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Abstract. Recently, modelling the biological systems by using stochastic differential equations
(SDEs) are becoming an interest among researchers. In SDEs the random fluctuations are
taking into account, which resulting to the complexity of finding the exact solution of SDEs and
contribute to the increasing number of research focusing in finding the best numerical approach
to solve the systems of SDEs. This paper will examine the performance of 4-stage stochastic
Runge-Kutta (SRK4) and specific stochastic Runge-Kutta (SRKS) methods with order 1.5 in
approximating the solution of stochastic model in biological system. A comparative study of
SRK4 and SRKS method will be presented in this paper. The non-linear biological model will
be used to examine the performance of both methods and the result of numerical experiment
will be discussed.

1. Introduction
Mathematical models have been widely used to describe the important characteristics of the
physical and biological systems. Mathematical model is the simplified mathematical represen-
tation of a complex reality. All this while, ordinary differential equations (ODEs) is the most
frequently used model to explain the behaviour of the physical and biological systems. However,
ODEs cannot represent the behaviour of the systems whose subject to the environmental noise.
In such case, stochastic differential equations (SDEs) is the most suitable model to describe the
system incorporated with the environmental noise and disturbances.

Ito in 1951 doing a pioneering work in SDEs field by formulating SDEs as a differential equa-
tions of ODEs for the deterministic part and incorporated the Wiener process for the stochastic
part [2]. Wiener process is a continuous time stochastic process named in honor of Robert
Wiener. This process often called Brownian motion due to its connection with the physical
process of Brownian movement. Brownian motion is perturbed into ODEs which then yield
the SDEs. This motion will represents noise of the corresponding system. The fact that SDEs
have been perturbed randomly by unpredictable movement of noise then contributes to the dif-
ficulty in finding the analytical solutions for SDEs. The presence of stochastic part in SDEs
contribute to the complexity of finding the analytical solution of stochastic model. Therefore,
most of the researchers are now focusing on the development of an efficient numerical integrator
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for SDEs. In 1950, Maruyama introduces the most simplest numerical scheme of SDEs called
Euler-Maruyama method. This method is developed by truncating the stochastic Taylor series
expansion at second terms and it has 0.5 order of convergence [2]. Then, [10] increased the
efficiency of the method by proposing a Milstein scheme with 1.0 order of convergence. The
later method also being developed from the stochastic Taylor series expansion.

As in ODE, Runge-Kutta method becoming an efficient method for solving ODEs, Burrage
in 1999 develop a new class of stochastic Runge-Kutta method for SDEs by applying rooted-
tree teory [1]. In [5], SRK4 method with strong order 1.5 have been developed. As order of
accuracy increase, the complexity to derive SRK method as well increase. This is due to the
increasing number of equations to be solved in order to perform the order condition analysis.
Subsequently, [7] proposed the improvement of SRK method known as specific SRK method
(SRKS) with different internal stages. By applying the independent internal stages to the SRK
method, the complexity of higher order SRK method for SDEs can be minimized and will reduce
the computation time. Heretofore, number of researchers who discussing on numerical methods
for SDEs increasing rapidly and can be seen in [3],[4],[5],[6],[7] and [8].

This paper will examine the performance of SRK4 and SRKS in approximating the solution
of stochastic model in biological system. This paper is organized as follows: the next section will
present the SRK4 and SRKS methods that will be used in this study. Next, the stochastic model
in biological system shall be considered. Numerical experiment is then performed in Section 4.
Section 5 devotes to the result discussion and concluding remarks.

2. Stochastic Runge-Kutta(SRK) methods for Stochastic Differential
Equations(SDEs)
2.1. 4-stage Stochastic Runge-Kutta with high strong order 1.5
According to [4], the general form of SRK4 method can be written as

Yi(t) = Yn(t0) + ∆

i−1∑
j=1

aijf(yj(t)) +

i−1∑
j=1

(bij
(1)J1+bij

(2)J10

h
)g(yj(t))

yn+1(t) = yn + ∆

s∑
j=1

αjf(yj(t)) +

s∑
j=1

(γj
(1)J1+γj

(2)J10

h
)g(yj(t))

(1)

for i = 1, ..., s represent the stage of SRK method. SRK4 method with 1.5 order of convergence
was developed based on the formulation (1) by [2] and the scheme is given by

yn+1(t) = yn(t0) + ∆α1f(Y1) + ∆α2f(Y2) + ∆α3f(Y3) + ∆α4f(Y4)

+ (γ
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where
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The numerical scheme of SRK4 method can be written in Butcher’s tableau as below

1
2

A 0 1
2

0 0 1

α 1
6

1
3

1
3

1
6

1
2

B(1) 0 1
2

0 0 1

γ(1) 1
6

1
3

1
3

1
6

1
2

B(2) 0 1
2

0 0 1

γ(2) 1
6

1
3

1
3

1
6

2.2. Specific Explicit Stochastic Runge-Kutta method with order 1.5(SRKST2)
SRK method (1) suffer from the complexity of constructing the order conditions due to the large
numbers of equations to be solved. Aiguo & Xioa [7] overcome that difficulty by introducing a
new explicit of SRK method with several groups of independent internal stages. The new specific
SRK schemes with 1.5 order of convergence (SRKS 1.5) has been presented. The general form
of independent s-stage specific SRK method is given by

Y 0
i0(t) = Yn(t0) + ∆

s0∑
j=1

ai0
(0)
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(0)
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(3)

Note that s0 and s1 represent the different internal stages of SRKS method. It was introduced for
the purpose of reducing the number of equations to be solved. SRKS 1.5 method was developed
by letting s0 = 4 and s1 = 3. This yield
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with
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SRKS 1.5 can be presented in tableau form as follow

