
UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS

JUDUL:

SESI PENGAJIAN:___________

Saya __
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

pengajian tinggi.
4. **Sila tandakan ()

(Mengandungi maklumat yang berdarjah keselamatan
SULIT atau kepentingan Malaysia seperti yang termaktub

di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

Disahkan oleh:

___________________________ ___________________________
(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

23A, TAMAN GANDING, DR. AHMED N. ABD ALLA
JALAN LANGGAR (Nama Penyelia)
05300, ALOR STAR
KEDAH

Tarikh: 29 NOVEMBER 2010 Tarikh: : 29 NOVEMBER 2010

CATATAN: * Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2010/2011

LIANG KAI FENG (870505-02-6089)

Case Study of Power System State Estimation Based On AI

CASE STUDY OF POWER SYSTEM STATE ESTIMATION

BY USING ARTIFICIAL NEURAL NETWORK

LIANG KAI FENG

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Power System)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER 2010

ii

“I hereby acknowledge that the scope and quality of this thesis is qualified for

the award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

Name : DR.AHMED N ABD ALLA

Date : 29 NOVEMBER 2010

iii

“All the trademark and copyrights use herein are property of their respective owner.
References of information from other sources are quoted accordingly; otherwise the
information presented in this report is solely work of the author.”

Signature : ____________________________

Author : LIANG KAI FENG

Date : 29 NOVEMBER 2010

iv

DEDICATION

Specially dedicated to

My beloved family, and those who have guided and inspired me

Throughout my journey of learning

v

ACKNOWLEDGEMENT

Throughout the development of this project I have gained chances to learn

new skills and knowledge. I wish to express my sincere appreciation and gratitude to

my supervisor, Dr. Ahmed N. Abd Alla for his continuous guidance, concern,

encouragement and advices which gave inspiration in accomplishing my final year

project.

Special thanks to University Malaysia Pahang for supporting and providing

equipment and information sources that assisted my studies and projects.

My sincere appreciation to the lecturers of Faculty of Electrical and

Electronics Engineering who have put in effort to the lectures and always nurture and

guide us with precious advices. Thank you for sharing those experiences.

To all my lovely current and ex roommates and friends who always willingly

assist and support me throughout my journey of education, you all deserve my

wholehearted appreciation. Many thanks.

vi

ABSTRACT

This is a study that mains in Artificial Neural Network technique which

introduces approach towards the problem of errors that arise due to the practical

equipment and actual measurements in distribution systems. Real time data or the

state variables measured in power system are often incorporated with error. This

project outputs a software program that performs power system state estimation

using artificial intelligence optimization. It was developed using Artificial Neural

Network in MATLAB software. This method considers nonlinear characteristics of

the practical equipment and actual measurements in distribution systems. It can

estimate bus voltage and load angle values at each node by minimizing difference

between measured and calculated state variables. This is accomplished by the

utilization of load flow analysis program which acts as computerized conventional

solution that calculates mathematically the exact target outputs in accordance to the

inputs applied. The significant functions of the developed software program also

include the accurate estimation of power system state with insufficient input data

applied. This project has successfully built a power system state estimation software

program that perform accurate state estimation achieving desired outputs even when

provided with insufficient input data magnitudes. It helps identify the current

operating state of the system on which, security assessment functions and hence

contingencies can be analyzed leading to the required corrective actions.

vii

ABSTRAK

Projek ini mengkaji teknik Artificial Neural Network di mana ia menyelesaikan

masalah yang disebabkan oleh ralat pengukuran dalam kemudahan di system

rangkaian pengagihan kuasa. Angka parameter yang diukur dalam system kuasa

sebenar biasanya mengandungi ralat. Project ini bertujuan menghasilkan program

perisian yang berfungsi menganggar parameter dalam system kuasa dengan

menggunakan teknik kepintaran artifak. Program perisian ini ditulis dalam perisian

MATLAB dengan menggunakan teknik Artificial Neural Network. Teknik ini

mempertimbangkan aspek- aspek ketidakselarasan kemudahan dalam system

rangkaian pengagihan kuasa. Program ini mampu membuat penganggaran nilai

voltan bas dan sudut beban pada setiap nod dengan meminimakan perbezaan antara

nilai pengukuran dan pengiraan secara theory. Kebolehan ini dicapai melalui

penglibatan pelaksanaan program yang menganalisa nilai- nilai pengaliran beban

menggunakan cara pengiraan lama dengan menggunakan computer di mana ia

memberi keputusan nilai yang tepat berdasarkan teori. Program ini juga

berkebolehan untuk membuat penganggaran dan memberi nilai keputusan yang tepat

tanpa memerlukan bekalan data yang sempurna. Secara kesuluruhannya, projek ini

telah berjaya menghasilkan program perisian penganggaran nilai parameter semasa

sistem kuasa yang berkesan mencapai ketepatan nilai keputusan yang tinggi

walaupun tanpa dibekalkan data yang memadai. Program perisian ini membantu

mengesan nilai semasa system operasi di mana penilaian fungsi keselamatan dalam

operasi system kuasa dan justeru kesan- kesan awal kegagalan dapat dianalisakan

supaya tindakan pembetulan atau pembaikan dapat dilaksanakan.

viii

TABLE OF CONTENT

CHAPTER TITLE PAGE

1 INTRODUCTION 1

1.1 Power System State Estimation 2

1.2 Problem Statement 3

1.2.1 Load Flow Analysis 3

1.3 Objectives 4

1.4 Scope Of The Project 5

2 LITERATURE REVIEW 6

2.1 The Utilization of Database in State Determination 8

2.2 Artificial Neural Networks (ANNs) 9

2.2.1 Advantages and Disadvantages of 11

Artificial Neural Networks (ANNs)

2.2.2 Mathematical Modeling of ANNs 11

from Biological Model

2.2.3 Neural Network Topologies 14

2.3 Neural Network 14

2.3.1 Back-Propagation 14

2.3.2 Radial Basis Function (RBF) Network 15

2.4 Training of ANNs 17

ix

3 METHODOLOGY 20

3.1 Phases 21

3.1.1 Data Collecting Phase 21

3.1.2 Training Phase 21

3.1.3 Testing Phase 22

3.2 The NNTool 23

3.2.1 Data Collecting Phase 23

3.2.2 Training Phase 24

3.3.3 Testing Phase 25

4 RESULT AND DISCUSSION 26

4.1 Graphic User Interface 27

4.2 Data Collection Phase 28

4.2.1 Collection of Single Set Data 28

4.2.2 Varying Single Set of Data 31

4.2.3 Running Load Flow Analysis 33

4.3 Training Phase 41

4.4 Testing Phase 41

4.4.1 First Category 42

4.4.2 Second Category 44

4.4.3 Third Category 47

4.5 Program Flow 51

4.6 State Estimation with Another Neural Network 60

x

5 CONCLUSION 63

5.1 Conclusion 63

5.2 Recommendation 65

5.3 Costing and Comercialization 66

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 IEEE 30-Bus System 29

4.2 IEEE 30-Bus Line Data 30

4.3 Results by complete sets of input 43

4.4 Results by incomplete sets of input 46

4.5 Results by anonymous sets of input varying 10 times 48

4.6 Results by anonymous sets of input varying 20 times 49

4.7 Results by anonymous sets of input varying 50 times 50

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 The style of Neural Computation 10

2.2 Biological Model (Neuron) 12

2.3 Formula of Biological Model 12

2.4 Mathematical Models(ANN) 13

2.5 A Generalized Network 17

2.6 The Structure of A Neuron 17

3.1 Three Phases of The Project 20

3.2 NNTool 23

3.3 Creating New Network 24

4.1 Power System State Estimator 27

4.2 Overall flow of Software Program 28

4.3 Flow of Varying Data 32

4.4 One Line Diagram for 3 Bus Power System 33

4.5 Program of Newton-Raphson Method 34

4.6 Result of Newton-Raphson Method 35

4.7 Program of Gauss-Seidel Method 36

4.8 Result of Gauss-Seidel Method 37

4.9 Program of Fast-Decouple Method 38

4.10 Result of Fast-Decouple Method 39

4.11 Details of Neural Network Formed 40

4.12 The row 1 till row 29 of resulting incomplete 45

matrix pp with zeros

4.13 Flow of data30bus.m 53

4.14 Flow of varydata10.m 53

xiii

4.15 Flow of lfaNR.m 54

4.16 Flow of formNN.m 55

4.17 Flow of test.m 55

4.18 Flow of TestEmpty.m 56

4.19 Flow of TestAnonymous1.m 57

4.20 Flow of TestAnonymous2.m 58

4.21 Flow of TestAnonymous3.m 59

4.22a BackPropagation Iteration On Complete Set of Data 60

4.22b Radial Basis Network Iteration On Complete Set of Data 60

4.23a BackPropagation Iteration On Incomplete Set of Data 60

4.23b Radial Basis Network Iteration On Incomplete Set of Data 61

4.24a BackPropagation Iteration On Anonymous Set of Data 61

4.24b Radial Basis Network Iteration On Anonymous Set of Data 61

xiv

LIST OF APPENDICES

APPENDIX TITLE

1 databus30.m

2 varydata10.m

3 lfaNR.m

4 formNN.m(BackPropagation)

5 formRBFNN.m(Radial Basis Network)

6 test.m

7 TestEmpty.m

8 TestAnonymous1.m

9 TestAnonymous2.m

10 TestAnonymous3.m

CHAPTER 1

INTRODUCTION

The advancement in computer and communication technologies has resulted

in wide application of the supervisory control and data acquisition (SCADA) system

in the modern control centers. SCADA is highly capable and flexible that it deals

with large information flows coming from many protective and control devices

placed in the bulky electric power systems.

