
Progress In Electromagnetics Research, Vol. 116, 221–237, 2011

3D EXPERIMENTAL DETECTION AND DISCRIMINA-
TION OF MALIGNANT AND BENIGN BREAST TUMOR
USING NN-BASED UWB IMAGING SYSTEM

S. A. Alshehri

Department of Computer and Communication Systems Engineering
Faculty of Engineering
Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

S. Khatun

Department of Computer Systems & Networks
Faculty of Computer Systems & Software Engineering
Universiti Malaysia Pahang
Gambang, Kuantan, Pahang 26300, Malaysia

A. B. Jantan

Department of Computer and Communication Systems Engineering
Faculty of Engineering
Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

R. S. A. Raja Abdullah

Wireless & Photonic Networks Research Centre
Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

R. Mahmud

Department of Imaging, Faculty of Medicine and Health Sciences
Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Z. Awang

Microwave Technology Center, Faculty of Electrical Engineering
Universiti Teknologi Mara, Shah Alam, Selangor 40400, Malaysia

Received 26 February 2011, Accepted 20 April 2011, Scheduled 4 May 2011
Corresponding author: Sabira Khatun (sabira@ump.edu.my).



222 Alshehri et al.

Abstract—This paper presents both simulation and experimental
study to detect and locate breast tumors along with their classification
as malignant and/or benign in three dimensional (3D) breast model.
The contrast between the dielectric properties of these two tumor types
is the main key. These dielectric properties are mainly controlled by the
water and blood content of tumors. For simulation, electromagnetic
simulator software is used. The experiment is conducted using
commercial Ultrawide-Band (UWB) transceivers, Neural Network
(NN) based Pattern Recognition (PR) software for imaging and
homogenous breast phantom. The 3D homogeneous breast phantom
and tumors are fabricated using pure petroleum jelly and a mixture of
wheat flour and water respectively. The simulation and experimental
setups are performed by transmitting the UWB signals from one side
of the breast model and receiving from opposite side diagonally. Using
discrete cosine transform (DCT) of received signals, we have trained
and tested the developed experimental Neural Network model. In 3D
breast model, the achieved detection accuracy of tumor existence is
around 100%, while the locating accuracy in terms of (x, y, z) position
of a tumor within the breast reached approximately 89.2% and 86.6%
in simulation and experimental works respectively. For classification,
the permittivity and conductivity detection accuracy are 98.0% and
99.1% in simulation, and 98.6% and 99.5% in experimental works
respectively. Tumor detection and type specification 3D may lead to
successful clinical implementation followed by saving of precious human
lives in the near future.

1. INTRODUCTION

There are many reported simulation and experimental studies on
breast tumor detection using Ultrawide-Band (UWB) imaging. Several
successful works have been conducted based on numerical breast
model [1–8]. Some accomplished experimental works are presented
in [9–14]. Many of those are based on the Confocal Microwave
Imaging (CMI) approach which depends on the prior knowledge of
breast tissue permittivity. This tissue permittivity is obtainable in
simulation and experimental works but difficult to be known clinically
due to glandular nature of breast tissue and its permittivity variation
depending on certain constrains. This may lead to difficulty for such
approaches to be implemented clinically [15]. To overcome these
problems, we introduce a new non-confocal approach for possible easy
clinical implementation [15]. We are presently in the process to obtain
Ethical Committee approval to start the clinical trial. This method was
based on performing Neural Network (NN) training in one dimension
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(1D). The detection in two dimensions (2D) and three dimensions (3D)
was done by rotating the transmitter and receiver pair (TX-RX) 360◦
around the breast model [6].

The main principle in UWB imaging application is the use of
contrast in dielectric properties among different breast tissues [10, 16].
If a tumor is detected in a patient’s breast, the next importance to
the physicians to know its specific type. There are two main types of
tumor, namely, malignant and benign [17]. Usually, malignant tumor
is known as cancer and a deadly disease while a benign one is not
always harmful. Most of the current breast cancer detection methods
are unable to differentiate between these two types. It is important to
take immediate medical action if the detected tumor is malignant.

