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Abstract 

This paper demonstrates a derivation of stochastic Taylor methods for stochastic differential equations 
(SDEs). The stochastic Taylor series is extended and truncated at certain terms to achieve the order 
of convergence of stochatsic Taylor methods for SDEs. The systematic derivation of the expansion of 
stochastic Taylor series formula is presented. Numerical methods of Euler, Milstein scheme and 
stochastic Taylor methods of order 2.0 are proposed. 
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INTRODUCTION 

Most of the biological and physical phenomena happened can be 

modeled mathematically by using stochastic differential equations 

(SDEs). Previously, ordinary differential equations (ODEs) often used 

to described those systems. Due to the fact that most of the physical 

phenomenon are influenced by the environmental noise and 

disturbances, therefore SDEs are used to represent the systems. SDEs 

were perturbed randomly by the unpredictable movement of white 

noise, which then contribute to the difficulty in finding the analytical 

solutions of SDEs. This leads to the development of numerical method 

in order to approximate the solution for SDEs. Ito (1951) was the first 

whom introduces SDEs and became a catalyst for the development in 

the SDEs field (Kloeden & Platen, 1992). Recently, numerical methods 

for solving SDEs undergo an intensive research. There are many 

researchers whom discussed the topic on the numerical computations 

of SDEs such as Oksendal (1985), Kloeden & Platen (1992), Milstein 

(1995), Burrage & Burrage (1999), Carletti (2006) and Norhayati 

(2010). 

The earliest numerical method for SDEs named as an Euler-

Maruyama method  had been introduced by Maruyama in 1950 as stated 

by Carletti (2006). This simplest stochastic numerical approximation 

has a strong order of convergence 0.5 for multiplicative noise as well 

as 1.0 for additive noise (Burrage, 1999). This low order of 

convergence will result in inaccurate numerical computations. 

Consequently, the more efficient numerical method needed and one of 

the best approach is to use the truncation of stochastic Taylor series 

expansion (Burrage, 1999). Next contribution was made by Milstein 

(1974) when he proposed a so-called Milstein scheme from the 

truncation of stochastic Taylor series. Milstein scheme is then proved 

to have the strong order of convergence 1.0 (Milstein, 1995).  

In this paper, we present a derivation of stochastic Taylor 

expansion up to 2.0 order of convergence. The numerical example will 

be carried out and the result will be discussed. 

DERIVATION OF STOCHASTIC TAYLOR EXPANSIONS FOR 
SDEs 

     

In this section, we present a systematic derivation of stochastic 

Taylor expansion for SDEs. The derivation of strong Taylor expansion 

which approximates up to 2.0 order of convergence were set up.  

Stochastic Taylor expansion for autonomous SDEs 
Let consider SDEs 

                     ( ) ( ( )) ( ( )) ( )dx t f x t dt g x t dW t                                 (1) 

where  
0[ , ]t t T . Equation (1) can be expressed in the integral form    
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The derivation of stochastic Taylor expansion for SDE is done by 

replacing the integrals in (2) with their corresponding Taylor 

expansions about 
nt

x , where ( )
nt nx x t . The methods considered 

here are based on Rao (1974). By applying Taylor expansion for drift 

function f and diffusion function g we therefore obtain  
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where 
3(| ( ) ( ) | )f nO x t x t and 

4(| ( ) ( ) | )g nO x t x t representing 

higher order term for drift and diffusion functions respectively. 

Substituting (3) and (4) into (2) hence 
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Generally, equation (5) can be written as 
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We then expand and rearrange (5) in order to get higher order numerical 

schemes to the solution of SDEs. We then obtain 
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                        (7)  

From equation (7) we identify the multiple integrals together with 

their elementary functions as follow 

(a)  
1

1( )
n

n

t

n n
t

f dt f t t f


   

(b) 
1

1( ) ( ( ) ( )) ( )
n

n

t

n n
t

g dW t g W t W t g W t


   