By processing the real- time redundant measures and network parameters

available in the SCADA database, the state estimation obtains current states of

system. Therefore, the performance of state estimation relies on the accuracy of the

measured data as well as the parameters of the networks model.

2

1.1 Power System State Estimation

Power System State Estimation is a calculation to estimate the power system

state by using EMS(Energy Management System). The aim of the state estimation is

to get the best estimate of the current system states processing a set of real-time

redundant measures and network parameters available in the database. The

performance of state estimation, therefore, depends on the accuracy of the measured

data as well as the parameters of the network model. The measured data are subject to

noise or errors in the metering system and the communication process. Large errors in

the analog measurements, so-called bad data, may happen in practice[6].

Network parameters such as impedances of transmission lines may be

incorrect as a result of inaccurate manufacturing provided data, error in calibration,

etc[2]. In addition, due to the lack of field information and possible errors in

calculations, transformer tap positions may be erroneous. The purpose of a state

estimator is to filter all these errors to achieve the best possible estimate of the state of

the system[8].

Generally, WLS (Weight-Least-Square) estimator or non-Gaussian estimator

is used to determine the state of the system. Few estimation is use for example

Maximum Likelihood Estimation, General State Estimation is use to minimize the

bias of the power system state[2].

3

1.2 Problem Statement

Despite the convenience provided by the SCADA system, however, there are

errors that arise due to the practical equipment and actual measurements in

distribution systems. For instance, noise in metering system and communication

process, large error in analog measurements that may happen in practice, erroneous

transformer tap positions due to the lack of field information and possible errors in

calculations, inaccurate manufacturing provided data, error in calibration and so on.

1.2.1 Load Flow Analysis

The conventional way, i.e. Load Flow Analysis requires complete set of data

or input and takes time to mathematically perform. Though programs created to

replace hand calculation are available nowadays and they successfully save a lot of

time, but still, they need complete set of input data in order to run and achieve the

desired outputs[12].

Therefore, this study proposes a power system state estimation method using

an AI optimization, for example Artificial Neural Network (ANN) which can estimate

bus voltage and load angle values at each node by minimizing difference between

measured and calculated state variables. This method aims to filter the errors

mentioned earlier so that the best possible estimate of the system state is achieved[15].

4

1.3 Objectives

This project aims to produce a software program that performs power system

state estimation with the application of Artificial Neural Network. The software

program should output results instantly after the inputs are given or in other words it

takes shorter time to perform as compared to the hand calculation method for Load

Flow Analysis.

Without requiring complete input parameters data it has to perform state

estimation and achieve desired output. It should estimate bus voltage and load angle

values at each node by minimizing difference between measured and calculated state

variables that it aims to filter the errors at the same time considering the nonlinear

characteristics of the practical equipment and actual measurements in distribution

systems so that the best possible estimation of the system state is achieved.

5

1.4 Scope Of The Project

The related scopes of this project are Artificial Intelligence (AI), Artificial

Neural Networks (ANNs) and MATLAB software. It involves data collection,

training and testing phases. The training phase utilizes supervised learning technique

and the weights or strengths of connections in the artificial neural network are

automatically adjusted according to some modification rules.

MATLAB Software is utilized where .m file as the location to write program

and form linkages between main program and sub programs, also, as the platform

where ANN program is trained to be accurate, efficient and user friendly.

Power System Analysis, the Load Flow Analysis that performs to gain

information of the power and voltage flow in the buses of the power system network

in order to evaluate the performance of power system network as well as to analyze

any planning for power system improvement under steady state conditions. It is

necessary for planning, operation, economic scheduling and exchange of power

between different utility.

CHAPTER 2

LITERATURE REVIEW

Electrical power system consists of complex networks that need continual

and comprehensive analysis for the planning, design, and operation in order to assist

future plant expansion[8]. In power system analysis, the power flow and voltage

flow in power system network can be calculated by using three mathematical

techniques, the Newton-Raphson method, Gauss-Seidel method and Fast-decouple

method[11].

Newton- Raphson method is more practical and efficient for large power

system since the number of iterations is independent of the system size but more

functional evaluations are required at each iterations[12]. Fast-decouple method

makes use of an approximate version of the Newton-Raphson procedure as an

alternative strategy for improving computational when solving large power

transmission systems[3].

However, hand computational work is almost impossible to perform analysis

on large and complex power system network. Therefore, software designed to carry

7

out the mathematical calculation, or in other words, take over the hand calculation

work, which outputs in short time as compared to the conventional method, is

available nowadays[1].

8

2.1 The Utilization of Database in State Determination

The advancement in computer and communication technologies has resulted

in the wide usage of the supervisory control and data acquisition (SCADA) system in

the modern control centers.[5] SCADA is highly capable and flexible that it deals

with large information flows coming from many protective and control devices

placed in the bulky electric power systems. [7]

The information is very useful during events that cause outage. It helps the

operator in control centers to identify defective part of the system and to start the

restoration process. By processing a set of real time redundant measures and

network parameters available in the database, the state estimation gets the best

estimate of the current system states. [7]

Therefore, the performance of state estimation relies on the accuracy of the

measured data as well as the parameters of the networks model. However, there are

errors that arise due to the noise or errors in the metering system and the

communication process, large error in analog measurements, also known as bad data

that may happen in practice, network parameters, impedances of transmission lines

for instance, that may be incorrect data in accordance to the inaccurate

manufacturing provided data, error in calibration, etc and the lack of field

information and possible errors in calculations that transformer tap positions may be

erroneous. [9]

9

2.2 Artificial Neural Networks (ANNs)

An ANN is most often a nonlinear system that learns to perform a function

(an input/output map) from data. It is adaptive, where the system parameters are

changed during operation, normally called the training phase. [10] It is built with

step-by-step procedure systematically to optimize a performance criterion or to

follow some implicit internal constraint, commonly referred to as the learning rule.

The input/output training data are fundamental in neural network technology.

They convey the necessary information to discover the optimal operating point.

After the training phase the ANN parameters are fixed and the system is deployed to

solve the problem at hand. This is called the testing phase. [7]

The nonlinearity of the neural network processing elements (PEs) provides

flexibility to the system to achieve practically any desired input/output map. Hence

it is said that some Artificial Neural Networks are universal mappers.[13]

For the case of supervised method, an input is given to the neural network

while a corresponding target response set is given at the output. Then an error will be

composed from the difference between the desired output or response and the system

output which is next fed back to the system where it adjusts the parameters of the

system systematically according to the learning rule.[7] This process is repeated until

the performance is acceptable. The style of computation is shown in Figure 2.1.[4]

10

Figure 2.1 The style of Neural Computation

The performance of the neural network hinges heavily on the data. Therefore,

neural network technology is not a suitable solution for cases where data is

insufficient to cover significant portion of the operating conditions or they are noisy.

Conversely, it is a good solution to derive an approximate model for conditions

where a plenty of data exist but with the problem poorly understood. [13]

Instead of conducting traditional engineering design that exhaustive

subsystem specifications and intercommunication protocols are necessary,[4] in

artificial neural networks, the designer chooses the network topology, the

performance function, the learning rule and the criterion to stop the training phase,

but the system adjusts the parameters automatically.

Though it is hard to bring a priori information into the design and it is

difficult to incrementally refine the solution when the system does not work in proper

way, ANN-based solutions are very time efficient in terms of development and

resources. Besides, in many tough problems, it provides performance that is difficult

to match with other technologies. Hence, ANNs are emerging as the choice for

applications like pattern recognition, prediction, system identification and control.[7]

11

2.2.1 Advantages and Disadvantages of Artificial Neural Networks (ANNs)

ANNs is a system that takes the operation of biological neural networks as

conceptual basis, i.e. it is an emulation of biological neural system. Despite the

disadvantages that it is made with, it performs certain tasks that a program made for

a common microprocessor is unable to perform. In other words, a neural network

can perform tasks that a linear program cannot. [14]

When an element of the neural network fails, its parallel nature enables it to

continue without any problem. Besides, it learns and does not need to be

reprogrammed. Thus, it can be implemented in any application without any problem.

However, the neural network needs training prior to its operation. Its architecture is

different from that of a microprocessor; therefore, it needs to be emulated. [15]

In addition, high processing time is required for large neural networks.

Artificial neural networks can have different architectures that consequently require

different types of algorithms, but it is relatively simpler than to be a complex system.

2.2.2 Mathematical Modeling of ANNs from Biological Model

A biological nervous system consists of neurons as the basic signaling units

where each neuron is a discrete cell whose several processes arise from its cell body.

The ANNs emerged as circuits that could perform computational tasks with

biological neurons as basic conceptual components.

