NUMERICAL INVESTIGATION ON PERFORMANCE AND EMISSIONS CHARACTERISTICS IN HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE

MOHAMMAD MEHEDI HASAN

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering in Mechanical Engineering

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2016
TABLE OF CONTENTS

DECLARATION i
TITLE PAGE ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRAK v
ABSTRACT vi
TABLE OF CONTENTS vi
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF SYMBOLS xv
LIST OF ABBREVIATIONS xviii

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
 1.1.1 Homogeneous Charge Compression Ignition 2
 1.1.2 HCCI Diesel Combustion 4
 1.1.3 HCCI Gasoline Combustion 5
 1.1.4 Formation of NO\textsubscript{x} and Soot 7
1.2 Problem Statements 9
1.3 Objectives of study 10
1.4 Scope of Study 10
1.5 Organization of Thesis 11

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 13
2.2 Performance Comparison 13
 2.2.1 HCCI Diesel Combustion 16
 2.2.2 HCCI Gasoline Combustion 18
2.3 Emissions Comparison 20
2.3.1 HCCI Diesel Combustion 21
2.3.2 HCCI Gasoline Combustion 25

2.4 Effects of Engine Parameters 26
2.4.1 Intake Temperature 26
2.4.2 Intake Pressure 27
2.4.3 Compression Ratio 28

2.5 Effects of Fuels and Additives 29
2.5.1 Effects of Fuels 29
2.5.2 Effects of Additives 32

2.6 Numerical Study of HCCI Engines 33
2.6.1 Chemical Kinetics 33
2.6.2 Single Zone Model 34
2.6.3 Multi Zone Models 36

2.7 Summary 37

CHAPTER 3 NUMERICAL MODELING

4.1 Introduction 38
4.2 Chemical Kinetics Mechanisms 39
3.2.1 Diesel Mechanism 39
3.2.2 Gasoline Mechanism 40
3.2.3 Mechanisms for Different Fuels and Blends of Fuels 41
3.2.4 Mechanisms of Emissions Formation 41

4.3 Engine Parameters 45
4.4 Valve Geometry 49
4.5 Combustion Process Model 53
3.5.1 Conservation of Mass 53
3.5.2 Conservation of Species 54
3.5.3 Conservation of Energy 54

4.6 Heat Release Model 55
4.7 Numerical Solutions 57
4.8 Combustion Parameters 59
4.9 Performance Parameters 60
4.10 Chemical Properties of Fuels 62
CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 65
4.2 Model Validation 65
 4.2.1 Diesel HCCI 65
 4.2.2 Gasoline HCCI 69
 4.2.3 Comparison of Different Models 72
4.3 Comparison of HCCI with CI 74
 4.3.1 Engine Performance 74
 4.3.2 Engine Emissions 78
4.4 Comparison of HCCI with SI 82
 4.4.1 Engine Performance 82
 4.4.2 Engine Emissions 87
4.5 Influence of Engine Parameters 90
 4.5.1 Diesel HCCI 90
 4.5.2 Gasoline HCCI 95
4.6 Different Fueled HCCI 100
 4.6.1 Combustion Characteristics 101
 4.6.2 Performance Characteristics 106
 4.6.3 Emissions Characteristics 108
4.7 Summary 111

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 112
5.2 Summary of Findings 112
5.3 Recommendations for Future Research 115

REFERENCES 116
APPENDICES 135
A Derivation of temperature equation 135
<table>
<thead>
<tr>
<th></th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Computer software summary</td>
<td>139</td>
</tr>
<tr>
<td>C</td>
<td>Zero-dimensional single zone numerical model code</td>
<td>141</td>
</tr>
<tr>
<td>D</td>
<td>List of Publications</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1.1 Comparison of parameters influencing in SI, CI, and HCCI combustion engines 4

Table 2.1 Different experimental engine performance results using various fuels in HCCI engines compared to CI engines 14

Table 2.2 Different experimental engine performance results using various fuels in HCCI engines compared to SI engines 15

Table 2.3 Different experimental engine emissions results using various fuels in HCCI engines compared to CI engines 22