There are several indicators to distinguish between benign and
malignant tumors, such as shape, size, and stiffness [9, 18, 19]. Tumor
viscosity is another important factor [16]. A malignant tumor is
more viscous than benign one. The dielectric properties (such as
permittivity, density, conductivity, etc.) of malignant tumors are
higher because of their higher water and blood contents [17, 18, 20, 21].

At the center frequency of 4.7 GHz: about (i) 67% of benign
tumors have a dielectric constant less than or equal to 50; (ii) 10%
are greater than 55; and (iii) the rest are in between 50 to 55 [17].
Also at the same frequency around, (iv) 70% of the malignant tumors
have dielectric constants greater than 70 and (v) 25% is less than
50. This shows a narrow margin for the dielectric constant values
between 50 and 55. Tissues with higher dielectric constants produce
more scattered signal than tissues with lower dielectric constants for
incident UWB signals [9, 17].

Some researches have been done to classify the tumor
types [9, 19, 20, 22]. The classification was based on either (i) their
shape or (ii) the use of ultrasonic waves. But, the results could not be
obtained in a very early stage of tumor. O’Halloran et al. presented the
use of Spiking Neural Networks (SNN) to distinguish between malig-
nant and benign tumors [23]. In our study, we elaborate their concept
using Neural Network (NN) based Ultra Wide Band (UWB) system
to measure the dielectric values and then to distinguish between ma-
lignant and benign tumors accordingly in 3D breast model. Detection
of tumor dielectric properties correctly provides better basis for the
tumor classification.

In this paper, we employ NN-based UWB approach to detect
tumor existence with classification. For this 3D system, no TX-RX
rotation is required. This may make clinical implementation easier
followed by user friendly regular breast monitoring system, which could
be used by end users or patients at home. It also presents the possibility
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of distinguishing between malignant and benign tumors based on their
dielectric properties. The breast model and phantom used in this study
are homogenous. The expected difference between homogenous and
heterogeneous breast phantoms was presented in [15].

The paper is organized as follows. The next section presents
simulation and experimental tumor detection process details in 3D,
followed by tumor type specification, the results and finally the
conclusion.

2. METHOD

The high contrast in dielectric properties between normal breast tissues
and tumor tissues is the principle behind breast cancer detection using
UWB imaging [17]. It is not important to know the exact dielectric
values while the ratio between them is important [22, 24]. The ratio of
tumor to adipose breast tissue dielectric properties can be 10 : 1, while
it could be low as 1.1 : 1 for glandular breast tissue [17].

Here, the considered 3D breast model is similar to the breast model
presented in [15] in size (diameter ∼ 100mm, height ∼ 50mm, and
skin thickness ∼ 2mm) and shape but prone position. It has similar
dielectric properties at center frequency 4.7GHz [15].

2.1. Neural Network Model and Data Collection

Throughout this research work, the used NN models were back-
propagation feed-forward built in MatLab. Table 1 shows the common
NN parameters.

To generate the UWB signals for simulation work, we have used
the following steps [6]:
1) Place a transmitter-receiver pair at opposite sides of the breast

model.
2) Place a tumor at any locations in the breast model.
3) Transmit 4.7 GHz (center frequency) signal using a plane wave

located in the x-axis direction.
4) Receive the forward scattered signal from the opposite side of

breast using software probe.
5) Change the tumor location and repeat steps 2–4 several times.

To generate the feature vector for NN training and testing (which
are constructed from the received UWB signals amplitudes in time
domain), we have used the following steps [6]:
1) Interpolate the received signals using “shape-preserving piecewise

cubic interpolation” to generate 751 fixed time steps.
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Table 1. NN parameters.