12

Figure 2.2 Biological model (Neuron)

[Source: http://www.learnartificialneuralnetworks.com/]

The neurons or cells as shown in Figure 2 are modeled as processing units

where the area of contact between two physically non-touching neurons is called

synapse where in this synaptic cleft electric signals are sent through chemical 13

interactions. In a functional model, the synapses are modeled as weights and their

values note the connection strength between an input and a neuron.

The inputs are modified by their respective weights before linear combination

takes place whereby they are summed up by an adder. Then, an activation function

will control the amplitude of the neuron output to a range between 0 and 1, or, -1 and

1. This is mathematically described in the Figure 2.4 below according to the formula

shown in Figure 2.3.

Figure 2.3 Formula

13

Figure 2.4 Mathematical model (ANNs)

[Source: http://www.learnartificialneuralnetworks.com/]

The neuron output, yk, is the outcome of some activation function on the

value of vk. In short, an artificial neural network is a pool of simple processing units

that communicate by sending signals to each other over a large number of weighted

connections. Apart from adjusting the weight, each processing units receive input

from neighbours or external sources to compute an output signal which is propagated

to other units.

There are three types of units in neural systems: input units which receive

data from outside the neural network, output units which send data out of the

network and hidden units whose input and output signals remain within the network.

The system is parallel that computations by many units can be carried out

simultaneously.

At the same time during operation, units can be updated either synchronously

whereby all units simultaneously update their activation, or, asynchronously whereby

14

each unit has a probability, which is usually fixed, of updating its activation at a time,

t, and only one unit perform at a time.

2.2.3 Neural Network Topologies

There are many pattern types of connections between units and the

propagation of data, i.e. radial basis function (RBF) network, feed-forward neural

networks, Kohonen self-organizing network, recurrent neural networks and etc [4].

2.3 Neural Network

2.3.1 Back-Propagation

Back-Propagation is a simple neural network which uses multi-layered neural

network to be constructed. Back-Propagation is a supervised learning neural network

which means it needs a teacher who knows or can calculate, the desired or given

input.

If we consider the human brain to be the 'ultimate' neural network, then

ideally we would like to build a device which imitates the brain's functions. However,

because of limits in our technology, we must settle for a much simpler design. The

obvious approach is to design a small electronic device which has a transfer function

similar to a biological neuron, and then connect each neuron to many other neurons,

using RLC networks to imitate the dendrites, axons, and synapses. This type of

15

electronic model is still rather complex to implement, and we may have difficulty

'teaching' the network to do anything useful.

Further constraints are needed to make the design more manageable. First, we

change the connectivity between the neurons so that they are in distinct layers, such

that each neruon in one layer is connected to every neuron in the next layer. Further,

we define that signals flow only in one direction across the network, and we simplify

the neuron and synapse design to behave as analog comparators being driven by the

other neurons through simple resistors. We now have a feed-forward neural network

model that may actually be practical to build and use.

Referring to figures 2.5 and 2.6, the network functions as follows: Each

neuron receives a signal from the neurons in the previous layer, and each of those

signals is multiplied by a separate weight value. The weighted inputs are summed,

and passed through a limiting function which scales the output to a fixed range of

values. The output of the limiter is then broadcast to all of the neurons in the next

layer. So, to use the network to solve a problem, we apply the input values to the

inputs of the first layer, allow the signals to propagate through the network, and read

the output values.[17]

2.3.2 Radial Basis Function (RBF) Network

As stated in Wikipedia, Radial Basis Function (RBF) Network is a technique

used for multidimensional space [16]. It is built into a distance criterion with respect

to a center and may be applied in neural network as replacement for sigmoid hidden

layer transfer characteristic in Multi- Layer Perceptrons.

16

RBF networks have two layers of processing [16]. Input is firstly mapped

onto each RBF in the hidden layer. The output layer is a linear combination of

hidden layer values representing the mean predicted output. The interpretation of

this output layer value is like a regression model in statistics.

The output layer is a typical sigmoid function of a linear combination of

hidden layer values which represents a posterior probability. Performance can be

improved by shrinkage techniques, i.e. ridge regression in classical statistics. It is

believed that small parameter values will smooth the output functions in a Bayesian

framework.

RBF networks do not suffer from local minima in the same way as Multi-

Layer Perceptrons since the only parameters that are adjusted in the learning process

are the linear mapping from hidden layer to output layer. The linearity ensures the

error surface to be quadratic. Therefore, a minimum is easily found. This can be

found in one matrix operation in regression problems. The fixed non-linearity

introduced by the sigmoid output function in classification problems is most

efficiently dealt with using iteratively re-weighted least squares.[16]

RBF networks require good coverage of the input space by radial basis

functions. Centers of RBF are determined with reference to the distribution of the

input data without referencing to the prediction task. Hence, representational

resources that are irrelevant to the learning task may be wasted on areas of the input

space. One of the common solutions is to associate each data point with its own

centre. This can make the linear system to be solved in the final layer rather large,

and needs shrinkage techniques to avoid over fitting.

The association of each input datum with an RBF introduces naturally to

kernel methods such as Support Vector Machines and Gaussian Processes whereby

the RBF is the kernel function. These three approaches utilize a non-linear kernel

17

function to project the input data into a space where the learning problem can be

solved using a linear model. [16]

Gaussian Processes, and unlike SVMs, RBF networks are usually trained by

maximizing the probability, i.e. minimizing the error of the data under the model in a

Maximum Likelihood framework. The SVMs avoid over fitting by maximizing

instead a margin. In most classification applications by SVMs, the RBF networks

are outperformed. They can be competitive in regression applications when the

dimensionality of the input space is relatively small.

Figure 2.5 A Generalized Network

Figure 2.6 The Structure Of A Neuron

18

2.4 Training of ANNs

When training an ANN with a set of input and output data, we wish to adjust

the weights in the ANN, to make the ANN give the same outputs as seen in the

training data.[15] On the other hand, we do not want to make the ANN too specific,

making it give precise results for the training data, but incorrect results for all other

data. When this happens, we say that the ANN has been over-fitted.

Training phase will be the process to configure the neural network on the

inputs of data whilst matching the desired output. Different methods can be use to

train the ANN which is feeding the ANN with some teaching patterns and let it to

change its weight by some learning rules.[13] The learning situations are categorized

as supervised learning or Associative learning, Unsupervised learning or Self-

organization and Reinforcement learning.[14]

Supervised learning is done to provide the input and output pairs by an

external teacher and it was used because we know the correct input data. Whereas for

unsupervised learning or self- organization, an output unit is trained to respond to

clusters of pattern within the input. The system is supposed to discover statistically

salient features of the input population. [13]

For reinforcement learning, an intermediate form of the above two types of

learning. For this, the learning machine does some action on the environment and

gets a feedback response in return. It then grades its action good, i.e. rewarding, or

bad, i.e. punishable based on the environmental response and adjusts its parameters

accordingly.[4]

CHAPTER 3

METHODOLOGY

In order to proceed with my project, a powerful computation tool is used to

build and train the Artificial Intelligence. MATLAB is an essential tool throughout

my whole project to develop the software program. The program was written in the

M-file which are shown below.

20

This project will briefly working in 3 phases, which is data collection phase, training

phase and testing phase. The flow chart was show below.

Figure 3.1: Three phases of the project.

Data Collection Phase
The input and output data

was collected using
MATLAB software

program

Training Phase
The neural network was
given the data required.

Testing Phase
When the updates and

adjustment stops, the neural
network is tested to obtain the

data output desired according to
the input.

Updates and Adjustment
Strengths of the connections or

weights are adjusted
throughout the training.

21

3.1 Phases

3.1.1 Data Collecting Phase

Basically data collection phase is where we use the software program to get

the required input and output data which are needed to be configured into the neural

network. The data is collected from MATLAB by writing programs that randomly

change the values of load power and is linked to another program that calculates the

outputs in accordance to the varied particular inputs.

There are few software programs which are able to calculate the output works

similarly with the conventional way, the Load Flow Analysis. This could be handy as

the calculation period was shorten and accurate data can be obtained. These data will

be used to train the artificial intelligence to produce the desired outputs.

3.1.2 Training Phase

The neural network is configured such that the desired output would be

produced by giving the correct input. Training phase is where the neural network is

‘teach’how to configure out the desired output by giving certain inputs. The

strengths of the connections within the network can be set by setting the weights

explicitly using a priori knowledge (e.g formulas) or by “training”the neural network,

i.e. feeding it teaching patterns and letting it changes its weights according to some

learning rules.

22

Supervisory learning method will be use in this project. Neural network was

train to get the matching output pattern by giving the required input. During the

training, there are adjustments and updates that take place automatically on the

weight of ANN each time a new set of input data is given until when it obtains the

optimal strengths of connections or weight in the ANN, that it comes to an

equilibrium state where it meets the criterion in which the parameters do not change

anymore so that in the end the program is able to estimate and give the desired or

accurate output when an input is given.

3.1.3 Testing Phase

For the last phase, the accuracy and efficiency of the neural network will be

tested. The neural network will be given a set of data with particular dimension

corresponding to that input in the training phase. Using the Load Flow Analysis

method, we will simulate a set of outputs which will be compared to the neural

network output to check for the accuracy and efficiency.

