USE OF INFRARED THERMOGRAPHY FOR CONCRETE STRENGTH ASSESSMENT WITH DIFFERENT OVERLAY

MOHAMMAD ISKANDAR HALIMIE BIN ABD HALIM

B.ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

USE OF INFRARED THERMOGRAPHY FOR CONCRETE STRENGTH ASSESSMENT WITH DIFFERENT OVERLAY

MOHAMMAD ISKANDAR HALIMIE BIN ABD HALIM

Report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering (Hons) in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree Bachelor of Engineering (Hons) in Civil Engineering.

Signature	:
Name of Supervisor	: DR. FADZIL BIN HJ.MAT YAHAYA
Position	: LECTURER OF CIVIL ENGINEERING FACULTY
Date	:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis/project has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature :

Name : MOHAMMAD ISKANDAR HALIMIE BIN ABD HALIM

ID Number : AA13083

Date :

ACKNOWLEDGEMENTS

First of all, thanks to ALLAH S.W.T for his mercy and guidance in giving me full strength to complete this research. I also would like to express my deepest appreciation and sincere thanks to my supervisor, Dr. Fadzil Bin Hj. Mat Yahaya for conducts and help me completing my research. He offered me his wisdom, expertise, and most importantly his ideal that lead me to do my research. I am grateful as he always put in a lot of effort in order to help me any way he could to ensure my research can be done smoothly. Thank you for your support ad brilliant ideas.

I am also indebted to my parent Mr. Abd Halim Bin Muda and Mdm Fatimah Binti Mahmood for their love, dream and sacrifice through my life. I am really thankful for their support, patience and understanding that were inevitable to make this work possible. I pray and wish my parent always in a good health.

Furthermore, I also would like to extend my gratitude to all technicians in Concrete Laboratory in Universiti Malaysia Pahang, for their kindness and helped me in many ways throughout this research study. Also, I would like to thank my research group, I would like to thank to my research partner Mohamed Luqman Mohamed Roslan, Mohd Syafiq Mohd Zain and Ridzwan Mazlan for their help and support through this research. Lastly, I would like to thanks any person which contributed to my final year project directly or indirectly.

TABLE OF CONTENTS

SUPERVISOR'S DECLAR A	ATION	I
-----------------------	-------	---

STUDENT'S DECLARATION

ACKNOWLEDGEMENTS	i
ABSTRACT	ii
ABSTRAK	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS	ix
LIST OF ABBREVIATION	x
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	3
1.3 Objective	4
1.4 Scope of Study	4
1.5 Research Significance	4

CHAPTER 2 LITERATURE REVIEW	5
2.1 Introduction	5
2.1.1 Concrete Problem Types	6
2.2 Destructive test	9
2.2.1 Flexural Strength Test	9
2.3 Nondestructive test	10
2.3.1 Infrared Thermography Test	10
2.3.2 Ultrasonic Pulse Velocity	12
CHAPTER 3 METHODOLOGY	14
3.1 Introduction	14
3.2 Experimental Procedure	15
3.3 Research Equipment	16
3.3.1 Infrared Thermography	16
3.3.2 Ultrasonic Pluse Velocity	20
3.3.3 Flexural Test	22

CHAPTER 4 RESULTS AND DISCUSSION	25
4.1 Introduction	25
4.2 Infrared Thermography Camera (IRT) Image	26
4.3 Ultrasonic Pulse Velocity (UPV)	29
CHAPTER 5 CONCLUSION AND RECOMMENDATION	37
5.1 Conclusion	37
5.2 Recommendation	38
REFERENCES	39
APPENDICES	42

LIST OF TABLE

Table 3.1	IRT Camera Specification	17
Table 4.1	UPV test for beam concrete grade G30	29
Table 4.2	UPV test for beam concrete grade G30/G20	30
Table 4.3	UPV test for beam concrete grade G40/G20	31
Table 4.4	UPV test for beam concrete grade G50/G20	32

LIST OF FIGURES

Figure	2.1	Concrete viewed in a cross section through the material	6
Figure	3.1	Flow Chart of the Experiment Procedure	15
Figure	3.3	Method of propagating and receiving pulses	21
Figure	3.4	Flexural Strength Test Arrangement	23
Figure	4.1	Image for IRT camera before and during the flexural test	26
Figure	4.2	Graph for Concrete grade G30 overlay G20	33
Figure	4.3	Graph for Concrete grade G40 overlay G20	33
Figure	4.4	Graph for Concrete grade G50 overlay G20	34
Figure	4.5	Graph for Two Layer Concrete Grade	34
Figure	4.6	Relation between compressive strength and ultrasonic pulse velocity for	36
		hardened cement paste, mortar, and concrete, in a dry and moist	
		condition.	

LIST OF SYMBOLS

- µm Micrometre
- °C Celsius
- % Percentage

LIST OF ABBREVIATION

Hz	Hertz
lm	Lumen
IRT	Infrared Thermography
kN	Kilo Newton
MPa	Mega Pascal
mm	Millimetre
m	Meter
NDT	Non-Destructive Test
РТ	Pulse Thermography
PPT	Pulse Phase Thermography
psi	Pound Per Square Inch
RGB	Red, Green, Blue
TM	Thermal Modelling
UPV	Ultrasonic Pulse Velocity
VGA	Video Graphic Array