Table 2.4 Different experimental engine emissions results using various fuels in HCCI engines compared to SI engines 23

Table 3.1 Gasoline surrogate composition 40

Table 3.2 NO$_x$ kinetic mechanism reaction rates parameters for A, b, and E_A 44

Table 3.3 The properties of diesel fuel 63

Table 3.4 The properties of gasoline fuel 63

Table 3.5 The chemical properties of the test fuels 63

Table 4.1 Engine model specifications 66

Table 4.2 Engine model specifications 70

Table 4.3 Engine model specifications 75

Table 4.4 Engine model specifications 82
LIST OF FIGURES

Figure 1.1	The differences between SI, CI, and HCCI engines	3
Figure 1.2	Combustion timing map in HCCI engine (10% burn), (°CA)	6
Figure 1.3	Combustion duration map in HCCI engine (10-90% burn), (°CA)	7
Figure 1.4	Equivalence ratios versus temperature	8
Figure 2.1	Intake temperature required for fuels to operate under HCCI mode with varying compression ratios.	29
Figure 3.1	Engine geometry of the piston and crank mechanisms	46
Figure 3.2	Instantaneous piston speed: zero at TDC and BDC, maximum at the middle of the stroke	48
Figure 3.3	Valve geometry for most engines with parameters defining the valve	49
Figure 3.4	Valve lift profile for typical poppet valves with mechanical lifters	51
Figure 3.5	Discharge coefficient for one valve event	53
Figure 3.6	An algorithm flow chart for zero-dimensional single-zone model simulation	58
Figure 3.7	Process of determining SOC and combustion duration (CA10-90)	60
Figure 3.8	Process of determining CA50	61
Figure 4.1	Schematic diagram of the HCCI engine set up	67
Figure 4.2	Comparison between zero-dimensional single zone model with experimental data from Guo et al. (2010). CR=10.0, N=900 rpm, T\textsubscript{in}=333 K, P\textsubscript{m}=100 kPa, AFR=50	68
Figure 4.3	Schematic diagram of the HCCI engine set up	70
Figure 4.4	Comparison between zero-dimensional single zone model with experimental data from Gotoh et al. (2013). CR=12.0, N=1500 rpm, T\textsubscript{in}=393 K, P\textsubscript{m}=100 kPa, AFR=40	72
Figure 4.5 Comparison between zero-dimensional single zone model with experimental data and another zero-dimensional model from Maurya et al. (2016). CR=21, N=1000 rpm, T_in=365 K, P_m=100 kPa, λ = 3

Figure 4.6 Comparison between zero-dimensional single zone model with experimental data and one-dimensional model from Mo (2008). CR=12, N=1995.7 rpm, T_m=388.96 K, P_m=93.99 kPa, λ = 1.5

Figure 4.7 The variation of in-cylinder pressure between diesel engine and HCCI engine at a constant speed of 2400 rpm and full load condition

Figure 4.8 The variation of engine power between diesel engine and HCCI engine at variable speed and full load condition

Figure 4.9 The variation of BSFC between diesel engine and HCCI engine at variable speed and full load condition

Figure 4.10 The variation of BTE between diesel engine and HCCI engine at variable speed and full load condition

Figure 4.11 The variation of HC emission between diesel engine and HCCI engine at variable speed and full load condition

Figure 4.12 The variation of CO emission between diesel engine and HCCI engine at variable speed and full load condition

Figure 4.13 The variation of NO_x emission between diesel engine and HCCI engine at variable speed and full load condition

Figure 4.14 The variation of in-cylinder pressure between gasoline engine and HCCI engine at a constant speed of 3000 rpm and full load condition

Figure 4.15 The variation of engine power between gasoline engine and HCCI engine at variable speed and full load condition

Figure 4.16 The variation of BSFC between gasoline engine and HCCI engine at variable speed and full load condition

Figure 4.17 The variation of BTE between gasoline engine and HCCI engine at variable speed and full load condition

Figure 4.18 The variation of HC emission between gasoline engine and HCCI engine at variable speed and full load condition