The outputs data here is referred to as target outputs. This means similar sets

of inputs which are used to configure the neural network are applied and the

expected output of estimation should be accurately near to the target outputs.

The inputs are entered to the program so that it performs state estimation and

gives the relevant output values. These outputs will be compared to the output

values obtained by the Load Flow Analysis program to evaluate its functionality and

results.

23

3.2 The NNTool

There are another way to configure the neural network, using the NNTool.

NNTool can be obtain by running the MATLAB software and the tool is categorized

under the toolboxes in MATLAB sofrware.

Figure 3.2: NNTool

3.2.1 Data Collecting Phase

The data is defined in the workspace is save so that it can be imported to the

NNTool and fill the blank space. The input will be obtain from the Load Flow

Analysis input and the target will be the output of it.

24

3.2.2 Training Phase

In Network/ Data Manager, the neural network is formed by just clicking the

New Network button after entering the relevant inputs and targets. Eventually a

window as shown in Figure 3.4 will appear with options to select the Network Type

and other properties of neural network that are to be formed. After the selection,

Create button will lead to the formation of the neural network.

Figure 3.3: Creating New Network

The new neural network that is formed will appear in the Networks blank with

the user determined name. Clicking the neural network and View button will lead to

another window that appears with options to view the illustrated connections of

related layers formed in the neural network.

25

3.2.3 Testing Phase

Other functions such as Simulate and Weights are also provided to do

simulation, i.e. testing, and also to view the weights parameters of the neural network.

To perform simulation, the inputs data has to be obtained by running relevant M-File

similarly as mentioned so as to appear in the selection box.

After selecting inputs, Simulate button will lead to the result of estimation

done by neural network. The outputs can be seen in the Outputs blank. All data used

in this project will appear in matrix form.

CHAPTER 4

RESULT AND DISCUSSION

The output data of neural network simulation and estimation will be in the

correct range of value output as the original one. By inserting or giving neural

network the correct output data, we will do a training for neural network and letting

it know that the output data is the desired output. With the correct output as a

reference, neural network will be able to simulate a set of output data which will be

having the same range of values of data as the original output.

There are three phases to make sure the neural network is trained properly

without any mistakes. Data collection phase is where neural network is fed by a

correct and accurate output data. While training phase will train the neural network

with the correct data output and records it in its memory. Testing phase is where

neural network is used to estimate the output data even with data losses or bad datas.

4.1 Graphic User Interface

A graphic user interface or GUI is

to interact with programs in more ways than typing

create in order to ease users to use the progr

shows how my State Estimator program looks like.

This GUI will control all the functions which will lead to different results. In the

image the GUI shows 2 different AI, Feed

Radial Basis Network which both of the results will be compared.

4.1 Graphic User Interface

A graphic user interface or GUI is a type of user interface

interact with programs in more ways than typing such as computers

create in order to ease users to use the program instead of plain codes. Figure 4.1

shows how my State Estimator program looks like.

Figure 4.1 Power System State Estimator

This GUI will control all the functions which will lead to different results. In the

image the GUI shows 2 different AI, Feed Forward Back-Propagation and also

Radial Basis Network which both of the results will be compared.

27

user interface that allows users

computers. A GUI is

am instead of plain codes. Figure 4.1

This GUI will control all the functions which will lead to different results. In the

Propagation and also

28

4.2 Data Collection Phase

Figure 4.2 Overall flow of software program

For the first phase, i.e. data collection, the sets of input and corresponding

output data need to be firstly obtained in order to proceed to the next phase, i.e.

training phase.

4.2.1 Collection of Single Set Data

The first step of this project is to collect data from a power system. Below are

the data for IEEE 30-Bus System and IEEE Line System which the data will be a

reference for neural network training and the output of Load Flow Analysis will be

the correct data for neural network to estimate.

29

Table 4.1 IEEE 30-Bus System

Load Generator
Bus
No

Bus
Code

Voltage
Mag

Angle
(Degree)

MW Mvar MW Mvar Qmin Qmax Inject
Mvar

1 1 1.06 0 0.0 0.0 0.0 0.0 0 0 0

2 2 1.043 0 21.70 12.7 40.0 0.0 -40 50 0

3 0 1.0 0 2.4 1.2 0.0 0.0 0 0 0

4 0 1.06 0 7.6 1.6 0.0 0.0 0 0 0

5 2 1.01 0 94.2 19.0 0.0 0.0 -40 40 0

6 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0

7 0 1.0 0 22.8 10.9 0.0 0.0 0 0 0

8 2 1.01 0 30.0 30.0 0.0 0.0 -10 40 0

9 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0

10 0 1.0 0 5.8 2.0 0.0 0.0 0 0 19

11 2 1.082 0 0.0 0.0 0.0 0.0 -6 24 0

12 0 1.0 0 11.2 7.5 0.0 0.0 0 0 0

13 2 1.071 0 0.0 0.0 0 0 -6 24 0

14 0 1.0 0 6.2 1.6 0 0 0 0 0

15 0 1.0 0 8.2 2.5 0 0 -6 24 0

16 0 1.0 0 3.5 1.8 0 0 0 0 0

17 0 1.0 0 9.0 5.8 0 0 0 0 0

18 0 1.0 0 3.2 0.9 0 0 0 0 0

19 0 1.0 0 9.5 3.4 0 0 0 0 0

20 0 1.0 0 2.2 0.7 0 0 0 0 0

21 0 1.0 0 17.5 11.2 0 0 0 0 0

22 0 1.0 0 0.0 0.0 0 0 0 0 0

23 0 1.0 0 3.2 1.6 0 0 0 0 0

24 0 1.0 0 8.7 6.7 0 0 0 0 4.3

25 0 1.0 0 0.0 0.0 0 0 0 0 0

26 0 1.0 0 3.5 2.3 0 0 0 0 0

27 0 1.0 0 0.0 0.0 0 0 0 0 0

28 0 1.0 0 0.0 0.0 0 0 0 0 0

29 0 1.0 0 2.4 0.9 0 0 0 0 0

30 0 1.0 0 10.6 1.9 0 0 0 0 0

30

Table 4.2 IEEE 30-Bus Line Data

Bus (n1) Bus (nr) R (pu) X (pu) ½ B (pu) Tap Setting
1 2 0.0192 0.0575 0.02640 1
1 3 0.0452 0. 1852 0.02040 1
2 4 0.0570 0.1737 0.01840 1
3 4 0.0132 0.0379 0.00420 1
2 5 0.0472 0.1983 0.02090 1
2 6 0.0581 0.1763 0.01870 1
4 6 0.0119 0.0414 0.00450 1
5 7 0.0460 0.1160 0.01020 1
6 7 0.0267 0.0820 0.00850 1
6 8 0.0120 0.0420 0.00450 1
6 9 0.0 0.2080 0.0 0.978
6 10 0.0 0.5560 0.0 0.969
9 11 0.0 0.2080 0.0 1
9 10 0.0 0.1100 0.0 1
4 12 0.0 0.2560 0.0 0.932
12 13 0.0 0.1400 0.0 1
12 14 0.1231 0.2559 0.0 1
12 15 0.0662 0.1304 0.0 1
12 16 0.0945 0.1987 0.0 1
14 15 0.2210 0.1997 0.0 1
16 17 0.0824 0.1923 0.0 1
15 18 0.1073 0.2185 0.0 1
18 19 0.0639 0.1292 0.0 1
19 20 0.0340 0.0680 0.0 1
10 20 0.0936 0.2090 0.0 1
10 17 0.0324 0.0845 0.0 1
10 21 0.0348 0.0749 0.0 1
10 22 0.0727 0.1499 0.0 1
21 22 0.0116 0.0236 0.0 1
15 23 0.1000 0.2020 0.0 1
22 24 0.1150 0.1790 0.0 1
23 24 0.1320 0.2700 0.0 1
24 25 0.1885 0.3292 0.0 1
25 26 0.2544 0.3800 0.0 1
25 27 0.1093 0.2087 0.0 1
28 27 0.0000 0.3960 0.0 0.968
27 20 0.2198 0.4153 0.0 1
27 30 0.3202 0.6027 0.0 1
29 30 0.2399 0.4533 0.0 1
8 28 0.0636 0.2000 0.0214 1
6 28 0.0169 0.0599 0.065 1

31

Bus codes of 0, 1 and 2 specify generator bus, reference or slack bus and load

bus respectively. However, this data provides only one set values of bus and line

parameters of a 30 buses system at particular moment. In order to configure or train

a neural network, it needs definitely more than a set of data.

4.2.2 Varying Single Set Data

We will use another MatLab code to vary the values of parameters in the Bus

and Line data above into number denoted by 10. The codes will try to vary each data

in the Bus and Line data up to 10 times to increase the accuracy of the artificial

intelligent, the BackPropagation neural network.

Varying data set up to 10 times to feed the neural network with more inputs

and different output so that it will have a set of range of data that is acceptable in

theory calculations and explanation. With different data input and output, neural

network will be able to get a range of accurate and correct data to perform the

estimation.

