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Abstract. This paper is devoted to investigate the mean-square stability of explicit and
semi-implicit derivative-free methods to a class of stochastic differential equations (SDEs). The
mean-square stability functions and regions of explicit and semi-implicit numerical
approximation schemes are obtained for a linear stochastic differential equation with
multiplicative noise. It is proved that the semi-implicit derivative-free method is mean-square
stable compare than the explicit counterpart schemes. A numerical experiment is provided to
illustrate the theory.
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1.0 INTRODUCTION

Consider the Stratonovich form of SDE
dy(t) = f (@)t +g((0) e dW (1), ¥(1)) =y, 1€[t,,T], y(1)eR" 4]

where the deterministic term £ (y(¢)) is a drift coefficient, the stochastic function g(y(¢))
is a diffusion coefficient and W(¢) is a Wiener process. The increment of Wiener
process, AW()=W(+Ar)—W () is a Gaussian random variable with zero mean and

variance is given by the increment in time, Az. Analytical solution of (1) is hardly to be
found, hence solving SDE (1) numerically is required. Many authors have put their
efforts in designing numerical methods for SDEs. Amongst of the references cited
therein are Maruyama (1950), Milstein (1974), Rumelin (1982), Kloeden and Platen
(1992) and Burrage (1999). The methods that have been proposed by Maruyama (1950),
Milstein (1974) and Milstein (1995) are based on the truncation of stochastic Taylor
series expansion. However, as the order increases, the difficulty of implementing those
methods arises as one need to compute the partial derivatives of the drift and diffusion
functions of high order. To overcome the aforementioned complexity, Rumelin (1982)
proposed a derivative-free stochastic Runge-Kutta (SRK) method for strong
approximations of SDEs. Kloeden and Platen (1992) develop a Platen‘s scheme based on
the general formulation of Rumelin (1982). Then, Burrage and Burrage (1996) and
Burrage (1999) presented a new formalisation of SRK method for solving SDE (1),
hence the methods of order 1.0 and 1.5 were developed. All the existing aforementioned
derivative free methods are in explicit form whose both drift and diffusion coefficients
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are explicit. New classes of semi-implicit derivative free methods for strong pathwise
approximations were introduced by Tian and Burrage (2002). In semi-implicit
approximation of SDEs, the drift coefficient is implicit while the diffusion coefficient is
explicit.

Semi-implicit method is proposed in order to improve the stability properties of
strong pathwise approximation to SDEs. Numerical stability analysis of SDEs is far
more complex than ODEs. The stability analysis of SDEs has been investigated by many
researchers. Amongst of the paper cited therein are Saito and Mitsui (1996), Norhayati
(2010), Burrage (1999) and Platen and Shi (2008). It was Saito and Mitsui (1996) who
investigated the stability analysis of various numerical schemes (EM, semi-implicit EM,
Milstein scheme and semi-implicit Milstein scheme) in mean-square sense. Those of the
schemes are based on the truncation of stochastic Taylor series whose require the
computational of partial derivative in the computation. Platen and Shi (2008) provided a
unified approach to the study of numerical stability of schemes for the discrete time
approximations of SDEs. Numerical stability criterion was introduced and analysed. The
corresponding numerical stability regions of the corresponding schemes were visualised.
Then, Burrage (1999) investigated the stability of explicit derivative-free method to
approximate the solution of SDEs. In this paper, we aim to investigate the stability
property of two-stage stochastic Runge-Kutta (SRK2) method by imposing the stability
criterion in mean-square sense that was proposed by Platen and Shi (2008).

This paper is organised as follows; Two-stage stochastic Runge-Kutta method of
explicit and semi-implicit form are provided in Section 2. Section 3 concerns with the
stability property of numerical method for SDEs. Then, in Section 4 the stability function
and region for three different methods considered in this paper are presented. Numerical
experiment to confirm the results is performed in Section 5.