Figure 4.19 The variation of CO emission between gasoline engine and HCCI engine at variable speed and full load condition
Figure 4.20 The variation of NO\textsubscript{x} emission between gasoline engine and HCCI engine at variable speed and full load condition

Figure 4.21 Influence of speed on combustion and performance characteristics in HCCI engine. CR=10.0, T\textsubscript{in}=360 K, P\textsubscript{in}=100 kPa, AFR=50

Figure 4.22 Influence of intake air temperature on combustion and performance characteristics in HCCI engine. CR=10.0, N=900 rpm, P\textsubscript{in}=100 kPa, AFR=50

Figure 4.23 Influence of intake air pressure on combustion and performance characteristics in HCCI engine. CR=10.0, N=900 rpm, T=360 K, AFR=50

Figure 4.24 Influence of Compression Ratio on combustion and performance characteristics in HCCI engine. N=900 rpm, T\textsubscript{in}=360 K, P\textsubscript{in}=100 kPa, AFR=50

Figure 4.25 Influence of speed on combustion and performance characteristics in HCCI engine. CR=12.0, T\textsubscript{in}=310 K, P\textsubscript{in}=100 kPa, AFR=40

Figure 4.26 Influence of intake air temperature on combustion and performance characteristics in HCCI engine. CR=12.0, N=1500 rpm, P\textsubscript{in}=100 kPa, AFR=40

Figure 4.27 Influence of intake air pressure on combustion and performance characteristics in HCCI engine. CR=12.0, N=1500 rpm, T\textsubscript{in}=310 K, AFR=40

Figure 4.28 Influence of Compression Ratio on combustion and performance characteristics in HCCI engine. N=1500 rpm, T\textsubscript{in}=310 K, P\textsubscript{in}=100 kPa, AFR=40

Figure 4.29 The variation of in-cylinder pressure of HCCI combustion at constant lambda $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

Figure 4.30 The variation of heat release rate of HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

Figure 4.31 The variation of SOC of HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

Figure 4.32 The variation of combustion duration (CA\textsubscript{50} and CA\textsubscript{10-90}) of HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

xiii
Figure 4.33 The variation of indicated mean effective pressure on HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

Figure 4.34 The variation of indicated thermal efficiency of HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

Figure 4.35 The variation of CO emissions on HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

Figure 4.36 The variation of HC emissions on HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels

Figure 4.37 The variation of NO emissions on HCCI combustion at constant lambda, $\lambda = 2$ and 900 rpm engine speed with different intake temperatures and test fuels
LIST OF SYMBOLS

a Crank radius
A Pre-exponential term
b Temperature dependent exponent
B Bore
c Half event angle
D Inner seat diameter
dQ Heat release dependent on the variation of crank angle \(d\theta \)
dV Variation of cylinder volume
i Mass fraction of species
j Number of flows in or out of the system
k Reaction rate co-efficient
l Connecting rod length
L Stroke length
m Total mass in the system
N Engine speed
p In-cylinder pressure
R Ratio of connecting rod length
s Distance between crank axis and piston pin axis
U Internal energy
V Instantaneous cylinder volume
W Work
y Valve profile
\(\gamma \) Ratio of specific heats
\(\kappa \) Ratio of specific heat values
\(\tau \) Indicated torque
\(\Phi \) Equivalence ratio
\(\omega \) Rotational speed
\(A_c \) Effective valve open area
\(A_p \) Piston area
\(A_w \) Wall area
\(C_d \) Discharge co-efficient
\(D_s \) Valve stem diameter
\(D_v \) Valve head diameter
\(E_A \) Activation energy
\(h_c \) Heat transfer coefficient
\(H_f \) Enthalpy of flows entering or leaving the system
\(L_v \) Valve lift
\(p_0 \) Upstream stagnation pressure
\(p_T \) Downstream static pressure
\(Q_h \) Heat transfer
\(R_c \) Compression ratio
\(R_u \) Universal gas constant
\(S_p \) Instantaneous piston speed
\(S_w \) Valve seat width
\(t_0 \) Upstream stagnation temperature
\(T_w \) Wall temperature
\(V_c \) Clearance volume
\(V_d \) Displacement volume
\(W_{mv} \) Mean molecular weight of the mixture
\(W_{net} \) Net work done