The variation or deviation of data is done by mathematical operations and

function “rand”. This function produces uniformly distributed random numbers. The

syntax “rand(n,m)”gives an n-by-m matrix with random entries ranging from 0 to 1.

The sequence of the numbers generated is determined by the state of generator.

The state will reset at each start up of MATLAB, therefore the sequence of

numbers generated will be the same unless the state is changed. In other words,

several continuous runs of a same program without start up taking place in between

will output varying values. The flow of the program at each time it runs is illustrated

32

in the Figure 4.3 showing the formation of final matrices, which are needed as input

for the program of load flow analysis at the next stage.

Figure 4.3 Flow of Varying Data

During variation of the real power, a 10 by 1 matrix named as a1 is formed

for each bus, which is 30 in total, and be transformed into a row collected by matrix

a11 which turns into a 30 by 10 matrix in the end.

33

4.2.3 Running Load Flow Analysis

Before proceeding to the build of neural network, load flow analysis is

performed to obtain the data of power system due to the varied real and reactive load

power. There are three methods for load flow analysis, i.e. Newton-Raphson method,

Gauss-Seidel method and Fast-decouple method, provided by Hadi Saadat, 2004,

which are developed to run on MATLAB for power system analysis purpose [4].

In order to choose a program to be used for data collection phase, as well as

to perform a checking and comparison procedure on the accuracy of these three

programs prior to the beginning of configuration and training of neural network, trial

has been carried out on all the three mentioned programs based on a 3 buses power

system example as shown in Figure 4.4 below.

Figure 4.4 One line diagram for 3 bus power system

34

The program for Newton-Raphson Method and its result are shown in Figure

4.5, and Figure 4.6 respectively.

Figure 4.5 Program of Newton-Raphson Method

35

Figure 4.6 Results of Newton-Raphson Method

36

The program for Gauss- Seidel Method and its result are shown in Figure 4.7,

and Figure 4.8 respectively.

Figure 4.7 Program of Gauss- Seidel Method

37

Figure 4.8 Results of Gauss-Seidel Method

38

The program for Fast- Decouple Method and its result are shown in Figure

4.9, and Figure 4.10 respectively.

Figure 4.9 Program of Fast- Decouple Method

39

Figure 4.10 Results of Fast- Decouple Method

Conclusion derived from the comparison of the results is that all three

methods give similar answers or outputs for the same presented input data, hence any

one of these programs is suitable. In this project, program of Newton- Raphson

method is chosen to be use as reference in MATLAB.

The Figure 4.11 shows the details of the neural network formed after running

the software program. This is obtained by double clicking on the resulting “net”

40

from the workspace window. After training phase, the neural network should be

ready for testing phase.

Figure 4.11 Details of neural network formed

41

4.3 Training Phase

A neural network needs to be “taught”before it knows how to calculate or

estimate any values. By referring to Appendix 8, formNN.m, we can see that we will

create a new network for BackPropagation neural network and fed the neural

network with the correct data collected in the previous phase. “newff”in formNN.m

file represents the new network created for Feed-Forwarded BackPropagation neural

network, with 1 hidden layer to increase the accuracy of the estimated output.

In forming the neural network, the input data, the first input matrix has to

match with the target data, the second input matrix by columns which means their

number of columns have to be same. Therefore, both of the input matrices have to

be transposed before anything.

4.4 Testing phase

Testing phase aims to test the effectiveness of the neural network in terms of

accuracy of the outputs as compared to the target outputs or real outputs. The testing

phase tests the accuracy of the outputs generated by the neural network when input

data is given, whether complete or incomplete.

This phase generally consists of three categories. The first category is to test

whether the software program runs successfully without error and functions to give

outputs of estimation when complete set of input is applied. The second category

tests whether the software program runs successfully without error and functions to

give outputs of estimation when incomplete set of input is applied.

42

The third category tests whether the software program runs successfully

without error and functions to give outputs of estimation when new or anonymous set

of input is applied with the increase in number of variation, nc of input set used for

training phase to study the change in accuracy of outputs.

4.4.1 First Category

The first category is to test whether the software program runs successfully

without error and functions to give outputs of estimation when complete set of input

is applied. By referring to Appendix 6, test.m, with an example of input, X, which is

the first set or column of similar input as given to train the neural network in the

previous phase.

Y denotes the output simulated by the neural network in accordance to the

input, X. The number of columns of input, X has to be same as in the training phase

where any missing data of an incomplete input set should be replaced by zero. Note

that all the programs mentioned earlier run in the according sequence continuously

after each command is given, therefore in this example input, X, shown remains and

readily appears as the transposed version.

43

Table 4.3 Results by complete sets of input

44

4.4.2 Second Category

The main objective of using the neural network is to estimate the outputs

when the input given is incomplete. This category tests the neural network by using

the same input as first category but made incomplete prior to the testing. Program

TestEmpty.m as shown in Appendix 9 is run before the test.m after the formNN.m.

The TestEmpty.m is created to make some values in the input data set, matrix pp to

become zero hence providing incomplete input for testing. Parts of the resulting pp

matrix are shown in Figure 4.11.

Figure 4.12 The row 1 till row 29 of resulting incomplete matrix pp with zeros

Then, the test.m is run to estimate the outputs. The results are tabulated as below in

Table 4.3. The target is the set of values of matrix tt

matrix pp. The result columns are the output values estimated by software program

shown by matrix Y.

The row 1 till row 29 of resulting incomplete matrix pp with zeros

Then, the test.m is run to estimate the outputs. The results are tabulated as below in

Table 4.3. The target is the set of values of matrix tt corresponding to the input set of

matrix pp. The result columns are the output values estimated by software program

45

The row 1 till row 29 of resulting incomplete matrix pp with zeros

Then, the test.m is run to estimate the outputs. The results are tabulated as below in

corresponding to the input set of

matrix pp. The result columns are the output values estimated by software program

46

Table 4.4 Results by incomplete sets of input

47

As shown in the above table, the general accuracy obtained is 98.682%. This

means that the software program perform highly accurate state estimation even when

the input given is incomplete. The main objective of this project is achieved.

4.4.3 Third Category

The accuracy of the values output by neural network depends on the number

of input sets used for training. Therefore, by increasing the value of varying data, it

will show the difference or expected improvement in output accuracy. For this

category, the inputs used are firstly varied so as to try running the software program

to do estimation on different or anonymous set of input.

In this case, 3 anonymous test will be undergo to check the accuracy of the

neural network. First, it will run a test with different data from bus and line. The

input data are some values that are out of range which will give bad output if using

normal Load Flow Analysis calculation. Note that the bus data and line data are

varied by multiplication of 1.25 as shown in Appendix. Then the program flow is as

usual or similar to that of the described data collection phase.

The 2nd test will vary the values of bus data and line data up to 10

times to check the accuracy of the output. Eventually, 3rd test runs the Newton

Raphson load flow analysis to simulate the target output, which will determine the

accuracy and the efficiency of the neural network.

The result of doing 3 sets of anonymous input data varying for 10, 20 and 50

times is shown as follow.

48

Table 4.5 Results by anonymous sets of input varying 10 times.

49

Table 4.6 Results by anonymous sets of input varying 20 times.

50

Table 4.7 Results by anonymous sets of input varying 50 times

51

As observed from the results shown in Table 4.4, Table 4.5 and Table 4.6, the

general accuracies are 88.675%, 89.946% and 90.010% accordingly which increases

with the increase of the varying amount. This means that the accuracy of the

estimation improves as more input sets are used to train and form the neural network.

The more input data is provided for training phase, the better the adjustment of

weights of the relationship between input and targeted output formed in the neural

network therefore strengthen the accuracy of estimation performed.

The general accuracies of the results by anonymous sets of input for amount

of 10, 20 and 50 as shown previously are however lower than that of the results

shown in Table 4.1 and Table 4.2 which are achieved by similar set of input matrix

pp that are used for training phase. This is expected as the range of the tested

anonymous inputs is different from that of the input used to train the neural network

earlier.

4.5 Program Flow

The Program will start by reading the 30-Bus system and the line system.

And it will vary data up to 10 times for neural network to have a range or accuracy

and values. Load flow analysis is executed after that to calculate the output of the

total 30 bus system. It will then train the neural network for estimation purpose.

Below are the flow chart of how a complete set of data, incomplete set of data and

anonymous set of data execute.

52

Complete Set of Data Incomplete Set of Data Anonymous Set of

Data

Above are the program flow where when you click on the “Start”button on

the GUI, it will follow the above flow and execute the program. The output will be

show as a text in the command window in MATLAB. While the details of flows that

will execute in the codes are stated next.

databus30.m

varydata10.m

lfaNR.m

formNN.m

test.m

databus30.m

varydata10.m

lfaNR.m

formNN.m

TestEmpty.m

databus30.m

varydata10.m

lfaNR.m

formNN.m

TestAnonymous1.m

TestAnonymous2.m

TestAnonymous3.m

53

data30bus.m

Figure 4.13 Flow of data30bus.m

varydata10.m

Figure 4.14 Flow of varydata10.m

54

lfaNR.m

Figure 4.15 Flow of lfaNR.m

55

formNN.m

Figure 4.16 Flow of formNN.m

test.m

Figure 4.17 Flow of test.m

56

TestEmpty.m

Figure 4.18 Flow of TestEmpty.m

57

TestAnonymous1.m

Figure 4.19 Flow of Test Anonymous1.m

58

TestAnonymous2.m

Figure 4.20 Flow of TestAnonymous2.m

59

TestAnonymous3.m

Figure 4.21 Flow of TestAnonymous3.m

4.6. State Estimation with Another Neural Network

After finish debugging and checking Back

looking into another neural network, the Radial Basis Neural Network. Basically, it

does almost the same as Back

results in better output, which mean, the total loses estimated by Back

lesser than Radial Basis Network. Figure 4.