2.0 TWO-STAGE STOCHASTIC RUNGE-KUTTA (SRK2)

A general form of two-stage stochastic Runge-Kutta is

Y=y, +hY a,f(y)+J, Y. b,g(y,), i=l...s
J=1 J=1

Vou =Vu thY a, f)+1D> 7,80,
@)
where 4 =(a;) and B =(),) are sxs matrices of real elements while al =(a,, )

. . tu+l -
and y" =(y,,-++.7.) are row vectors | “while J, integrals (J1 =J.t odﬂ') represent

stochastic components. In Butcher*s tableu form the general formulation of (2) is written
as

They are explicit if ¢, =5, =0 and semi-implicit if @, #0 and 5, =0. We consider two

types of explicit methods of Platen and Burrage scheme as well as a semi-implicit
method that were proposed by Kloeden and Platen (1992), Burrage (1999) and Tian and
Burrage (2002), respectively. Those SRK2 schemes are presented in tableu form as:

67



Proceedings of 4" International Science Postgraduate Conference 2016 (ISPC2016)
© Faculty of Science, Universiti Teknologi Malaysia

0 0 0 o0

Explicit Platen scheme: 1 0 1 0
B 53

00 0 0

Explicit Burrage scheme: =0 =0
L3 L3

4 4 4 4

1 0 0 0

Semi-Implicit: -2 1 = 0
‘ L3 1L 3

4 4 4 4

2.1 Mean-Square (MS) Stability Property

The linear equation of the Stratonovich type is used as a test equation
dy = (1 —%5J/"Lydt +N=oAyodW (1) 2)

where —e” denotes the Stratonovich integral and for Ahe(—0,0), 6 <[0,1), >0,
v, >0, A1<0. We now turn our attention to the stability criterion of the approximation

process Y ={y,,# >0}, which is given by Definition 1.

Definition 1: Numerical Stability Criterion [Platen and Shi, 2008]
For p>0 aprocess ¥ = {y,,t > 0} is called p -stable if }im(E|yt|p) =0.

A process is p—stable if in the long run its p” moment vanishes. The discrete time
approximation, Y ={ Yt >O} is stable if this process and the analytical solution of a

stochastic process counterpart, X  have similar stability properties according to
Definition 1. Definition 2 provides the concept of the stability region for a discrete time
approximation. The stability region will permit the visualization of its numerical stability
properties.

Definition 2: Stability Region [Platan and Shi, 2008]

The stability region T is determined by the triplets (44,8, p) € (—0,0)x(0,00) for which
the discrete line approximation Y with line step size /4, when applied to the test
equation (2),is p -stable.

For many discrete time approximation Y with a step size A >0 when applied to the test

n+l

equation (2) with a given &<[0,1), the ratio =G,, (4h,8), for ne{0,1,....},

n

Y >0, A<0 is of crucial interest.
G,.,(Ah,0) is called the transfer function of the approximation Y at time ¢, . It transfers

the previous approximate value Y, into the approximate value Y ,, of the next time step.
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For a given scheme and A<0, 4 €(0,1) and & €[0,1), the random variables G,,,(4h,0)
are for ne{0,1,..} non-negative, independent and identically distributed with

E((In(G,,,(Ah,5)))*) <. The corresponding numerical stability criterion is given in
Lemma 1.

Lemma 1: Numerical Stability Property [Platen and Shi, 2008]
A discrete time approximation is for given A2 <0, 6 €[0,1), and p >0, p -stable if and

only if £((G,,,(1h,86))")<1.

2.2 MS-Stability of SRK2 Approximations Scheme

The MS-stability functions and MS-stability region for the discrete time
approximation derivative-free method of SRK2 of explicit and semi-implicit schemes are
presented in this section.

