INVESTIGATION ON MIGRATION OF LNAPL AND DNAPL IN DIFFERENT SAND SIZE LAYERS

TAN SIEW LENG

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Civil Engineering.

(Supervisor's Signature) Full Name : Dr Ngien Su Kong Position : Lecturer Date : 16th June 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : Tan Siew Leng ID Number : AA13206 Date : 16th June 2017

INVESTIGATION ON MIGRATION OF LNAPL AND DNAPL IN DIFFERENT SAND SIZE LAYERS

TAN SIEW LENG

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all the parties who helped me in completing of my research. First and foremost, I would like to acknowledge Universiti Malaysia Pahang (UMP) for giving me a good opportunity to carry out this research with sufficient equipment to complete the research on time.

Besides that, I would like to express my sincere gratitude to my research supervisor, Dr Ngien Su Kong, for his guidance and support throughout the whole planning and development of this research work. Other than that, I would like to thank Motasem, PHD student, for his time in teaching me about the Image-Pro software and I really appreciate his help.

Next, I would like to thank all my friends and my teammate, who were willing to assist and help me in conducting the laboratory tests throughout the research. My research had become less a burden with their help while conducting the laboratory tests.

I would also like to express my gratitude to all technicians of soil mechanics and geotechnics laboratory and environmental laboratory for their help and guidance in conducting my laboratory works. They are my useful tool to solve my problems during the laboratory testing.

Last but not least, I would like to thank my family who always supported me throughout my research. Their love and kindness are very important to me as they would always stand at my side whenever I am facing problem and stress.

TABLE OF CONTENT

DECL	LARATION	
TITLI	EPAGE	
ACK	NOWLEDGEMENTS	ii
ABST	'RAK	iii
ABST	TRACT	iv
TABL	E OF CONTENT	V
LIST	OF TABLES	viii
LIST	OF FIGURES	ix
LIST	OF SYMBOLS	X
LIST	OF ABBREVIATIONS	xi
CHA	PTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Study	3
1.5	Significance of Study	4
CHA	PTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Contamination of Groundwater	6
2.3	Factors Affecting NAPLs Migration	7
	2.3.1 Non-Aqueous Phase Liquids (NAPLs)	8

		2.3.1.1 Properties of LNAPL	8
		2.3.1.2 Properties of DNAPL	11
	2.3.2	Groundwater	12
	2.3.3	Properties of Porous Media	13
2.4	Past R	Related Works	14
	2.4.1	Image Analysis	15
	2.4.2	Light Reflection Method (LRM)	16
2.5	Resea	rch Gap	17
CHA	PTER 3	3 METHODOLOGY	18
3.1	Introd	luction	18
3.2	2 Laboratory Experiment		20
	3.2.1	Apparatus and Materials	20
	3.2.2	Sand Experiments	21
		3.2.2.1 Moisture Content Test	21
		3.2.2.2 Sieve Analysis Test	21
		3.2.2.3 Specific Gravity Test	23
		3.2.2.4 Constant Head Test	24
	3.2.3	LNAPL and DNAPL Preparation	26
	3.2.4	Experimental Set-Up for Laboratory Experiments	27
3.3	3.3 Digital Image Processing Technique		28
	3.3.1	Selecting Images	29
	3.3.2	Calibration of Images	30
	3.3.3	Defining a Region of Interest (ROI)	31
	3.3.4	Region of Measurement	32

	3.3.5	Smart Segmentation	33
CHAI	PTER 4	RESULTS AND DISCUSSION	36
4.1	Introd	uction	36
4.2	Sand Experiment 36		36
	4.2.1	Moisture Content Test	36
	4.2.2	Sieve Analysis of Sand	37
	4.2.3	Density Tests of Each Sand Size	40
	4.2.4	Constant Head Test for Sand	42
4.3	NAPL	Experiments	43
	4.3.1	Time Taken for NAPL to Reach the Bottom of Each Sand Size	43
	4.3.2	The Flow Pattern of Toluene and Trichloroethylene in Sand	
		Layer	45
CHAI	PTER 5	CONCLUSIONS AND RECOMMENDATIONS	49
5 1	C 1		40
5.1	Conclu	usion	49
5.2	2 Recommendations for Future Research 50		50
REFERENCES 51			51
APPENDIX A USCS STANDARD CHART56			56
APPENDIX B TYPICAL VALUE OF SOIL PERMEABILITY 57			57

LIST OF TABLES

Table No.	Title	Pages
3.1	List of apparatus and material with their function	20
3.2	Calculation amount of LNAPL, DNAPL and Oil-Red O	26
4.1	Moisture content result	37
4.2	Sieve analysis result	37
4.3	Result of density tests for 1.18 mm and 0.60 mm sand size	40
4.4	Result of density tests for 0.30 mm and 0.15 mm sand size	41
4.5	Mass of each sand size	42
4.6	Result of constant head test	42
4.7	Time taken to reach the bottom of each sand size	44
4.8	Percent area of NAPL in sand layer	46

LIST OF FIGURES

Figure No.	Title	Pages
2.1	Water on Earth	5
2.2	Hydrological cycle	6
2.3	Migration of LNAPL in soil	9
2.4	Flow of LNAPL in the pore space	9
2.5	LNAPL saturation distribution at two sites	10
2.6	Migration of DNAPL into soil and groundwater	11
2.7	Methods of review for NAPL experiment	15
3.1	Conceptual framework for research	19
3.2	Procedure of moisture content test	21
3.3	Procedure of sieve analysis	22
3.4	Procedure of specific gravity test	23
3.5	Density bottles leave for an hour in room temperature	24
3.6	Procedure of constant head test	25
3.7	Water from outflow is collected in the cylinder	25
3.8	Schematic reviews of LNAPL and DNAPL in the sand	
	media system	28
3.9	Procedure of digital image analysis	29
3.10	Selecting first image	30
3.11	Quick calibration	31
3.12	Spatial calibration	31
3.13	Apply ROI rectangle tool	32
3.14	Region of measurement	33
3.15	Selecting area of background	34
3.16	After click count button	34
3.17	Export data to Microsoft Excel	35
4.1	Particle size distribution curve	38
4.2	Flow pattern of some images of toluene in sand size layer	42
4.3	Time taken for NAPL to reach the bottom of each sand size layer	44
4.4	Percent area of type of NAPL in sand layer	47

LIST OF SYMBOLS

Cu	Uniformity coefficient
Cc	Coefficient of gradation
SG	Specific gravity of soil
Μ	Mass of soil
k	Coefficient of permeability
V	Collected volume of water
L	Length of soil column
А	Area of soil column
h	Head difference
t	Time required to V volume
\mathbf{S}_0	Sorting coefficient
g	Gram
%	Percentage
W	Moisture content
mm	Millimeter
m	Meter
S	Second

LIST OF ABBREVIATIONS

NAPL	Non-aqueous phase liquids
LNAPL	Light non-aqueous phase liquid
DNAPL	Dense non-aqueous phase liquid
PCB	Polychlorinated biphenyl
TCE	Trichloroethylene
GRM	Gamma radiation method
X-RAM	X-ray attenuation method
LRM	Light reflection method
LTM	Light transmission method
MIAM	Multispectral image analysis method
TL3-DS	Time-lapse three dimensional seismic
RTDF	Remediation technologies development forum
ASTM	American society for testing and materials
PCE	Perchloroethylene
GPR	Ground-penetration radar
MATLAB	Matrix laboratory
A A SHTO	American association of state highway and transportation
AASIIIO	officials
USCS	Unified soil classification system
ROI	Region of interest