4.23b, Figure 4.24a and Figure 4.

arrangement of complete set of data, incomplete set of data and anonymous set of

data.

Figure 4.22a: BackPropagation Iteration On Complete Set of Data

Figure 4.22b: Radial Basis Network Iteration On C

Figure 4.23a: BackPropagation Iteration On Incomplete Set of Data

State Estimation with Another Neural Network

After finish debugging and checking Back-Propagation network, I am

looking into another neural network, the Radial Basis Neural Network. Basically, it

does almost the same as Back-Propagation, but I did found that the Back

r output, which mean, the total loses estimated by Back

lesser than Radial Basis Network. Figure 4.22a, Figure 4.22b, Figure 4.

a and Figure 4.24b shows the output of both neural network at the

arrangement of complete set of data, incomplete set of data and anonymous set of

BackPropagation Iteration On Complete Set of Data

Radial Basis Network Iteration On Complete Set of Data

BackPropagation Iteration On Incomplete Set of Data

60

Propagation network, I am

looking into another neural network, the Radial Basis Neural Network. Basically, it

Propagation, but I did found that the Back-Propagation

r output, which mean, the total loses estimated by Back-Propagation is

Figure 4.23a, Figure

shows the output of both neural network at the

arrangement of complete set of data, incomplete set of data and anonymous set of

BackPropagation Iteration On Complete Set of Data

omplete Set of Data

BackPropagation Iteration On Incomplete Set of Data

Figure 4.23b: Radial Basis

Figure 4.24a: BackPropagation Iteration On Anonymous Set of Data

Figure 4.24b: Radial Basis Network Iteration On Anonymous Set of Data

From Figure 4.12a and Figure 4.12b, we can see that both

range but slightly different value on each loses. This is cause by the difference of

algorithm in both different neural netwo

4.13b are both having the same total loses. The accuracy of the estimation on both

neural network is near 100%.

While the output of Figure 4.14a and Figure 4.14b are having both different

values. The BackProp

Because the anonymous test has 3 different anonymous data given to the bus system,

Radial Basis shows that it has some bias on the accuracy towards the output value.

BackPropagation neural netw

Radial Basis Network Iteration On Incomplete Set of Data

BackPropagation Iteration On Anonymous Set of Data

Radial Basis Network Iteration On Anonymous Set of Data

From Figure 4.12a and Figure 4.12b, we can see that both

range but slightly different value on each loses. This is cause by the difference of

algorithm in both different neural networks. We can see that Figure 4.13a and Figure

4.13b are both having the same total loses. The accuracy of the estimation on both

neural network is near 100%.

While the output of Figure 4.14a and Figure 4.14b are having both different

values. The BackPropagation has slightly lower total loss compare to Radial Basis.

Because the anonymous test has 3 different anonymous data given to the bus system,

Radial Basis shows that it has some bias on the accuracy towards the output value.

BackPropagation neural network is much better on higher iteration calculations.

61

Network Iteration On Incomplete Set of Data

BackPropagation Iteration On Anonymous Set of Data

Radial Basis Network Iteration On Anonymous Set of Data

From Figure 4.12a and Figure 4.12b, we can see that both gives output in

range but slightly different value on each loses. This is cause by the difference of

rks. We can see that Figure 4.13a and Figure

4.13b are both having the same total loses. The accuracy of the estimation on both

While the output of Figure 4.14a and Figure 4.14b are having both different

agation has slightly lower total loss compare to Radial Basis.

Because the anonymous test has 3 different anonymous data given to the bus system,

Radial Basis shows that it has some bias on the accuracy towards the output value.

ork is much better on higher iteration calculations.

62

Although the elapsed time of backpropagation is much longer compare to

Radial Basis, it only consist of few milliseconds to 1 seccond time, which does not

really obvious when both of the neural network is execute. As long as the output of

the neural network does not bias too much, it would be a profit for them to estimate

the power system state.

CHAPTER 5

CONCLUSION

5.1 Conclusion

In this project, the first and second category of testing phase results in high

accuracy of about 99% whereas the third category outputs satisfactory accuracy of

about 90%. This happens since neural network is built using a set of varied data and

tested using another set of data with randomly manipulated range. Therefore, the

data for testing can be just an assumption of real time power system values and the

accuracy is hence considered high for this generalized neural network prototype.

This prototype, i.e. the developed program is in general form that allows the

training phase to use other sets of data of any power system with any value range to

create an individual neural network which is suitable and accurate to be used in state

estimation for that particular power system of which data is used for training phase.

In real power system, data used for training phase is real time data and

redundant. Therefore, it will create a specific neural network that performs effective

2

state estimation for that particular power system. In other words, the accuracy will be

high.

This software program outputs instant results which are expected in

accordance to the applied inputs which helps saving time as compared to the

conventional method, i.e. hand calculation load flow analysis. It does not need

complete input parameters data to run or perform and is able to give the desired or

accurate outputs.

It should estimate bus voltage and load angle values at each node by

minimizing difference between measured and calculated state variables that it aims to

filter the errors at the same time considering the nonlinear characteristics of the

practical equipment and actual measurements in distribution systems so that the best

possible estimation of the system state is achieved.

The utilization of Load Flow Analysis, i.e. Newton Raphson method for this

project, has successfully omitted the error that might exist in the raw measurement

data of power system. As a result, the developed software program is able to estimate

bus voltage and load angle values at each node with minimized difference between

measured and calculated state variables whereby errors is filtered considering the

nonlinear characteristics of the practical equipment and actual measurements in

distribution systems. The best possible power system state estimation performance of

this software programishenceachieved In conclusion, this project has successfully

produced a software program that performs power system state estimation by utilizing

the Artificial Neural Network technique through MATLAB software.

5.2 Recomendation

3

This power system state estimation software program is a prototype or general

program that suits applications of power system with any size or number of buses.

The data collection phase, i.e. data30bus.m can be edited with replacement of the real

time redundant data obtained from the particular power system to be trained following

the same method and program flow as shown in Chapter 5.

This software program gives highly accurate estimation results for a power

system when its neural network is trained with the own data of that particular power

system which best describes the characteristic and pattern of changes in reality.

In addition, the large capacity of real past time data of a power system will

enable sufficient training phase where the neural network reaches equilibrium level

and hence giving an expected result of accuracy that is near to the result of testing

carried out in this project, i.e. 99%, under first category as explained in Chapter 4

section 4.4.1.

5.3 Costing and Commercialization

4

The development of this software program does not involve any hardware

other than a computer or laptop that supports MATLAB software. Therefore there is

cost incurred for the license of MATLAB.

This power system state estimation software program is a general program that

can be edited to suit power system with any size or number of buses. Therefore, it

can be applied at control center in power plant where the states of power system are

processed and analyzed in computerized way.

The range of power system state values is not restricted for training phase of

this software program, hence it can be commercialized locally and internationally in

power system field.

67

REFERENCE

1. Shigenori Naka, Takamu Genji, Toshiki Yura, Yoshikazu Fukuyama, “Practical

Distribution State Estimation Using Hybrid Particle Swarm Optimization”Proc.

of IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA,

January 28 - February 1st, 2001.

2. Roberto Minguez, Antonio J. Conejo, Ali S. Hadi, “Non Gaussian State

Estimation in Power System”, International Conference on Mathematical and

Statistical Modeling in Honor of Enrique Castillo. June 28-30, 2006.

3. Hadi Saadat.(2004) “Power System Analysis”, 2nd Edition, McGraw Hill, 2004

4. Atabak Mashhadi Kashtiban, Majid Valizadeh, “Application of Neural Networks

in Power System Security Assessment”.

5. A. P. Sakis Meliopoulos, “State Estimation for Mega RTOs”, IEEE/PES Summer

Meeting Chicago, IL –July 21-25, 2002.

6. A. P. Sakis Meliopoulos, Bruce Fadarnesh, Shalom Zelingher, “Power System

State Estimation: Modeling Error Effects and Impact on System Operation”.

7. A.H.M.A.Rahim, A.J.Al-Ramadhan, “Parameter Estimation of Power System

Dynamic Equivalent Using ANN.” Proc Summer Computer Simulation

Conference, Chicago, July 1999.

8. A. Monticelli, “Electric Power System State Estimation”, Proceedings of the

IEEE vol. 88, no. 2, February 2000.

9. A. A. Hossam-Eldin, E. N. Abdallah, and M. S. El-Nozahy, “A Modified Genetic

Based Technique for Solving the Power System State Estimation Problem”,

World Academy of Science, Engineering and Technology 55 2009.

