TRUSS BRIDGE MOVEMENT AND DISPLACEMENT ANALYSIS FOR DIFFERENT TYPES OF EARTHQUAKE LOADINGS

FATIN NABIHAH BINTI SUHAIME

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

TRUSS BRIDGE MOVEMENT AND DISPLACEMENT ANALYSIS FOR DIFFERENT TYPES OF EARTHQUAKE LOADINGS

FATIN NABIHAH BINTI SUHAIME

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering

(Supervisor's Signature)

Full Name : IR. DR. SAFFUAN BIN WAN AHMAD

Position : SENIOR LECTURER

Date : 10 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : FATIN NABIHAH BINTI SUHAIME ID Number : AA13289 Date : 10 JUNE 2017 This thesis is proudly dedicated to:

All my beloved family (my mother, my father, my brother and all my friends) Thanks for your endless love, sacrifices, prayers, supports and advices

ACKNOWLEDGEMENT

Above all I would like to thank "ALMIGHTY ALLAH" who's guidance and let me courageous at every moment to finish my thesis. I believe that he is the only sovereign authority who has control everything.

I extend my humble and deepest appreciation to all that help me in writing this thesis. My first appreciation goes to my Supervisor Ir. Dr. Saffuan Bin Wan Ahmad who has given precious advice, instructions and knowledge during completing my thesis. Besides that, I would like to thanks the respected panel, En. Mohammad Amirulkhairi and Dr. Khairunisa for their comments and suggestion to improve my thesis.

To my family, especially to my beloved father, Suhaime Bin Talib and my beloved mother Norhamizan Binti Ahmad Lathin for their continuous prayers and support. Not forget to my dearest friend Dinie Amni Binti Mahamud,Nurnajat Nadira Binti Abdul Rahman and Muhammad Zul Hazmi Bin Mansor who always give continuous help and support.

TABLE OF CONTENT

	Page
TITLE PAGE	i
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Research Objective	4
1.4	Scope of Study	4
1.5	Significant of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Causes of Earthquake	7
	2.2.1 Tectonic Plate2.2.2 Types of Earthquake and Faults	7 8
2.3	Seismic Wave	11
2.4	Measuring Instrument	14

2.5	Earth Magnitude and Intensity	16
	2.5.1 Earthquake Magnitude	16
	2.5.2 Intensity	17
2.6	Trusses Bridge Structure	18

CHAPTER 3 METHODODLOGY

3.1	Introduction	21
3.2	Literature Review	23
3.3	Gather Information and Data	23
3.4	SAP2000 Program	23
	3.4.1 SAP2000 Software Flowchart	24
	3.4.2 Steps in SAP2000 Software	25

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction		32
4.2	Characteristic of Trusses Bridge		32
4.3	Analy	sis of Trusses Bridge	32
	4.3.1	Modal Analysis	33
4.4	Virtua	l Work Diagram	37
4.5	Time	History Analysis	39
4.6	Shear	and Moment Resistances	43
	4.6.1 4.6.2	Dead Load + Live Load (DL+LL) Dead Load +Live Load +Wind Load +Acheh	43
	4.6.3	(DL+LL+WL+Acheh) Dead Load +Live Load +Wind Load + El-Centro	43
	1 6 1	(DL+LL+WL+El-Centro)	44
	4.0.4	Shear and Moment Capacity	45
4.7	Respo	nse Spectrum Analysis	46
	4.7.1 4.7.2 4.7.3	Acheh Earthquake El-Centro Earthquake Acheh Earthquake	46 49 51
	4./.4	El-Centro Eartiquake	34
4.8	Summ	ary of Analysis	56
	4.8.1 4.8.2 4.8.3	Time Period and Frequency Maximum Shear and Moment Time History	57 58 58

Concl	usion	60
5.1.1	The resistance of the existing bridge structure using the vulnerability assessment	60
5.1.2	The performance of the bridge structure under different types of loadings	60
5.1.3	The acceleration and displacement in x and y direction	60
Recon	nmendation	61
RENC	ES	62

REFERENCES		62
APPENDIX		63
A1	Design Moment Resistance of floor beam 63	63
A2	Design Shear Resistance of floor beam 63	64

