BIOTRANSFORMATIONS OF SACCHAROMYCES CEREVISIAE, ASPERGILLUS NIGER, PSEUDOMONAS AERUGINOSA,
ENTEROCOCCUS FAECALIS AND BACILLUS CEREUS

NORUL AMALINA BINTI SABRI

Thesis submitted in fulfilment of the requirements for the award of the degree of
Master of Science (Biotechnology)

Faculty of Science and Technology
UNIVERSITI MALAYSIA PAHANG

MARCH 2017
TABLE OF CONTENTS

DECLARATION .. ii
TITLE PAGE .. iii
DEDICATION ... iv
ACKNOWLEDGEMENTS ... v
ABSTRACT ... vi
ABSTRAK .. vii
TABLE OF CONTENTS .. viii
LIST OF TABLES .. ix
LIST OF FIGURES ... x
LIST OF SYMBOLS ... xi
LIST OF ABBREVIATIONS ... xii

CHAPTER 1 INTRODUCTION ... 1

1.1 Research Background ... 1
1.2 Problem Statement ... 2
1.3 Research Objectives .. 2
1.4 Scopes of Study ... 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Introduction to Agarwood .. 4
 2.1.1 Aquilaria spp. .. 4
 2.1.2 Aquilaria malaccensis .. 5
 2.1.3 Agarwood and its uses ... 5
 2.1.4 Essential oil .. 6
 2.1.5 Chemical constituents of agarwood oil 6

2.2 Methods of Essential Oil Extraction 6
 2.2.1 Hydrodistillation (HD) ... 6
2.2.2. Microwave-assisted extraction (MAE)

2.3. Techniques of Chemical Properties Analysis
2.3.1. Gas Chromatography
2.3.1.1. Gas Chromatography-Flame Ionization Detector (GC-FID)
2.3.1.2. Gas Chromatography-Mass Spectrometry (GC-MS)

2.4. Methods of Isolating a Single Compound
2.4.1. Preparative Gas Chromatography (Prep-GC)

2.5. Benzyl Acetone

2.6. Biotransformation
2.6.1. Biotransformation
2.6.2. Cofactor regeneration in the whole-cell biotransformation
2.6.3. Biotransformation on benzyl acetone
2.6.4. Biotransformation mediated by *Saccharomyces*
2.6.5. Biotransformation mediated by *Aspergillus*
2.6.6. Biotransformation mediated by *Pseudomonas*
2.6.7. Biotransformation mediated by *Enterococcus*
2.6.8. Biotransformation mediated by *Bacillus*

CHAPTER 3 MATERIALS AND METHODS

3.1. Outline of Methodology
3.2. Introduction
3.3. Chemicals
3.4. Sample Preparation
3.4.1. Sample collection
3.4.2. Drying
3.4.3. Grinding
3.4.4. Soaking
3.5. Extraction Method
3.5.1. Hydrodistillation (HD)
3.5.2. Microwave-assisted extraction (MAE)
3.6. Analysis Technique
3.6.1. Gas Chromatography-Mass Spectrometry (GC-MS)
3.6.2. Gas Chromatography-Flame Ionization Detector (GC-FID) 21

3.7. Isolation of Benzyl Acetone
3.7.1. Preparative Gas Chromatography (Prep-GC) 22
3.7.2. Identity verification using GC-MS 22

3.8. Culture preparation
3.8.1. Microorganisms 22
3.8.2. Sterilization of glassware and plasticware 23
3.8.3. Culture media preparation 23
3.8.4. Screening of microorganisms for biotransformation of Benzyl acetone 23
3.8.5. Minimal Inhibitory Concentration (MIC) Test 24

3.9. Biotransformation
3.9.1. Biotransformation media preparation 25
3.9.2. Biotransformation of benzyl acetone in shake-flask culture 26
3.9.2.1. Glucose analysis 27
3.9.2.1.1. Preparation of DNS reagent 27
3.9.2.1.2. Measurement of glucose level 27
3.9.2.2. Identification of chemical compound analysis using GC-MS 28
3.9.2.3. Quantification of biotransformation product 28

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Introduction 29
4.2 Extraction of essential oil 29
4.2.1 Hydrodistillation (HD) 29
4.2.2 Microwave-Assisted Extraction (MAE) 30
4.3 GC Analysis of essential oil of A. malaccensis from HD and MAE 32
4.4 Isolation of benzyl acetone using prep-GC 33
4.5 Screening of microorganisms for biotransformation of benzyl acetone 35
4.6 Minimal Inhibitory Concentration (MIC) Test 36
4.7 Biotransformation 38
4.7.1 Microbial reduction of benzyl acetone to 4-phenyl-2-butanol 38
by *S. cerevisiae, A. niger, P. aeruginosa, E. faecalis*
and *B. cereus*

4.7.2 Effect of initial substrate concentration on biotransformation... 39
4.7.3 Effect of initial glucose concentration on biotransformation... 49
4.7.4 Effect of initial pH on biotransformation... 60
4.7.5 Effect of temperature on biotransformation... 72
4.8 Comparison of biotransformation efficiency... 84

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusion... 86
5.2. Contribution... 86
5.3. Recommendation for future work... 87