10. Nabil H. Abbasy, Wael El-Hassawy “Power System State Estimation: ANN

Application to Bad Data Detection and Identification”.

11. L. Mili, Th. Van Cutsen, M. Ribbens-Pavella,"Bad Data Detection Methods in

Power System State Estimation - A Comparative Study," IEEE Trans. on Power

Apparatus and Systems, Vol. PAS- 104, No.11, November 1985.

68

12. A. Panosyan, B. R. Oswald, “Modified Newton Raphson Load Flow Analysis For

Integrated AC/DC Power System”, Institute of Electric Power Systems, University

of Hannover, Germany.

13. Robert Lukomski, Kazimierz Wilkosz, “Combining Theoritical Knowledge and

Artificial Neural Networks For Power System Topology Verification.”, Wroclaw

University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

14. D.M.Vinod Kumar, S.C. Srivastava, S.Shah, S.Mathur, “Topology processing and

static state estimation using artificial neural networks”, IEE Proceedings online

no. 19960050 Paper first received 16th January 1995 and in revised form 18th

September1995.

15. A. K. Sinha J. K. Mondal, “Dynamic State Estimator Using ANN Based Bus Load

Prediction”, IEEE Transactions on Power Systems, Vol. 14, No. 4, November

1999.

16. http://en.wikipedia.org/wiki/Artificial_neural_network

17. Ehud D. Karnin, “A Simple Procedure for Pruning Back-Propagation Trained

Neural Networks”, IEEE Transactions On Neural Networks Vol. 1 . No. 2. June

1990

APPENDIX 1: databus30.m

% DATA COLLECTION phase
% 30-BUS SYSTEM

basemva=100; accuracy=0.001; accel=1.8; maxiter=100;

% Bus Bus Voltage Angle --Load-- ---Generator--Injected
% No Code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
busdata=[1 1 1.06 0 0.0 0.0 0.0 0.0 0 0 0;

2 2 1.043 0 21.70 12.7 40.0 0.0 -40 50 0;
3 0 1.0 0 2.4 1.2 0.0 0.0 0 0 0;
4 0 1.06 0 7.6 1.6 0.0 0.0 0 0 0;
5 2 1.01 0 94.2 19.0 0.0 0.0 -40 40 0;
6 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0;
7 0 1.0 0 22.8 10.9 0.0 0.0 0 0 0;
8 2 1.01 0 30.0 30.0 0.0 0.0 -10 40 0;
9 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0;
10 0 1.0 0 5.8 2.0 0.0 0.0 0 0 19;
11 2 1.082 0 0.0 0.0 0.0 0.0 -6 24 0;
12 0 1.0 0 11.2 7.5 0.0 0.0 0 0 0;
13 2 1.071 0 0.0 0.0 0 0 -6 24 0;
14 0 1.0 0 6.2 1.6 0 0 0 0 0;
15 0 1.0 0 8.2 2.5 0 0 -6 24 0;
16 0 1.0 0 3.5 1.8 0 0 0 0 0;
17 0 1.0 0 9.0 5.8 0 0 0 0 0;
18 0 1.0 0 3.2 0.9 0 0 0 0 0;
19 0 1.0 0 9.5 3.4 0 0 0 0 0;
20 0 1.0 0 2.2 0.7 0 0 0 0 0;
21 0 1.0 0 17.5 11.2 0 0 0 0 0;
22 0 1.0 0 0.0 0.0 0 0 0 0 0;
23 0 1.0 0 3.2 1.6 0 0 0 0 0;
24 0 1.0 0 8.7 6.7 0 0 0 0 4.3;
25 0 1.0 0 0.0 0.0 0 0 0 0 0;
26 0 1.0 0 3.5 2.3 0 0 0 0 0;
27 0 1.0 0 0.0 0.0 0 0 0 0 0;
28 0 1.0 0 0.0 0.0 0 0 0 0 0;
29 0 1.0 0 2.4 0.9 0 0 0 0 0;
30 0 1.0 0 10.6 1.9 0 0 0 0 0];

% Line Data
% Bus Bus R X 1/2B for Line code or
% n1 nr pu pu pu tap setting value
linedata= [1 2 0.0192 0.0575 0.02640 1;

1 3 0.0452 0.1852 0.02040 1;
2 4 0.0570 0.1737 0.01840 1;
3 4 0.0132 0.0379 0.00420 1;
2 5 0.0472 0.1983 0.02090 1;
2 6 0.0581 0.1763 0.01870 1;
4 6 0.0119 0.0414 0.00450 1;
5 7 0.0460 0.1160 0.01020 1;
6 7 0.0267 0.0820 0.00850 1;
6 8 0.0120 0.0420 0.00450 1;
6 9 0.0 0.2080 0.0 0.978;
6 10 0.0 0.5560 0.0 0.969;

9 11 0.0 0.2080 0.0 1;
9 10 0.0 0.1100 0.0 1;
4 12 0.0 0.2560 0.0 0.932;
12 13 0.0 0.1400 0.0 1;
12 14 0.1231 0.2559 0.0 1;
12 15 0.0662 0.1304 0.0 1;
12 16 0.0945 0.1987 0.0 1;
14 15 0.2210 0.1997 0.0 1;
16 17 0.0824 0.1923 0.0 1;
15 18 0.1073 0.2185 0.0 1;
18 19 0.0639 0.1292 0.0 1;
19 20 0.0340 0.0680 0.0 1;
10 20 0.0936 0.2090 0.0 1;
10 17 0.0324 0.0845 0.0 1;
10 21 0.0348 0.0749 0.0 1;
10 22 0.0727 0.1499 0.0 1;
21 22 0.0116 0.0236 0.0 1;
15 23 0.1000 0.2020 0.0 1;
22 24 0.1150 0.1790 0.0 1;
23 24 0.1320 0.2700 0.0 1;
24 25 0.1885 0.3292 0.0 1;
25 26 0.2544 0.3800 0.0 1;
25 27 0.1093 0.2087 0.0 1;
28 27 0.0000 0.3960 0.0 0.968;
27 20 0.2198 0.4153 0.0 1;
27 30 0.3202 0.6027 0.0 1;
29 30 0.2399 0.4533 0.0 1;
8 28 0.0636 0.2000 0.0214 1;
6 28 0.0169 0.0599 0.065 1];

APPENDIX 2: varydata10.m

% DATA COLLECTION phase
% to vary data up to 10 times (nc=10)

nbus = length(busdata(:,1));
nbr=length(linedata(:,1));
nc=10;
P1=busdata(:,5);
Q1=busdata(:,6);
for i1=1:nbus

Range1(i1,1)=0.9*P1(i1);
Range1(i1,2)=P1(i1)-0.25*P1(i1);
Range(i1,1)=0.8*Q1(i1);
Range(i1,2)=Q1(i1)-0.25*Q1(i1);

end
% load generation (active & Reactive)
for i=1:nbus

a1=Range1(i,1)+(Range1(i,2)-Range1(i,1))*rand(nc,1);
a2=Range(i,1)+(Range(i,2)-Range(i,1))*rand(nc,1);

for j=1:nc
a11(i,j)=a1(j);
a22(i,j)=a2(j);
end
end

APPENDIX 3: lfaNR.m

% DATA COLLECION phase
% to run Newton Raphson load flow analysis

h=nbr;
h1=3*nbus;
h2=h1+h;
pp=zeros(nc,h1+2*h);
tt=zeros(nc,2*nbus);
for t1=1:nc
busdata(:,5)=a11(:,t1);
busdata(:,6)=a22(:,t1);
%[Ybus]=lfybus(linedata);
%[Vm,delta,P,Q,S,VBc,a,nbr,nbus,nr,nl]=lfnewton(busdata,linedata);
%[Snkr,Snki]=lineflow(busdata,linedata,Vm,delta,P,Q,S,V,Bc,nr,nl,basemv
a);
lfybus; % Forms the bus admittance matrix
lfnewton; %Power flow solution ny netween method
busout; %Print the power flow solution on the screen
lineflow; %Computes and displays the line flow and losses
x1=Vm;
x2=deltad;
x3=P;
x4=Q;
% neural output
for t2=1:nbus

tt(t1,t2)=x1(t2); % Vm
tt(t1,nbus+t2)=x2(t2)*3.14/180; % deltad

% neural input
pp(t1,t2)=x1(t2); % Vm
pp(t1,nbus+t2)=x3(t2); % P
pp(t1,2*nbus+t2)=x4(t2); % Q

end
for t4=1:h

pp(t1,h1+t4)=snkr(t4); % Pij, Pji
pp(t1,h2+t4)=snki(t4); % Qij, Qji

end
end

clear t t1 t2 nbus x1 x2 x3 x4 Vm deltad P Q h h1 h2 tech nss ns nn ngs
snki
clear snkr linedata l ll lk lm m n nbr nc ng nl nr t4 y yload A Bc DC
DX J11
clear J22 J33 J44 L P1 Pd Pdt Pg Pgg Pgt Pk Q1 Qd Qdt Qg Qgg Qgt Qk Ym
Z a a1
clear a11 a2 a22 accel busprt deltad k kk kb i i1 iter j busdata
converge basemva
clear accuracy delta head maxerror maxiter Qmax Qmin Qsh Qsht R Range
Range1 S V X