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

4.8.4 Response Spectrum Analysis

5.1

5.2

59

LIST OF TABLES

Table No.	Title	Page
2.1	The earthquake magnitude and effects	17
4.1	Maximum Joint Displacement vs. U1	42
4.2	Maximum Joint Displacement vs. U2	42
4.3	Maximum Joint Acceleration vs. U1	42
4.4	Maximum Joint Acceleration vs. U2	42
4.5	Ratio of resistance to capacity for floor beam 63	45
4.6	Peak Response Spectrum for Acheh Earhquake	
	in x direction (Frequency)	48
4.7	Peak Response Spectrum for Acheh Earhquake	
	in y direction (Frequency)	48
4.8	Peak Respon Spectrum for El-Cetro Earthquake	
	in x direction (Frequency)	50
4.9	Peak Respon Spectrum for El-CEntro Earhquake	
	in y direction (Frequency)	51
4.10	Peak Respon Spectrum for Acheh Earthquake in x	
	direction (time period)	53
4.11	Peak Respon Spectrum for Acheh Earthquake in y	
	direction (time period)	53
4.12	Peak Respon Spectrum for El-Centro Earthquake in x	
	direction (time period)	56
4.13	Peak Respon Spectrum for El-Centro Earthquake in x	
	direction (time period)	56
4.14	Rigidity of shape according to their time period	57
4.15	Maximum shear and moment under different type of load	
	combination	
4.16	Maximum displacement and acceleration under different type	
	of earthquake	58
4.17	Maximum displacement and acceleration of 0% damping under	
	different types of earthquake	59
5.1	Displacement and acceleration for Time History Analysis and	
	RSA for El-Centro earthquake	61

LIST OF FIGURES

Figure No.	Title	Page
1.1	Steel Arch Road Bridge, Sultan Iskandar Bridge,	
	Kuala Kangsar (1932)	2
1.2	Concrete Bridge, Sultan Abdullah Bridge, Jerantut Pahang	2
1.3	Sultan Ibrahim Suspension Bridge, Kuala Krai (1945)	3
1.4	Cable Stayed Bridge, Sri Saujana Bridge, Putrajaya (2002)	3
2.1	Major Tectonic Plates	8
2.2	Types of Inter-Plate Boundaries	8
2.3	Normal fault diagram	9
2.4	Reverse fault diagram	10
2.5	Strike-slip fault diagram	10
2.6	P-waves	12
2.7	S-wave	12
2.8	Loves Waves	13
2.9	Rayleigh Waves	14
2.10	Oscillating Pendulum Bob	15
2.11	Basic Principle of Seismometer	15
2.12	Seismogram and type of waves	16
2.13	Modified Mercalli Intensity Scale	18
2.14	Warren Truss Bridge	19
2.15	Pratt Truss	19
2.16	Howe Truss	20
2.17	K Truss	20
3.1	Flow chart to carry out the project	22
3.2	Structure Design in SAP 2000 Software	24
3.3	Choose the unit for the project	25
3.4	Template selected 'Grid'	26
3.5	Define grid line and grid spacing	26
3.6	Define material	27
3.7	Assign the structure properties	27
3.8	Model structure of truss bridge in SAP2000 (3D)	28
3.9	Define the load cases	28
3.10	Time history function (Acheh earthquake)	29
3.11	Time history function (El-Centro earthquake)	29
3.12	Add restraint at the base condition	30
3.13	Run analysis	31
3.14	Complete run analysis	31
4.1	Mode shape 1 with period of 0.71765	33
4.2	Mode shape 2 with period of 0.71707	33
4.3	Mode shape 3 with period of 0.55374	34
4.4	Mode shape 4 with period of 0.54548	34
4.5	Mode shape 5 with period of 0.45376	34
4.6	Mode shape 6 with period of 0.43866	34
4.7	Mode shape 7 with period of 0.39572	34
4.8	Mode shape 8 with period of 0.38925	34