NN parameters used in MATLAB NN for simulation NN for experiments

Number of nodes in Input layer 751 251

Number of nodes in Hidden layer 3 3

Number of nodes in Output layer

• 3 (for 3D tumor

localization)

• 2 (for dielectric

property estimation)

• 3 (for 3D tumor

localization)

• 2 ( for dielectric

property estimation)

Transfer function tansig tansig

Training function traingdm traingdm

Learning rate 0.005 0.005

Momentum constant 0.6 0.6

Maximum number of Epochs 400000 400000

Minimum performance gradient 1e-25 1e-25

2) Insert the received signals to NN with and without the presence
of tumor in the breast model.

3) Shuffle the signal order in the feature vector for NN generalizing
purposes.

4) Generate the target vector dividing by the diameter of breast to
limit the output values to be less than 1.This is because the used
transfer function “tansig” has output in the range of [−1, +1].

Once this feature vector is generated, the data is divided into three
groups as: (i) training, (ii) validating and (iii) testing.

For the experimental work, we followed the same procedures
except that the received signals were transformed into frequency
domain using Discrete Cosine Transform (DCT) [15]. The target
values for both simulation and experimental works are presented in
the following respective sections.

2.2. Tumor Detection in 3D

2.2.1. Simulation Work

CST electromagnetic simulator software is used to construct the
simulation environment [25]. The breast model is divided into four
layers. Each group of tumors are placed in each specific layer, the
probe is placed on same level at the opposite side of transmitter. Some
of the tumor positions in each layer are shown in Figure 1. Figure 2
shows the tumor locations in Layers 1 and 3. We have generated a
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Figure 1. Breast and some tumor models in CST software.
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Figure 2. Top view of Layers 1 and 3 tumor positions. The dimensions
are in 10 mm increments.

total number of 44 UWB signals (among those, 36 with, and 8 without
the presence of tumor). Then the signals are divided into three groups
as follows:

(i) 22 signals for training,
(ii) 11 for validation and
(iii) 11 for testing.

The NN output is the tumor (x, y, z) location in 3D. For tumor
absence, the x, y and z values are coded as (−1).

2.2.2. Detection in Experimental Setup

The experimental setup and breast phantom used in [15] is also utilized
here. Pure petroleum jelly is used to mimic the breast fatty tissue
because of ease of manipulation. The dielectric property measurements
of materials is done using Agilent N5230A VNA and HP 85070B
dielectric coaxial probe. Figure 3 shows the experimental system setup.
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Figure 3. Experimental system
setup scenario.

Figure 4. Opened wooden
ball that holds the tumor.

(a) (b)

Figure 5. Breast phantom (a) divided into four layers, (b) tumor
positions in Layer 3.

The UWB transmitter (TX) and receiver (RX) are connected to a PC
using an Ethernet hub and can be controlled through the PC.

A PulsOn UWB transmitter and receiver have been used to
transmit and receive the desired UWB signals. This device operates
at a center frequency 4.7 GHz and with a 3.2 GHz bandwidth [26]. It
uses omnidirectional antenna, also we have developed and used UWB
directional antenna for better detection performance.

The experimental work procedure is similar to simulation,
presented in the Section 2.1. We have used the same homogeneous
breast phantom presented in [15]. Figure 4 shows how the easy way to
insert a tumor in the breast phantom. It is inserted inside a wooden
ball. The figure presents an opened ball to show the tumor inside it.
The wood has permittivity similar to that of the petroleum jelly [27].
Figure 5 shows how the breast phantom is divided into layers to obtain
3D representation. It also shows the top view tumor positions in
Layer 3.

Figure 6 shows the waveform of two received UWB signals and
their calculated Discrete Cosine Transform (DCT) components. Both
of the signals contains tumors signature in two different locations.
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Figure 6. Raw and DCT of two UWB received signals with embedded
tumors.

2.3. Discrimination between Malignant and Benign

2.3.1. Discrimination in Simulation Setup

The simulation is done using CST EM simulation software by placing
a 2.5-mm tumor at (x = 0, y = 0, z = −0.4)mm and varying its
dielectric properties. For each value, a UWB signal is transmitted and
the propagated signal is received on the opposite side. The collection of
received signals is used to construct the feature vector for NN training.