APPENDIX 4: formNN.m(BackPropagation)

% TRAINING phase
% to train and form Neural Network
tic
warning off MATLAB:divideByZero
pp=pp';
tt=tt';

layer = 1; % neural network layer
net = newff(pp,tt,layer);
toc

APPENDIX 5: formRBFNN.m(Radial Basis Network)

% TRAINING phase
% to train and form Neural Network
tic
warning off MATLAB:divideByZero
pp=pp';
tt=tt';

eg = 0.02; % sum-squared error goal
sc = 1;
net = newrb(pp,tt,eg,sc);
toc

APPENDIX 6: test.m

% TESTING phase
% to test the Neural Network

X= pp(:,1); % X as input to the neural network
Y = sim(net,X); % Y as output simulated by neural network

APPENDIX 7: TestEmpty.m

% TESTING phase
% to produce INCOMPLETE input data

m=length(pp(1,:));
s=10;
for r=1:16

for d=1:m
pp(s,d)=0*pp(s);

end

s=s+10; % data values are changed to zero at every 10 rows
r=r+1;

end

APPENDIX 8: TestAnonymous1.m

% TESTING phase
% to change the values of 30-BUS SYSTEM
% 30-BUS SYSTEM

basemva=100; accuracy=0.001; accel=1.8; maxiter=100;

% Bus Data

% Bus Bus Voltage Angle --Load-- ---Generator--- Injected
% No Code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
Ori=[1 1 1.06 0 0.0 0.0 0.0 0.0 0 0 0;

2 2 1.043 0 21.70 12.7 40.0 0.0 -40 50 0;
3 0 1.0 0 2.4 1.2 0.0 0.0 0 0 0;
4 0 1.06 0 7.6 1.6 0.0 0.0 0 0 0;
5 2 1.01 0 94.2 19.0 0.0 0.0 -40 40 0;
6 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0;
7 0 1.0 0 22.8 10.9 0.0 0.0 0 0 0;
8 2 1.01 0 30.0 30.0 0.0 0.0 -10 40 0;
9 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0;
10 0 1.0 0 5.8 2.0 0.0 0.0 0 0 19;
11 2 1.082 0 0.0 0.0 0.0 0.0 -6 24 0;
12 0 1.0 0 11.2 7.5 0.0 0.0 0 0 0;
13 2 1.071 0 0.0 0.0 0 0 -6 24 0;
14 0 1.0 0 6.2 1.6 0 0 0 0 0;
15 0 1.0 0 8.2 2.5 0 0 -6 24 0;
16 0 1.0 0 3.5 1.8 0 0 0 0 0;
17 0 1.0 0 9.0 5.8 0 0 0 0 0;
18 0 1.0 0 3.2 0.9 0 0 0 0 0;
19 0 1.0 0 9.5 3.4 0 0 0 0 0;
20 0 1.0 0 2.2 0.7 0 0 0 0 0;
21 0 1.0 0 17.5 11.2 0 0 0 0 0;
22 0 1.0 0 0.0 0.0 0 0 0 0 0;
23 0 1.0 0 3.2 1.6 0 0 0 0 0;
24 0 1.0 0 8.7 6.7 0 0 0 0 4.3;
25 0 1.0 0 0.0 0.0 0 0 0 0 0;
26 0 1.0 0 3.5 2.3 0 0 0 0 0;
27 0 1.0 0 0.0 0.0 0 0 0 0 0;
28 0 1.0 0 0.0 0.0 0 0 0 0 0;
29 0 1.0 0 2.4 0.9 0 0 0 0 0;
30 0 1.0 0 10.6 1.9 0 0 0 0 0];

for g=3:10
busdataOri(:,g)=1.25*busdataOri(:,g);

end
busdata=busdataOri;

% Line Data

% Bus Bus R X 1/2B for Line code or
% n1 nr pu pu pu tap setting value
linedataOri= [1 2 0.0192 0.0575 0.02640 1;

1 3 0.0452 0.1852 0.02040 1;
2 4 0.0570 0.1737 0.01840 1;

3 4 0.0132 0.0379 0.00420 1;
2 5 0.0472 0.1983 0.02090 1;
2 6 0.0581 0.1763 0.01870 1;
4 6 0.0119 0.0414 0.00450 1;
5 7 0.0460 0.1160 0.01020 1;
6 7 0.0267 0.0820 0.00850 1;
6 8 0.0120 0.0420 0.00450 1;
6 9 0.0 0.2080 0.0 0.978;
6 10 0.0 0.5560 0.0 0.969;
9 11 0.0 0.2080 0.0 1;
9 10 0.0 0.1100 0.0 1;
4 12 0.0 0.2560 0.0 0.932;
12 13 0.0 0.1400 0.0 1;
12 14 0.1231 0.2559 0.0 1;
12 15 0.0662 0.1304 0.0 1;
12 16 0.0945 0.1987 0.0 1;
14 15 0.2210 0.1997 0.0 1;
16 17 0.0824 0.1923 0.0 1;
15 18 0.1073 0.2185 0.0 1;
18 19 0.0639 0.1292 0.0 1;
19 20 0.0340 0.0680 0.0 1;
10 20 0.0936 0.2090 0.0 1;
10 17 0.0324 0.0845 0.0 1;
10 21 0.0348 0.0749 0.0 1;
10 22 0.0727 0.1499 0.0 1;
21 22 0.0116 0.0236 0.0 1;
15 23 0.1000 0.2020 0.0 1;
22 24 0.1150 0.1790 0.0 1;
23 24 0.1320 0.2700 0.0 1;
24 25 0.1885 0.3292 0.0 1;
25 26 0.2544 0.3800 0.0 1;
25 27 0.1093 0.2087 0.0 1;
28 27 0.0000 0.3960 0.0 0.968;
27 20 0.2198 0.4153 0.0 1;
27 30 0.3202 0.6027 0.0 1;
29 30 0.2399 0.4533 0.0 1;
8 28 0.0636 0.2000 0.0214 1;
6 28 0.0169 0.0599 0.065 1];

for h=3:5
linedataOri(:,h)=1.25*linedataOri(:,h);

end
linedata=linedataOri;

APPENDIX 9: TestAnonymous2.m

% TESTING phase
% to vary the changed values of 30-BUS SYSTEM up to 10 times (nc=10)

nbus = length(busdata(:,1));
nbr=length(linedata(:,1));
nc=10;
P1=busdata(:,5);
Q1=busdata(:,6);
for i1=1:nbus

Range1(i1,1)=0.9*P1(i1);
Range1(i1,2)=P1(i1)-0.25*P1(i1);
Range(i1,1)=0.8*Q1(i1);
Range(i1,2)=Q1(i1)-0.25*Q1(i1);

end
% load generation (active & Reactive)
for i=1:nbus

a1=Range1(i,1)+(Range1(i,2)-Range1(i,1))*rand(nc,1);
a2=Range(i,1)+(Range(i,2)-Range(i,1))*rand(nc,1);

for j=1:nc
a11(i,j)=a1(j);
a22(i,j)=a2(j);
end
end

APPENDIX 10: TestAnonymous3.m

% TESTING phase
% to run Newton Raphson load flow analysis to obtain a whole new set of
% inputs and target outputs for testing purpose

h=nbr;
h1=3*nbus;
h2=h1+h;
pp=zeros(nc,h1+2*h);
tt=zeros(nc,2*nbus);
for t1=1:nc
busdata(:,5)=a11(:,t1);
busdata(:,6)=a22(:,t1);

lfybus; %Forms the bus admittance matrix (y bus)
lfnewton; %Power flow solution Newton Raphson
busout; %Print the power flow solution on the screen
lineflow; %Computes and displays the line flow and losses

x1=Vm;
x2=deltad;
x3=P;
x4=Q;
% neural output
for t2=1:nbus

tt(t1,t2)=x1(t2); % Vm
tt(t1,nbus+t2)=x2(t2)*3.14/180; % deltad

% neural input
pp(t1,t2)=x1(t2); % Vm
pp(t1,nbus+t2)=x3(t2); % P
pp(t1,2*nbus+t2)=x4(t2); % Q

end
for t4=1:h

pp(t1,h1+t4)=snkr(t4); % Pij, Pji
pp(t1,h2+t4)=snki(t4); % Qij, Qji

end
end

M=pp';
B=tt';

clear t t1 t2 nbus x1 x2 x3 x4 Vm deltad P Q h h1 h2 tech nss ns nn ngs
snki
clear snkr linedata l ll lk lm m n nbr nc ng nl nr t4 y yload A Bc DC
DX J11
clear J22 J33 J44 L P1 Pd Pdt Pg Pgg Pgt Pk Q1 Qd Qdt Qg Qgg Qgt Qk Ym
Z a a1
clear a11 a2 a22 accel busprt deltad k kk kb i i1 iter j busdata
converge basemva
clear accuracy delta head maxerror maxiter Qmax Qmin Qsh Qsht R Range
Range1 S V X

