FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE BEAM WITH RECTANGULAR WEB OPENING

NUR IFFAH IZZATI BINTI AZIZ

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons) Civil Engineering.

(Supervisor's Signature) Full Name : MOHAMMAD AMIRULKHAIRI BIN ZUBIR Position : LECTURER Date : 19 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NUR IFFAH IZZATI BINTI AZIZ ID Number : AA13147 Date : 19 JUNE 2017

FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE BEAM WITH RECTANGULAR WEB OPENING

NUR IFFAH IZZATI BINTI AZIZ

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis writing successfully.

First of all, special appreciations to my supervisor, Mohammad Amirulkhairi bin Zubir for sharing his pearls of wisdom, motivation, continuous support, and great knowledge. His encouragement and guidance helped me in all the time of study and writing of this thesis.

I would like to acknowledge panel members who had given very useful comments and advices towards development and improvement of project work during first and second presentation.

Sincere thanks to all technicians who gave the permission to prepare and use all the equipment in the laboratory. Willingness to guide and assist me during the laboratory works is highly appreciated. Besides, I am grateful thanks to Pamix Sdn. Bhd for the helping in providing the readymade concrete supply for the casting of the beam. This helps me a lot with the saving of time and energy.

Last but not the least, my deepest gratitude goes to my beloved family and for their endless love, prayers and encouragement especially my parents for supporting me spiritually throughout my life. And also to my friends for their kindness, moral support, exciting discussions, and for the sleepless nights we were working together before deadlines, and for all the fun we had in the last four years.

TABLE OF CONTENT

SUP	ERVISOR'S DECLARATION	ii
STU	DENT'S DECLARATION	iii
ACK	KNOWLEDGEMENTS	iv
ABS	TRAK	v
ABS	TRACT	vi
ТАВ	BLE OF CONTENT	vii
LIST	Γ OF TABLES	X
LIST	Γ OF FIGURES	xi
LIST	Γ OF SYMBOLS	xii
LIST	Γ OF ABBREVIATIONS	xiii
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background of Study	2
1.3	Problem Statement	3
1.4	Objectives	4
1.5	Scope of Study	4
1.5	Significance of Study	5
1.6	Conclusion	5
CHA	APTER 2 LITERATURE REVIEW	6
2.1	Introduction	6

2.2	Reinforced Concrete Beam6		
2.3	Beams	with Small opening	7
	2.3.1	Pure Bending	7
2.4	Beams	with Large rectangular opening	8
	2.4.1	Analysis for Ultimate Strength	9
	2.4.2	Equilibrium	9
	2.4.3	Yield Condition	10
2.5	Structu	ural Design	11
	2.5.1	Design for Ultimate Strength	11
	2.5.2	Design for Crack Control	13
	2.5.3	Calculation of Deflection	14
2.6	Conclu	ision	16
OTTAT			1 -
CHAP	PTER 3	METHODOLOGY	17
CHAP 3.1	TER 3 Introdu	METHODOLOGY action	17 17
CHAP3.13.2	PTER 3 Introdu Experin	METHODOLOGY action mental Works	17 17 19
CHAP3.13.23.3	TER 3 Introdu Experin Testin	METHODOLOGY action mental Works	 17 17 19 20
CHAF3.13.23.3	PTER 3 Introdu Experin Testin 3.3.1	METHODOLOGY uction mental Works g Concrete Compression Test	 17 17 19 20 20
CHAF3.13.23.3	PTER 3 Introdu Experin Testin 3.3.1 3.3.2	METHODOLOGY action mental Works g Concrete Compression Test Concrete Flexural Test	 17 17 19 20 20 21
CHAP3.13.23.3	TER 3 Introdu Experin Testin 3.3.1 3.3.2 3.3.3	METHODOLOGY Action Inental Works g Concrete Compression Test Concrete Flexural Test Curing Test	 17 17 19 20 20 21 22
 CHAF 3.1 3.2 3.3 3.4 	PTER 3 Introdu Experin Testin, 3.3.1 3.3.2 3.3.3 Conclu	METHODOLOGY Action Inental Works g Concrete Compression Test Concrete Flexural Test Curing Test	 17 17 19 20 20 21 22 22
 CHAF 3.1 3.2 3.3 3.4 	TER 3 Introdu Experin Testin 3.3.1 3.3.2 3.3.3 Conclu	METHODOLOGY uction nental Works g Concrete Compression Test Concrete Flexural Test Curing Test usion	 17 17 19 20 20 21 22 22 22
 CHAF 3.1 3.2 3.3 3.4 CHAF 	PTER 3 Introdu Experin Testin, 3.3.1 3.3.2 3.3.3 Conclu	METHODOLOGY Action Anental Works ag Concrete Compression Test Concrete Flexural Test Curing Test asion RESULTS AND DISCUSSION	 17 17 19 20 20 21 22 22 23
 CHAF 3.1 3.2 3.3 3.4 CHAF 4.1 	PTER 3 Introdu Experin Testin 3.3.1 3.3.2 3.3.3 Conclu PTER 4 Introdu	METHODOLOGY uction uction mental Works g Concrete Compression Test Concrete Flexural Test Curing Test usion RESULTS AND DISCUSSION	 17 17 19 20 20 21 22 22 23 23
 CHAF 3.1 3.2 3.3 3.4 CHAF 4.1 4.2 	PTER 3 Introdu Experin Testin, 3.3.1 3.3.2 3.3.3 Conclu PTER 4 Introdu Compu	METHODOLOGY uction uction uction Concrete Compression Test Concrete Flexural Test Curing Test usion RESULTS AND DISCUSSION uction uction uction	 17 17 19 20 20 21 22 22 23 23 23