\(Y_{in} \) Inlet mass fraction

\(\eta_{th} \) Ratio of energy

\(\omega_i \) Mass reaction rate of the species \(i \)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Air cooled</td>
</tr>
<tr>
<td>AFR</td>
<td>Air fuel ratio</td>
</tr>
<tr>
<td>ASTM</td>
<td>American society for testing and materials</td>
</tr>
<tr>
<td>ATDC</td>
<td>After top dead center</td>
</tr>
<tr>
<td>BDC</td>
<td>Bottom dead center</td>
</tr>
<tr>
<td>BSFC</td>
<td>Brake specific fuel consumption</td>
</tr>
<tr>
<td>BTDC</td>
<td>Before top dead center</td>
</tr>
<tr>
<td>BTE</td>
<td>Brake thermal efficiency</td>
</tr>
<tr>
<td>CA</td>
<td>Crank angle</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
</tr>
<tr>
<td>CFR</td>
<td>Co-operative fuel research</td>
</tr>
<tr>
<td>CI</td>
<td>Compression ignition</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>CR</td>
<td>Compression ratio</td>
</tr>
<tr>
<td>DEE</td>
<td>Diethyl ether</td>
</tr>
<tr>
<td>DI</td>
<td>Direct injection</td>
</tr>
<tr>
<td>EGR</td>
<td>Exhaust gas recirculation</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental protection agency</td>
</tr>
<tr>
<td>EVO</td>
<td>Exhaust valve open</td>
</tr>
<tr>
<td>GDI</td>
<td>Gasoline direct injection</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbon</td>
</tr>
<tr>
<td>HCCI</td>
<td>Homogeneous charge compression ignition</td>
</tr>
<tr>
<td>HCT</td>
<td>Hydrodynamics chemistry and transport</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>HRD</td>
<td>Heat release duration</td>
</tr>
<tr>
<td>HRR</td>
<td>Heat release rate</td>
</tr>
<tr>
<td>HSDI</td>
<td>High speed direct injection</td>
</tr>
<tr>
<td>HTR</td>
<td>High temperature region</td>
</tr>
<tr>
<td>IC</td>
<td>Internal combustion</td>
</tr>
<tr>
<td>IMEP</td>
<td>Indicated mean effective pressure</td>
</tr>
<tr>
<td>IP</td>
<td>Indicated power</td>
</tr>
<tr>
<td>ISFC</td>
<td>Indicated specific fuel consumption</td>
</tr>
<tr>
<td>IT</td>
<td>Indicated torque</td>
</tr>
<tr>
<td>ITE</td>
<td>Indicated thermal efficiency</td>
</tr>
<tr>
<td>IVC</td>
<td>Inlet valve close</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>LTR</td>
<td>Low temperature region</td>
</tr>
<tr>
<td>MCS</td>
<td>Main combustion stage</td>
</tr>
<tr>
<td>NA</td>
<td>Naturally aspirated</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NTC</td>
<td>Negative temperature co-efficient</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxide</td>
</tr>
<tr>
<td>PCI</td>
<td>Premixed compression ignition</td>
</tr>
<tr>
<td>PCCI</td>
<td>Premixed charge compression ignition</td>
</tr>
<tr>
<td>PFI</td>
<td>Port fuel injection</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>RP</td>
<td>Rated power</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RS</td>
<td>Rated speed</td>
</tr>
</tbody>
</table>
SACI Spark-assisted compression ignition
SFC Specific fuel consumption
SI Spark ignition
SOC Start of combustion
SOI Start of ignition
TDC Top dead center
TRG Trapped residual gas
UHC Unburned hydrocarbon
VCR Variable compression ratio
VGR Variable geometry turbocharger
WC Water cooled
CO₂ Carbon dioxide
NO₂ Nitrogen dioxide
4S Four stroke