1
2

A(0) 1 0

3 0 0

α(0) −1 −1 0 0

1
2

B(0) 0 1
2

0 0 1

γ(0) 1
6

1
3

1
3

1
6

A(1) 0

1 0

α(1) −2
3

2
3 0

B(1) 3
2
3
2 0

γ(1) 0 1 −1

Moreover a general form of SRKS for the SDEs whose drift and diffusion terms are commutative,
SRKST2 can be written as

Yi(t) = Yn(t0) + ∆
s∑
j=1

aijf(yj(t)) + J1

i−1∑
j=1

bijg(yj(t))

yn+1(t) = yn + ∆

s∑
j=1

αjf(yj(t)) + J1

s∑
j=1

γj
(1)g(yj(t))

(5)

for j = 1, ..., s, where s is the stage of SRK method. SRKST2 method can be developed based
on (5) and the method is written as

yn+1(t) = yn + ∆(α1f(Y1) + α2f(Y2) + α3f(Y3) + α4f(Y4) + α5f(Y5))

+ J1(γ1g(Y1) + γ2g(Y2) + γ3g(Y3) + γ4g(Y4) + γ5g(Y5))
(6)
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where

Y1 =Yn

Y2 =Yn + ∆a21f(Y1) + J1b21g(Y1)

Y3 =Yn + ∆(a31f(Y1) + a32f(Y2)) + J1(b31g(Y1) + b32g(Y2))

Y4 =Yn + ∆(a41f(Y1) + a42f(Y2) + a43f(Y3))

+ J1(b41g(Y1) + b42g(Y2) + b43g(Y3))

Y5 =Yn + ∆(a51f(Y1) + a52f(Y2) + a53f(Y3) + a54f(Y4))

+ J1(b51g(Y1) + b52g(Y2) + b53g(Y3) + b54g(Y4))

In tableu form, SRKST2 (6) is

1

A 2
3 −1

6

−1
3

1
3 0

2
3 0 0 0

α −1
4 0 0 1

2
3
4

1
2

B 0 1
2

0 0 1

0 0 0 0

γ 1
6

1
3

1
3

1
6 0

3. Numerical Experiment
Prior to the implementation of the performance of the methods to SDE in biological system,
we perform the numerical experiment to the linear SDE taken from [10]. Consider the form of
linear SDE as

dX(t) = aX(t)dt+ bX(t)dW (t) t ∈ [0, T ] (7)

The exact solution of (10) given as

X(t) = Φt,t0(X0) (8)

where Φt,t0 = exp((a)(t− t0) + b(W (t)−W (t0))). Note that we compute this numerical exper-
iment by setting the coefficients as a = −2.0, b = 0.5, T = 2.0, X(0) = 1.0 and ∆ = 0.01. 200
sample paths of strong solutions for SDEs via SRK4, SRKS1.5 and SRKST2 have been simulate
and the results are presented in Figure 1 and Table 1. Figure 1 and Table 1 shows the mean
square error (MSE) for the three method by comparing the simulated results of SRK4, SRK 1.5
and SRK 2.0 with the exact solution of the linear SDE (7).
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Figure 1. Exact solution versus numerical solution of (7) via three different methods.
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Table 1. MSE for SRK4, SRKS1.5 and SRKST2.

Numerical Method SRK4 SRKS1.5 SRKST2

MSE 0.011736 0.011098 0.031381

Consider the deterministic model of C. acetobutylicum P262 cell growth as below

dx(t) = µmax

(
1− x(t)

xmax

)
x(t)dt

x(t0) = x(0) t ∈ [0, T ]

(9)

where x is a cell concentration, µmax is a growth coefficient and also xmax is a maximum value
of cell growth. The white noise is perturbed to ODE [7] such that

b→ b+ σ
dW

dt

where b = −µmax

xmax
, σ is a diffussion coefficient and W (t) is a Wiener process. The deterministic

model with the addition of stochastic process can be written as

dx(t) = µmax

(
1− x(t)

xmax

)
x(t)dt+ σx2(t)dW (t) (10)

Then, stochastic model (10), have been solved by using the same methods. We consider the
stratonovich form of C. acetobutylicum P262 cell growth model with t = 288, µmax = 0.2576,
xmax = 4.565, σ = 0.0069 and with initial condition y(0) = 0.0025. Cell growth of C.
acetobutylicum P262 have been simulated in C++ and the result obtained as in Figure 2 and
Table 2.
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Figure 2. Experimental data versus numerical solution of (10) via three different methods.
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Table 2. MSE for SRK4, SRKS1.5 and SRKST2.

Numerical Method SRK4 SRKS1.5 SRKST2

MSE 2.68 0.51 2.80

Clearly seen that the SRKS method with strong order 1.5 proposed in [7] gives closest result
as compared to the exact solution and the real data. The independence internal stages proposed
give advantages since the computation become more cheaper but the stochastic process involved
in the model still being considered. Compared to SRKST2, eventhough the method is simpler
than SRKS1.5 but because of SRKST2 only evaluate the stochastic integral J1and ignore the
stochastic integrals J10

∆ , hence the SRKS gives less efficient result compared to SRKS1.5 method.

4. Conclusion
As the complexity of the system increased when stochastic process considered, three different
numerical methods have been used to approximate the numerical solution to the stochastic
model. In conclusion, the new proposed method SRKS1.5 gives better solution compared to
SRK4 and SRKST2. This method do not need to simulate the multiple stratonovich stochastic
integrals which result in less complexity to solve the stochastic differential equations.
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