viii

4.4	Deflection Theory (Based on ACI 318)	28
4.5	Load Deflection	30
4.6	Flexural Test	32
4.7	Crack Pattern	33
4.8	Conclusion	35
CHA	PTER 5 CONCLUSION AND RECOMMENDATION	36
5.1	Introduction	36
5.2	Conclusion	36
5.3	Recommendation	38
REFI	ERENCES	39
APPI	ENDIX A Theoretical Load-Deflection data (Based on ACI 318)	41
APPI	ENDIX B Load-Deflection data (Control Beam)	42
APPENDIX C Load-Deflection data (Beam S) 46		
APPENDIX D Load-Deflection data (Beam M) 49		
APPENDIX E Load-Deflection data (Beam L) 51		
APPI	ENDIX F Concrete Mix Design	54

LIST OF TABLES

Table 4.1	Result of compressive test for 7 th days of curing	24
Table 4.2	Result of compressive test for 28 th days of curing	24
Table 4.3	Result of flexural behaviour of each reinforced concrete beam	33

LIST OF FIGURES

Figure 2.1	A suitable reinforcement scheme for the opening region	8
Figure 2.2	Ductile failure of a beam under combined bending and shear	8
Figure 2.3	Beam with a large opening under bending and shear	9
Figure 2.4	Piecewise linear approximation of yield surface	10
Figure 2.5	Typical design chart	11
Figure 2.6	Model for the estimation of deflection at opening	15
Figure 3.1	Research flow chart	18
Figure 3.2	Test set up	21
Figure 4.1	Singly reinforced section with rectangular stress block	25
Figure 4.2	Forces of reinforced concrete structure	27
Figure 4.3	Load vs. Deflection Curve for Different Beams including Control Beam	30
Figure 4.4	Load vs. Deflection Curve for Different Beams	32
Figure 4.5	Crack Pattern of beam	34

LIST OF SYMBOLS

Diameter
Stress
Load
Cross sectional area
Strain
Change in length
Original Length
Compressive strength
Concrete strength
Stress in concrete in compression
Stress in steel in tension
Shear link strength
Reinforcement strength
Steel strain
Neutral axis depth
Lever arm
Diameter of reinforcement of main bar
Diameter of reinforcement of shear link
Modulus of elasticity transformation coefficient for steel to concrete
Modulus of elasticity
Area of reinforcement
Moment of Inertia of cracked, transformed section
Moment of inertia

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
ACI	American Concrete Institute
BS	British Standard
С	Control Beam
S	Beam with small opening
М	Beam with medium opening
L	Beam with large opening