table 4.5	Coil Effectiveness (B-to-F Transmitter)	39

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	The Rectenna	8
2.2	Components of An Inductive Power	
	Transfer Power	9
2.3	Ultrasonic Wireless Power Transmission	10
2.4	Basic Diagram of Colpitts Oscillator	12
2.5	Basic Diagram of Hartley Oscillator	13
2.6	Voltage Doubler	15
3.1	System Block Diagram	17
3.2	Colpitts oscillator schematic	19
3.3	Oscillator system schematic	22
3.4	Class B Amplifier	23
3.5	Power Amplifier	24
3.6	Flux Density In A Solenoid	25
3.7	Topology of LC Arrangement	27
3.8	Center-to-Outer Coil	29
3.9	Back-to-Front Coil	29
3.10	Schematic of the Voltage	
	Doubler	30
3.11	Charging Circuit	31
4.1	Oscillated Voltage	34
4.2	Power Output Amplifier	35
4.3	Transceiver and Receiver	36
5.1	One to Many Transmission	42

LIST OF ABBREVIATIONS

AC - Alternate Current

DC - Direct Current

RF - Radio Frequency

FCC - Federal Communications Commission

BJT - Bijunction Transisitor

LED - Light Emitting Diode