REFERENCES... 88

APPENDICES

A List of chemicals
B GC Chromatograms
C Calibration Curves
D Minimal Inhibitory Concentration (MIC) Test
E List of Publications
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Minimal inhibitory concentration (MIC) of benzyl acetone against two fungal and 3 bacterial species</td>
<td>37</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Summary of biotransformation conditions and yield of biotransformation.</td>
<td>85</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The proposed catabolic pathway in the biotransformation of Benzyl acetone (a) by M. flavolivens producing 4-phenyl-2-butanol (b) and phenylethyl alcohol (c)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow chart of the overall experimental process</td>
<td>18</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The yield of A. malaccensis’ oil extracted by HD for a certain range of extraction time.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>The yield of the essential oil of A. malaccensis obtained by MAE at different power and time.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Chromatogram of benzyl acetone isolated from essential oil of A. malaccensis</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Mass spectrum of benzyl acetone isolated from essential oil of A. malaccensis</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Chromatogram produced after biotransformation of benzyl acetone took place, by which a new peak representing 4-phenyl-2-butanol was produced</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Summary of the mechanism involved during the reduction of benzyl acetone to 4-phenyl-2-butanol by microorganisms</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>The product formation during biotransformation of benzyl acetone using S. cerevisiae at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 10 g/L glucose, pH 7, 30°C, 150 rpm).</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Glucose consumption during biotransformation of benzyl acetone using S. cerevisiae at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 10 g/L glucose, pH 7, 30°C, 150 rpm).</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>The product formation during biotransformation of benzyl acetone using A. niger at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 10 g/L glucose, pH 7, 27°C, 150 rpm).</td>
<td>42</td>
</tr>
</tbody>
</table>
Figure 4.10 Glucose consumption during biotransformation of benzyl acetone using *A. niger* at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 10 g/L glucose, pH 7, 27°C, 150 rpm).

Figure 4.11 The product formation during biotransformation of benzyl acetone using *P. aeruginosa* at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 10 g/L glucose, pH 7, 37°C, 150 rpm).

Figure 4.12 Glucose consumption during biotransformation of benzyl acetone using *P. aeruginosa* at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 10 g/L glucose, pH 7, 37°C, 150 rpm).

Figure 4.13 The product formation during biotransformation of benzyl acetone using *E. faecalis* at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 10 g/L glucose, pH 7, 37°C, 150 rpm).

Figure 4.14 Glucose consumption during biotransformation of benzyl acetone using *E. faecalis* at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 10 g/L glucose, pH 7, 37°C, 150 rpm).

Figure 4.15 The product formation during biotransformation of benzyl acetone using *B. cereus* at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 10 g/L glucose, pH 7, 37°C, 150 rpm).

Figure 4.16 Glucose consumption during biotransformation of benzyl acetone using *B. cereus* at different initial substrate concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 10 g/L glucose, pH 7, 37°C, 150 rpm).

Figure 4.17 The product formation during biotransformation of benzyl acetone using *S. cerevisiae* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.1 g/L benzyl acetone, pH 7, 30°C, 150 rpm).
Figure 4.18 Glucose consumption during biotransformation of benzyl acetone using *S. cerevisiae* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.1 g/L benzyl acetone, pH 7, 30°C, 150 rpm).

Figure 4.19 The product formation during biotransformation of benzyl acetone using *A. niger* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.15 g/L benzyl acetone, pH 7, 27°C, 150 rpm).

Figure 4.20 Glucose consumption during biotransformation of benzyl acetone using *A. niger* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.15 g/L benzyl acetone, pH 7, 27°C, 150 rpm).

Figure 4.21 The product formation during biotransformation of benzyl acetone using *P. aeruginosa* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.1 g/L benzyl acetone, pH 7, 37°C, 150 rpm).

Figure 4.22 Glucose consumption during biotransformation of benzyl acetone using *P. aeruginosa* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.1 g/L benzyl acetone, pH 7, 37°C, 150 rpm).

Figure 4.23 The product formation during biotransformation of benzyl acetone using *E. faecalis* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, pH 7, 37°C, 150 rpm).

Figure 4.24 Glucose consumption during biotransformation of benzyl acetone using *E. faecalis* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, pH 7, 37°C, 150 rpm).

Figure 4.25 The product formation during biotransformation of benzyl acetone using *B. cereus* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, pH 7, 37°C, 150 rpm).
Figure 4.26 Glucose consumption during biotransformation of benzyl acetone using *B. cereus* at different initial glucose concentrations. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, pH 7, 37°C, 150 rpm).

Figure 4.27 The product formation during biotransformation of benzyl acetone using *S. cerevisiae* at different initial pHs. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.1 g/L benzyl acetone, 20 g/L glucose, 30°C, 150 rpm).

Figure 4.28 Glucose consumption during biotransformation of benzyl acetone using *S. cerevisiae* at different initial pHs. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.1 g/L benzyl acetone, 20 g/L glucose, 30°C, 150 rpm).

Figure 4.29 The product formation during biotransformation of benzyl acetone using *A. niger* at different initial pHs. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.15 g/L benzyl acetone, 50 g/L glucose, 27°C, 150 rpm).