4.9	Mode shape 9 with period of 0.24634	35
4.10	Mode shape 10 with period of 0.20925	35
4.11	Mode shape 11 with period of 0.18444	35
4.12	Mode shape 12 with period of 0.18430	35
4.13	Modal period and frequency	36
4.14	Forces: Dead, Displacement: Dead	37
4.15	Forces: Dead, Displacement: Wind	37
4.16	Forces: Dead, Displacement: Live	38
4.17	Forces: Live, Displacement: Live	38
4.18	Forces: Wind, Displacement: Live	38
4.19	Forces: Wind, Displacement: Wind	39
4.20	Joint Displacement vs. U1 for Acheh and Elcentro Loading	40
4.21	Join Acceleration vs U2 for Acheh and El-Centro loading	40
4.22	Joint Acceleration vs U1 for Acheh and El- Centro loading	41
4.23	Join Acceleration vs U2 for Acheh and El-Centro loading	41
4.24	Result of the maximum shear force for $DL + LL$	43
4.25	Result of the maximum momente for $DL + LL$	43
4.26	Result of the maximum shear for DL+LL+WL+ACHEH	44
4.27	Result of the maximum moment for DL+LL+WL+ACHEH	44
4.28	Result of the maximum shear for DL+LL+WL+EL-CENTRO	44
4.29	Result of the maximum moment for DL+LL+WL+EL-CENTRO	44
4.30	Spectra Displacement in X direction	46
4.31	Spectra Displacement in Y direction	46
4.32	Spectral Velocities in X direction	47
4 33	Spectral Velocities in Y direction	47
4.34	Pseudo Spectral Velocities in X direction	47
4.35	Pseudo Spectral Velocities in Y direction	47
4.36	Spectral Accelerations in X direction	47
4 37	Spectral Accelerations in Y direction	47
4 38	Pseudo Spectral Acceleration in X direction	48
4 39	Pseudo Spectral Acceleration in Y direction	48
4 40	Spectra Displacement in X direction	49
4 41	Spectra Displacement in Y direction	49
4 42	Spectral Velocities in X direction	49
4 43	Spectral Velocities in Y direction	49
1.13 A AA	Pseudo Spectral Velocities in X direction	49
4 45	Pseudo Spectral Velocities in Y direction	49
4 46	Spectral Accelerations in X direction	50
4 47	Spectral Accelerations in Y direction	50
4.47	Pseudo Spectral Acceleration in X direction	50
4.40	Pseudo Spectral Acceleration in Y direction	50
4 50	Spectra Displacement in X direction	51
4.50	Spectra Displacement in X direction	51
4.51	Spectra Displacement in X direction	52
4.52	Spectra Displacement in X direction	52
4.53	Spectral Velocities in X direction	52
4 55	Spectral Velocities in Y direction	52 52
4 56	Pseudo Spectral Velocities in X direction	52 52
4 57	Pseudo Spectral Velocities in Y direction	52
4.58	Spectral Accelerations in X direction	52
	~recent recording in realized on	54

4.59	Spectral Accelerations in Y direction	52
4.60	Pseudo Spectral Acceleration in X direction	53
4.61	Pseudo Spectral Acceleration in Y direction	53
4.62	Spectra Displacement in X direction	54
4.63	Spectra Displacement in Y direction	54
4.64	Spectral Velocities in X direction	54
4.65	Spectral Velocities in Y direction	54
4.66	Pseudo Spectral Velocities in X direction	55
4.67	Pseudo Spectral Velocities in Y direction	55
4.68	Spectral Accelerations in X direction	55
4.69	Spectral Accelerations in Y direction	55
4.70	Pseudo Spectral Acceleration in X direction	55
4.71	Pseudo Spectral Acceleration in Y direction	55

LIST OF SYMBOLS

γм0	Partial factor for building
А	Cross sectional area
$\mathbf{f}_{\mathbf{y}}$	Yield strength
b	Overall breadth
h	Overall depth
$h_{\rm w}$	Depth of web
t _f	Flange thickness
t _w	Web thickness
η	Member verification

LIST OF ABBREVIATIONS

3D	Three dimensional
DL	Dead load
LL	Live load
RSA	Response Spectrum Analysis
SAP	Stuctural Analysis & Design Program
WL	Wind load