2.3.2. Experimental Work

The same procedure presented in Section 2.1 is followed here. Figure 7
shows the measured permittivity and calculated conductivity for
different water-to-flour ratios in the range of 2–12 GHz. Signals
corresponding to various dielectric properties values are generated to
train the NN. We have used different ratios of water to wheat flour to
form the tumor with different dielectric properties as shown in Table 2.
Signals for 14 various dielectric values were generated repeatedly three
times for each to generate a total number of 42 signals. The signals
were divided into three groups as:

(i) 26 signals for training,
(ii) 8 for validation and
(iii) 8 for testing.
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(a) Permittivity (b) conductivity 

Figure 7. Constructed tumors using various water-to-flour ratios.

Table 2. Dielectric properties of the used materials at 4.7 GHz.

Breast phantom part Material Permittivity Conductivity (S/M)

Fatty breast tissue Vaseline 2.36 0.012

Tumor
Various water

to flour ratio
15.2–37.3 2.1–4.0

Skin Glass 3.5–10 negligible

In this experimental setup, we first placed a 5-mm (diameter)
tumor with the lowest possible dielectric constant value at a distance
50mm along the line of sight between the transmitter and receiver.
After that, the UWB signal was transmitted from one side and received
on the other side. Finally, the water-to-flour ratio was varied 14 times
to generate different dielectric properties values. The tumor size and
location were kept constant.

A Discrete Cosine Transform (DCT) is applied to all of the
collected UWB signals. The DCT values between 50 and 300 are used
to generate the training feature vector. This is because the transform
shows higher values in this interval.

Measuring the NN model performance can be done using several
methods. In case of classification application (tumor existence
detection), the straightforward and most widely used method is
counting the number of missed classifications when the NN is subject
to hold-out (test) samples. In the regression case (tumor location,
dielectric property estimation), the absolute error is calculated and
averaged over the test data size using Equation (1).

E =
1
N

∑
n
(tn − yn) (1)
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where tn and yn are the true and NN predicted values for the nth
target respectively. N is the hold-out (test) data size. For example, in
case of predicting the tumor permittivity, tn is the actual permittivity
of the test data and yn is the permittivity produced by the NN.

3. RESULTS

3.1. Detection and Localization in 3D

The simulation and experimental 3D location performance accuracies
are around 89.2% and 86.6% respectively. The detection rate is almost
100% based on the NN output value. If the NN output has a large
negative value (< −0.9) then the tumor does not exist. Here, the
tumor locating performance is 7.7% lower than the value reported
in [15] because of the fixed TX-RX position and the limited number
of training examples. Even though this produced less performance
accuracy, it may facilitate the easy clinical implementation. Figure 8
shows some tumors actual and predicted positions. The white balls
represent the NN output.

3.2. Discrimination between Malignant and Benign

Table 5 shows simulation and experimental results for some of
the dielectric properties values used for NN training, validation
and testing. The experimental work shows accuracy in predicting
tumor permittivity and conductivity approximately 98.6% and 99.5%
respectively.

In the experimental work, it was difficult to generate many water-
to-flour ratio values. This limits the number of training samples,
which is an important factor in successful NN. However, the detection
capability of this proposed system can be used to estimate the viscosity
of the existing tumor. As there is no sharp boundary in the dielectric
properties values between malignant and benign tumors, the viscosity

Figure 8. Actual (red) and predicted (white) positions of some
tumors.
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Table 3. 3D locations of actual and predicted (simulation result as
NN output) tumors in simulation work.