2.2.1 MS-Stability of Explicit SRK2 Method

By applying the Platen scheme to the linear test equation of (2), the following
approximation solution for the process, y at time, ¢ ,, is

Vi =[1+h(1—%5)&+ﬂ£%4—& +%x/—5/1 [1+h[1—%5jl+]l«d—5ﬂ}j}yn 3)
with the intermediate stages ¥, =y, and ¥, =y, +hf (¥,)+J1g(Y)), where
3
S() =(1—55]/1y,,, g(¥) ==y,

1(Y,) =(1—%5j/1(yn +h(1—%5j/1yn +J1\/—5ﬂyn],
o(Y,) =51 (yn +h(1—%5]ﬂyn +J1x/—5/1ynj.

The transfer function, G,,,(4h,0) at time, ¢ ,, can be computed by taking the ratio of

Yust| of (3). This yield
G, =l+h (1 - % 5}1 " Jle J=57 + %\/—5/1 (1 +h (1 - % 5] A+ JIN=5A j] )

Square both sides of (4) and then take the expectation of the Startonovich stochastic
2

. h
integrals J*, J*, J?, J,, where E(J14)=?, E(J’)=E(J,)=0, E(J*>)=h, we have

G, = 1+(é52 —15—253}13}13 +(2—55)h/1+(—55+1+ﬁézjhzﬂz
Platen Scheme 4 4 16 8

Let A=Ah yield
G

1,Platen Scheme

9

:14{252_15_—53}?+(2—55)Z+(—55+1+£52j/? (5)
4° 4 16 8
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The stability region of a stability function (5) is plotted in Maple 16 and the region is
illustrated in Figure 1.
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Figure 1 The stability region of a stability function (5)

Equation (5) is MS-stability function of explicit SRK2 of Platen scheme. Next, we
compute the MS-stability function of an explicit SRK2 Burrage scheme. By applying the
Burrage scheme to the linear test equation of (2), the following approximation solution

for the process, y at time, ¢, is

1 3 3 3 2 3 2
=(1+h|—|1-=0 | A+=|1-=S |2 1+=Zh|1-=6 |A+=JIJ-01
y’1+1((4(2j4(2N3(2j3 D

(5)
+J1(%*\/—5ft + %\/—51 [1 +§h(1 —%5j/1 +§J1\/—5ﬂmn

where the intermediate stages, the drift and diffusion functions are
2 2 3
Y=y L=y, T+ T8, £() = [1—55j/1yn, g(¥) =31,
fX) =(1—§5ji ¥, +%h(1—§5j/1yn +2J1«/—5ﬁ,yn :
2 3 2 3
2 3 2
g(Yz) = \/—51, (yn +§h(1—55jlyn +§J1\/—5iyn]

The transfer function, G, ,(4h,0) at time, ¢,,, is given by
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1 3 3 3 2 3 2
G =1+h| —|1=Z0|A+=|1=Z8 |A|1+Zh|1-=6 | A+ = J1J-0
141 gyrage Scheme ( 4 [ 2 j 4 ( 2 j ( 3 ( 2 ) 3 jj

(6)
+J1[i\/— A +%\/—5ﬂ (H—%h(l— 3 5)/1 +§J1~\/—5/1D

2

By using the same procedure as Platen scheme, the MS-stability function, G, of Burrage
scheme is obtained as

G, . =l+ ( 783 5 +2— 95)? + (1 —65— 2747 5+ 4745 5? ]F

+(%52 L 8 25 3

h - ™
5)14 (2-56)7
4 64 8 2

The stability region of the stability function of (7) is illustrated in Figure 2.
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Figure 2 The stability region of a stability function (7)

2.2.2 MS-Stability of Semi-Implicit SRK2 Method

The MS-stability function of semi-implicit SRK2 that was proposed by Tian and
Burrage (2002) is calculated in this section. We apply SRK2 of semi-implicit to the

linear test equation (2). The approximate solution for the process, y at time, 7, ,, 1s

71



Proceedings of 4" International Science Postgraduate Conference 2016 (ISPC2016)
© Faculty of Science, Universiti Teknologi Malaysia

e R SR
(1 (—zaj/m] [1—%5]1[1+[1—%5j1h+@.11]] J—TJ{ [1—-5)%”
+J1E4M( (1—%5]1h]+%J—E(—é(l—%ajz[n(l—%5]%}[1—%5]4
(H[l%5jzh+mﬂ]j+§mﬂ[l+[l%a‘jwm]yn

with the intermediate stages, drift and diffusion functions are
Y=y, H=y,+if ), Y=y, +hf()+J1g),