(c) 
1

' ( ( ) ( ))
n

n

t

n
t

f x t x t dt




(d) 
1

' ( ( ) ( )) ( )
n

n

t

n
t

g x t x t dW t




(e) 
1

2

1/ 2 '' ( ( ) ( ))
n

n

t

n
t

f x t x t dt




(f) 
1

2

1/ 2 '' ( ( ) ( )) ( )
n

n

t

n
t

g x t x t dW t




(g) 
1

3

1/ 6 ''' ( ( ) ( )) ( )
n

n

t

n
t

g x t x t dW t




To solve (c), ( ) ( )nx t x t is expanded in the form of Taylor series 

which lead to the following representation 
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Then we have 
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The term ( ) ( )nx s x s in (9) is written as a lower order Taylor 

method as 
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Substituting (10) into (9), the following is obtained 
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With the same technique as in (c), the term (d) can be expanded as  
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Substituting lower order form of Taylor series to replace ( ) ( ),nx s x s

equation (12) then can be written as 
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In order to solve (e), we employed the same technique as previously 

mention. We obtain 
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By solving (f), we have 
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By applying lower form of Taylor expansion, equation (15) can be 

expanded as 
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By expanding the Taylor expansion to solve (g) and then substituting 

the lower order form of stochastic taylor expansion, we then have 
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Adding together (a)-(g), the stochastic Taylor expansion for SDE is 
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Strong Taylor methods for SDEs     

Stochastic Taylor expansions are the key to the development of 

numerical methods for SDEs. Stochastic Taylor expansion can be 

truncating up to certain order of convergence so that the numerical 

schemes of SDEs can be developed. The numerical scheme of Euler-

Maruyama method with 0.5 order of convergence is obtained by 

truncating the stochastic Taylor expansion (18) at third terms. Hence 

we have 
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In addition, the scheme of strong Taylor method with the order of 

convergence 2.0 can as well be presented as 
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where R3 is the remainder term. Numerical scheme above improved the 

rate of convergence with order of convergence 2.0. The numerical 

approximations to the  multiple stratonovich integrals have been 

introduced as in Table 1 below in a way to simplify the above schemes.  

Table 1 Numerical approximations to the statonovich integrals. 
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where W and Z are random variables which are normally 

distributed with ~ (0, )W N  , 31
~ (0, )

3
Z N  and 

21
( )

2
E W Z    . Therefore, by applying the numerical 

approximation to the stratonovich integrals, Milstein scheme in (21) 
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Both Euler-Maruyama scheme and Milstein scheme have order of 

convergence 1.0. Then we have strong Taylor method with order of 

convergence 2.0 as follow: 
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       (24) 

RESULTS AND DISCUSSION 

The following linear SDE taken from Küchler(2000) is used to 

compare the performance of 2.0 strong Taylor method, Euler-

Maruyama and Milstein schemes. Let us consider  

         ( ) ( ) ( ) ( ), [0, ]dX t aX t dt bX t dW t t T                   (25) 

The exact solution of (25) is 

                       
0, 0( ) ( )t tX t X                            (26) 

where 
0, 0 0exp(( / 2)( ) ( ( ) ( )))t t a b t t b W t W t     

In this numerical example, we have set the coefficient as 

         2.0, 0.5, 2.0, (0) 1.0a b T X     and  0.01 

We simulate 200 sample paths of strong solution SDE via Euler-

Maruyama, Milstein and stochastic Taylor method with order 2.0. The 

mean-square error between numerical solution and exact solution has 

been calculated. The perfomance of Euler-Maruyama, Milstein and 

Taylor method with order 2.0 are presented in Figure 1, Figure 2 and 

Figure 3 respectively.  

Figure 1 Strong approximations of SDEs via Euler-Maruyama. 

Figure 2 Strong approximation of SDEs via Milstein scheme. 

Figure 3 Strong approximation of SDEs via Taylor method order 2.0. 

Based on Figure 1, Figure 2 and Figure 3, it shows that Figure 3 gives 

a better performance than the result presented in Figure 1 and Figure 2. 

Table 2 shows mean-square error between numerical solution and the 

exact solution for SDE. Stochastic Taylor method with order of 

convergence 2.0 gives a better solution compare to Euler-Maruyama 

and Milstein methods. 

Table 2 Mean-Square Error of Numerical and Exact Solution. 

Numerical 
Scheme 

Euler-
Maruyama 

Milstein 
2.0 Stochastic 
Taylor Method 

MSE 
0.247702 

0.084398 0.024104 

CONCLUSION 

In this paper, the derivation of higher order numerical schemes to the 

solution of SDEs truncated from the stochastic Taylor expansions have 

been presented. It shows that the lower order numerical schemes show 

low accuracy to solve the system of SDEs.  
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