Simulation

Actual location NN output

x y z x y z

0.5 0.7 0.4 0.496 0.656 0.634

−1 −1 −1 −0.999 −0.991 −0.994

−1 −1 −1 −0.999 −0.991 −0.994

0.4 0.4 0.2 0.433 0.164 0.267

0.5 0.3 0.4 0.561 0.409 0.420

0.3 0.7 0.6 0.404 0.269 0.316

0.6 0.4 0.2 0.511 0.303 0.329

0.5 0.5 0.2 0.517 0.499 0.409

0.3 0.3 0.2 0.491 0.313 0.379

0.5 0.8 0.2 0.575 0.648 0.609

0.6 0.6 0.2 0.432 0.642 0.409

0.65 0.8 0.4 0.551 0.738 0.574

0.35 0.5 0.6 0.456 0.479 0.426

0.5 0.5 0.6 0.618 0.506 0.506

0.8 0.35 0.4 0.652 0.319 0.577

0.7 0.5 0.4 0.637 0.560 0.591

0.32 0.65 0.8 0.403 0.601 0.421

0.3 0.7 0.2 0.383 0.584 0.473

0.3 0.3 0.8 0.310 0.297 0.493

0.7 0.3 0.2 0.621 0.302 0.404

−1 −1 −1 −0.999 −0.991 −0.994

0.7 0.3 0.6 0.640 0.505 0.668

Since the transfer function “tansig” used in NN training has output in the range

[−1, +1], we coded (x, y, z) values to match this range. (x, y, z) = ((X + 50)/100,

(Y + 50)/100, −Z/50), where (X, Y, Z) is the original location in the 3D breast

model. (x, y, z) = (−1,−1,−1) means tumor does not exist (or healthy breast).

could be taken into account to narrow down the contrast region (50 <
permittivity < 55) and sharpen the boundary for tumor type detection.
After that it is up to the physician to make the final decision about
tumor type and take further medical steps.

Figures 9 and 10 show comparisons between some actual and
predicted permittivity and conductivity values in simulation and
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Table 4. 3D locations of actual and predicted (experimental result as
NN output) tumors in experimental work.

Experiment

Actual locations NN output

x y z x y z

−0.3 0.15 −0.2 −0.051 −0.040 −0.214

0 0 −0.4 0.096 0.035 −0.343

0.15 0.3 −0.2 −0.623 −0.719 −0.680

0 0.2 −0.2 −0.051 −0.040 −0.214

0.1 0.1 −0.1 −0.051 −0.040 −0.214

−1 −1 −1 −0.967 −0.989 −0.965

0.2 −0.2 −0.1 −0.051 −0.040 −0.214

0.2 0.2 −0.3 0.093 0.032 −0.345

0 0.2 −0.2 −0.051 −0.040 −0.214

0 −0.15 −0.3 −0.051 −0.040 −0.214

0.1 −0.1 −0.1 −0.051 −0.040 −0.214

−0.15 0 −0.3 −0.051 −0.040 −0.214

0.2 −0.2 −0.3 −0.051 −0.040 −0.214

0 −0.15 −0.3 −0.051 −0.040 −0.214

−1 −1 −1 −0.966 −0.988 −0.964

−0.2 −0.2 −0.4 0.049 −0.023 −0.375

0.2 −0.2 −0.1 −0.051 −0.040 −0.214

−0.1 0.1 −0.1 −0.051 −0.040 −0.214

−0.1 0.1 −0.1 −0.051 −0.040 -0.214

0 0 −0.1 −0.051 −0.040 −0.214

0.18 0.2 −0.4 0.066 −0.002 −0.364

0 0 −0.1 −0.051 −0.040 −0.214

Since the transfer function “tansig” used in NN training has output in the range

[−1, +1], we coded (x, y, z) values to match this range. (x, y, z) = ((X + 50)/100,

(Y + 50)/100,−Z/50), where (X, Y, Z) is the original location in the 3D breast

model. (x, y, z) = (−1,−1,−1) means tumor does not exist (or healthy breast).

experimental work. They agree very well and reside on the diagonal
line indicating the efficiency of the NN model and the system.

In Figure 11, some permittivity values of test group tumors are
shown. The permittivity values are shown inside each corresponding
tumor object. So, if the tumor permittivity is less than 50, the decision
would be that the tumor is benign. If the value is greater than 55 then
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(a)  Permittivity comparison   Conductivity comparison(b)

Figure 9. Actual and predicted dielectric property comparison in
simulation work.