Figure 4.30 Glucose consumption during biotransformation of benzyl acetone using *A. niger* at different initial pHs. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.15 g/L benzyl acetone, 50 g/L glucose, 27°C, 150 rpm).

Figure 4.31 The product formation during biotransformation of benzyl acetone using *P. aeruginosa* at different initial pHs. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.1 g/L benzyl acetone, 20 g/L glucose, 37°C, 150 rpm).

Figure 4.32 Glucose consumption during biotransformation of benzyl acetone using *P. aeruginosa* at different initial pHs. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.1 g/L benzyl acetone, 20 g/L glucose, 37°C, 150 rpm).

Figure 4.33 The product formation during biotransformation of benzyl acetone using *E. faecalis* at different initial pHs. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, 37°C, 150 rpm).
Figure 4.34 Glucose consumption during biotransformation of benzyl acetone using *E. faecalis* at different initial pHs. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, 37°C, 150 rpm).

Figure 4.35 The product formation during biotransformation of benzyl acetone using *B. cereus* at different initial pHs. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, 37°C, 150 rpm).

Figure 4.36 Glucose consumption during biotransformation of benzyl acetone using *B. cereus* at different initial pHs. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, 37°C, 150 rpm).

Figure 4.37 The product formation during biotransformation of benzyl acetone using *S. cerevisiae* at different temperatures. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.1 g/L benzyl acetone, pH 7.5, 150 rpm, 20 g/L glucose).

Figure 4.38 Glucose consumption during biotransformation of benzyl acetone using *S. cerevisiae* at different temperatures. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.1 g/L benzyl acetone, pH 7.5, 150 rpm, 20 g/L glucose).

Figure 4.39 The product formation during biotransformation of benzyl acetone using *A. niger* at different temperatures. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.15 g/L benzyl acetone, 50 g/L glucose, pH 7.5, 150 rpm).

Figure 4.40 Glucose consumption during biotransformation of benzyl acetone using *A. niger* at different temperatures. The reaction was carried out in shake-flask culture for 168 h (Conditions: 0.15 g/L benzyl acetone, 50 g/L glucose, pH 7.5, 150 rpm).

Figure 4.41 The product formation during biotransformation of benzyl acetone using *P. aeruginosa* at different temperatures. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.1 g/L benzyl acetone, 20 g/L glucose, pH 7, 150 rpm).
Figure 4.42 Glucose consumption during biotransformation of benzyl acetone using *P. aeruginosa* at different temperatures. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.1 g/L benzyl acetone, 20 g/L glucose, pH 7, 150 rpm).

Figure 4.43 The product formation during biotransformation of benzyl acetone using *E. faecalis* at different temperatures. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, pH 7, 150 rpm).

Figure 4.44 Glucose consumption during biotransformation of benzyl acetone using *E. faecalis* at different temperatures. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, pH 7, 150 rpm).

Figure 4.45 The product formation during biotransformation of benzyl acetone using *B. cereus* at different temperatures. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, pH 7.5, 150 rpm).

Figure 4.46 Glucose consumption during biotransformation of benzyl acetone using *B. cereus* at different temperatures. The reaction was carried out in shake-flask culture for 96 h (Conditions: 0.15 g/L benzyl acetone, 40 g/L glucose, pH 7.5, 150 rpm).
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>Less Than</td>
</tr>
<tr>
<td>></td>
<td>More Than</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

GC Gas Chromatography
MS Mass Spectrometer
FID Flame ionization detector
Prep-GC Preparative Gas Chromatography
MAE Microwave-Assisted Extraction
CET Conventional Extraction Technique
HD Hydrodistillation
MIC Minimal Inhibitory Concentration
UV Ultra violet
atm Atmosphere
p Pressure
h Hour
min Minutes
L Liter
g Gram
m Meter
µl Microliter
nm Nanometer
M Molarity
°C Degree Celsius
pH Hydrogen Ion Concentration
w/w Weight by Weight
v/v Volume by Volume
w/v Weight by Volume
OD Optical Density
NADH Nicotinamide Adenine Dinucleotide Hydrogen
NAD(P)H Nicotinamide Adenine Dinucleotide Phosphate Hydrogen
NAD Nicotinamide Adenine Dinucleotide
NAD(P) Nicotinamide Adenine Dinucleotide Phosphate
GDP Geranyl Diphosphate
GPP Geranyl Pyrophosphate
ATP Adenosine Triphosphate
AMP Adenosine Monophosphate
Redox Reduction/Oxidation
DNA Deoxyribonucleic Acid
DNS Dinitrosalicylic acid
RNA Ribonucleic Acid
mRNA Mitochondrial Ribonucleic Acid
m/z mass-to-charge ratio
rpm Revolutions per minute
FDA Food and Drug Administration
NA Nutrient Agar
ROS Reactive oxygen species
AFB1 Aflatoxin B1
SC Substrate control
CC Culture control
RT Room temperature
AHAS Acetohydroxy acid synthase
NB Nutrient Broth
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>PDB</td>
<td>Potato Dextrose Broth</td>
</tr>
</tbody>
</table>