THE EFFECT OF WASTE CLAY BRICK AS A PARTIAL SAND REPLACEMENT ON THE MECHANICAL PROPERTIES OF CONCRETE

AHMAD FAIZUL BIN ALI

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this thesis/project* is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor's Signature) Full Name : DR KHAIRUNISA BINTI MUTHUSAMY Position : ASSOC. PROFESSOR Date : 19 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : AHMAD FAIZUL BIN ALI ID Number : AA13169 Date : 19 JUNE 2017

THE EFFECT OF WASTE CLAY BRICK AS A PARTIAL SAND REPLACEMENT ON THE MECHANICAL PROPERTIES OF CONCRETE

AHMAD FAIZUL BIN ALI

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere appreciation to my main thesis supervisor, Assoc. Prof. Dr Khairunisa bin Muthusamy for valuable guidance, motivation and advices throughout the course of this study. Thanks for trusting and believing in me.

Furthermore, I am thankful to my beloved family for their devotion, support and faith in my ability to attain my goals. Many special thanks go to the technicians in the concrete laboratory for all their assistance throughout the project

Last but least, I would like to express my gratitude to all the lecturers and friends who lend a helping hand throughout this study.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACF	KNOWLEDGEMENTS	ii
ABS	STRAK	iii
ABS	STRACT	iv
ТАВ	BLE OF CONTENT	v
LIST	T OF TABLES	viii
LIST	T OF FIGURES	ix
LIST	T OF SYMBOLS	x
LIST	T OF ABBREVIATIONS	xi
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem statement	1
1.3	Objective	2
1.4	Significance of research	2
1.5	Scope of study	3
1.6	Layout of thesis	3
CHA	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Municipal solid waste	5
2.3	Types of municipal solid waste	6

2.4	Waste clay brick as waste	7
2.5	Concrete in construction	8
2.6	Types of concrete	9
	2.6.1 Normal concrete	9
2.7	Compressive strength	10
2.8	FLEXURAL STRENGTH	11
2.9	Sand mining in Malaysia	12
2.10	The effect of sand mining	13
СПАД	TER 3 METHODOLOGY	15
CHAF	TER 5 METHODOLOGI	15
3.1	Introduction	15
3.2	Experiment flow process	16
3.3	Materials use	17
	3.3.1 Cement	17
	3.3.2 Waste clay brick	17
	3.3.3 Sand	19
	3.3.4 Coarse aggregate	19
	3.3.5 Water	20
3.4	Mixing proportion	
3.5	Specimen preparation 2	
3.6	Testing method	
	3.6.1 Slump test	22
	3.6.2 Compressive strength	22
	3.6.3 Flexural strength	23

CHA	PTER 4 RESULTS AND DISCUSSION	24
4.1	Introduction	24
4.2	Workability of concrete	24
4.3	Effect of waste clay brick on compressive strength test	25
4.4	The effect of waste clay brick on flexural strength test	30
CHA	PTER 5 CONCLUSION	35
5.1	Introduction	35
5.2	Conclusion	35
5.3	Recommendations for future study	36
REFE	ERENCES	37

LIST OF TABLES

Table 2.1	The composition of waste (percentage of wet weight) in malaysia	7
Table 3.1	Mix proportion	21
Table 4.1	Slump test result	25
Table 4.2	Maximun strength of compressive strength test	26
Table 4.3	Maximum strength of flexural strength	31

LIST OF FIGURES

Figure 2.1	Gas pollution from landfill	5
Figure 2.2	Case studies at Batu Pahat, Johor	8
Figure 2.3	Compressive test of clay brick	10
Figure 2.4	Flexural test on clay brick	11
Figure 2.5	Kosmo	12
Figure 3.1	Experimental work process	15
Figure 3.2	Ordinary Portland cement	16
Figure 3.3	waste clay brick	17
Figure 3.4	Preparation process of waste clay brick	17
Figure 3.5	River sand	18
Figure 3.6	Coarse aggregate	18
Figure 3.7	Tap water	19
Figure 3.8	Slump Test	21
Figure 4.1	The influence of waste clay brick content on workability of concre	te 24
Figure 4.2	The effect waste clay brick content on compressive strength of concrete at 7, 14, and 28 days	26
Figure 4.3	Effect of waste clay brick on compressive strength at concrete at 0 ^o	% 26
Figure 4.4	Effect of waste clay brick on compressive strength at concrete at 10%	27
Figure 4.5	Effect of waste clay brick on compressive strength at concrete at 20%	27
Figure 4.6	Effect of waste clay brick on compressive strength at concrete at 30%	28
Figure 4.7	Effect of waste clay brick on compressive strength at concrete at 40%	28
Figure 4.8	Effect of waste clay brick on compressive strength at concrete at 50%	29
Figure 4.9	Effect of waste clay brick on flexural strength of concrete at 7, 14, and 28 days	30
Figure 4.10	Effect of waste clay brick on flexural strength of concrete at 0%	31
Figure 4.11	Effect of waste clay brick on flexural strength of concrete at 10%	31
Figure 4.12	Effect of waste clay brick on flexural strength of concrete at 20%	32
Figure 4.13	Effect of waste clay brick on flexural strength of concrete at 30%	32
Figure 4.14	Effect of waste clay brick on flexural strength of concrete at 40%	33
Figure 4.15	Effect of waste clay brick on flexural strength of concrete at 50%	33

LIST OF SYMBOLS

Р	The Maximum Load at Failure
А	The Cross Sectional Area of the Cube
fcf	The Flexural Strength
F	The Maximum Load
Р	The Maximum Load at Failure

LIST OF ABBREVIATIONS

WCB	Waste Clay Brick
ASTM	American Society Testing and Materials
BS	British Standard