Y=y, + h(—%f(Yl) +f<Z))+§J1g<YI), 1= (1 —%5)@”, &) =5,

f(m:(l—%a]z[yn+[1—§5j%yﬂ], gm):J—&[yn+(l—§6jﬂhynj-

(8)

The transfer function, G, ,(4h,0) attime, ¢, of (8)is
G, =l+h l[l—édji 1+(1——5j/1h 3(1—35)1 L+h —z[l—éﬁjﬂ 1+(1——5j},h
s 40 2 2 40 2 3002 2
3 3 2 3
+(1—55]/1(1+(1—E§)ih+«/—§/wljj+5«/—5&]1(1{1—55)/1}1]]]

) el

+(l_§5)4[1+[1_§5j%wmj] {5 jMDD

and the MS-stability function of SRK2 (9) is

G =14 225 85 12 5155, [3 g5 DThs 2095 50 99 2 \3a
s (2740 40 74 4 21280 32
12805 10935 I8 5 Ds)is
4 64 64 8 4 4

(10)
{_25 L350 1215 729 o 729 1135 ]

- 25 |
16~ 64 256 1024 256 16 32

+£—?5 %52 )F+(2—55)Z
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The stability region of the stability function (9) is illustrated in Figure 3.
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Figure 3 The stability region of a stability function (9)

Based on Figures 1, 2 and 3, it is clear that the semi-implicit SRK2 method shows better
stability result compare than the explicit Burrage and Platen‘s scheme. It can be
confirmed by performing numerical experiments that is presented in the next section.

3.0 NUMERICAL EXPERIMENT

We carried out the numerical experiment to examine the stability properties of the
explicit and semi-implicit of SRK2 methods. The following numerical experiments show
that the step size, / influences the mean-square stability of the SRK2 methods. Linear
SDE (2) is used as a test equation by choosing a set of parameters A =-2 and at the
critical point of 6 =0.5 with a step size of 1.0, 0.5, 0.25 and 0.125. Therefore, we have

dy =—0.4ydt +0.6325y o dW (¢) (1)
We estimate the second moment of y, for 7 €[0,10]. We compute the expectation of

| yn|2 for N =10 sample paths with 5 batches, that is

2 1 &

T 5x105
The results are illustrated in Figures 4a, 4b and 4c.

Eyn yn(wi)|2'
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Figure 4a: Numerical solution of SDE (11) via SRK2 of Platen‘s scheme.
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Figure 4b: Numerical solution of SDE (11) via SRK2 of Burrage‘s scheme.
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Figure 4c: Numerical solution of SDE (11) via semi-implicit of SRK2 method.

In Figure 4a and 4b, we apply SRK2 of explicit Platen and Burrage schemes,
respectively to simulate the solution of (11). As the values of step size increases (
h=1.0,0.5), the results are numerically unstable. However, for 4 =0.25, 0.125 the
numerical solution of SDE (11) show the stability of the solution. When the semi-
implicit method of SRK2 is used to solve SDE (11), the solutions tend to zero for all
values of 2=1.0, 0.5, 0.25 and 0.125 as shown in Figure 4c. This indicates that the semi-
implicit method is numerically stable compare than the explicit methods of Burrage and
Platen schemes.

4.0 CONCLUSION

We have presented the stability function and stability region for explicit and
semi-implicit derivative-free SRK2 methods for a linear test equation (1). It can be seen
that, the semi-implicit SRK2 method shows better stability region compare than explicit
schemes. The theoretical finding is confirmed by the numerical experiment. For various
values of step size, semi-implicit method that was performed to a linear test equation
indicates numerical stability. Whereas, the explicit SRK2 methods of Platen and Burrage
schemes show numerical instability for certain values of step size.
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