 Permittivity comparison  Conductivity comparison(a) (b)

Figure 10. Actual and predicted dielectric property comparison in
experimental work.

Figure 11. Permittivity value (NN output) of some of the validating
and test groups.
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Table 5. Tumor dielectric properties found experimentally and in
simulation.

Groups

Simulation Experiment

Permittivity
Conductivity

(S/m)
Permittivity

Conductivity

(S/m)

Actual
NN

output
Actual

NN

output
Actual

NN

output
Actual

NN

output

Train

7.9 8.0 1.8 2.4 15.18 15.45 2.1 2.9

9.6 10.0 2.2 2.5 19.12 19.56 2.5 2.9

10.6 10.7 2.4 2.6 21.33 21.87 2.5 2.8

11.6 13.4 2.7 2.7 23.68 23.97 2.7 3.0

12.8 11.3 3.0 2.8 25.54 25.66 3.0 3.0

15.5 14.6 3.7 3.0 27.80 28.05 3.2 3.0

17.1 18.2 4.1 4.2 30.15 31.8 3.4 3.5

18.9 18.9 4.5 4.5 30.15 25.82 3.6 3.2

20.8 19.7 5.0 5.0 33.07 33.28 3.8 2.8

22.9 22.1 5.5 5.5 34.02 33.95 3.8 3.8

25.2 25.9 6.1 6.3 35.29 35.08 3.9 3.8

30.5 31.1 7.4 7.7 35.80 36.82 3.9 3.6

33.6 33.4 8.2 8.1 36.95 37.12 4.0 3.7

45.5 45.3 0.9 10.7 37.28 37.9 4.0 4.3

Validate

8.7 10.0 2.0 2.5 25.54 25.08 3.2 3.0

27.7 28.0 6.7 6.7 35.29 35.1 3.9 3.1

37.5 36.8 9.0 8.6 35.80 36.08 3.9 3.8

Test

7.2 7.9 1.6 2.4 17.28 16.45 2.3 2.8

14.1 13.9 3.3 2.9 33.07 33.25 3.8 3.6

41.3 40.0 9.9 9.4 36.95 35.64 4.0 4.0

It can be noticed that, there are some repeated permittivity and conductivity

values. This is because these values were used repeatedly for different

transmitted and received UWB signals pair.

the decision would be that the tumor is malignant and immediate
action has to be taken by doctors. If the values are in the range of
50–55, then urgent further medical diagnosis is needed to determine
its type.

We could not generate tumors with permittivity and conductivity
values greater than 38 and 4.0 (S/m) respectively. This is because the
water-to-wheat flour mix would be so sticky that it cannot be handled
easily. However, the principle is still valid and the system will be able
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to detect and show any tumor types. Presently, we are preparing for
clinical detection trial after obtaining the Ethical committee approval.

4. CONCLUSION

This paper proposes a NN-based UWB user friendly system to detect
breast tumors in a 3D breast model. This system is trained by
feature vectors obtained in 3D configuration. Differentiation between
malignant and benign tumors based on dielectric properties is also
achievable using the system setup. The accuracy of tumor existence
detection is almost 100% for both simulation and experimental setup
demonstrating the superiority of the experimental system. The
achieved location detection accuracy are nearly 89.2% and 86.6% in
simulation and experimental setups respectively. Tumor permittivity
and conductivity prediction accuracy approximately 98% and 99.1%
in simulation and 98.6% and 99.5% in experimental work respectively.
This accuracy provides privilege to doctors to decide about the
detected tumor type and take appropriate action in an early stage.
The simulation work showed the first proof of using such a system,
the experimental work provided the basis for actual clinical trials
for tumor existence and its classification. Our next step (presently
under investigation) is to include the tumor shape and growth in the
NN training data to reduce the soft margin and increase detection
reliability in terms of glandular tissue material.
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