

CURRENT TRENDS STRATEGIES IN THE TEST

REDUNDANCY REDUCTION

1
NorasyikinSafieny,

2
 Kamal Z. Zamli,

3
Hasneeza L. Zakaria

1,2

Faculty of Computer System and Software Engineering,

Universiti Malaysia Pahang (UMP),

Kampus Gambang, 26300 Kuantan, Pahang,

Malaysia

nsasyikins@gmail.com , kamalz@ump.edu.my

3
 School of Computer and Communication Engineering,

Universiti Malaysia Perlis (UniMAP),

Kampus Pauh Putra, 02600 Arau, Perlis,

Malaysia

hasneeza@unimap.edu.my

Abstract - Software testing is most important

and expensive part in software development

process. The failures of software can lead

disastrous consequence, such as loss of data,

fortune and lives. This process usually

expensive, and the key of expensiveness of

testing is that typically take a long time to

execute the whole set of test cases. Test case

minimization technique generates a

representative set from the original test suite

that satisfy all the requirements as an original

test suite but contains less number of test cases.

Redundant test cases are removed from the test

suite. Many strategies in a greedy approach

have been developed (including GE, GRE, and

HGS), Formal Concept Analysis and non-greedy

approach (tReductLAHC, tReductSA) using

Metaheuristic Algorithm. The non-greedy

approach is more effective compared to greedy

approach. In this paper, a review of the

strategies is provided to investigate the current

trends in the test reduction research area. We

can categorize these strategies as Greedy and

Metaheuristic Approach. To enhance the

performance by using a metaheuristic

algorithm, we are proposing our work with

adopts the sequence permutation and

hybridization strategies.

Keywords: Test suite redundancy reduction. Search

based software engineering. Global Neighborhood

Algorithm.Optimization. Simulated Annealing

I. INTRODUCTION

Test redundancy problem has been regarded as

the NP complete (Yoo & Harman, 2012) that no

single strategy can do well in all scenarios

considered. Our work adopts sequence permutation

and hybridization between two metaheuristics; a

population-based and single-based solution with

systematic merging rules technique. The growing

complexity of the software makes the cost to test

the software increase. Software is generally tested

through test cases and it’s defined in IEEE standard

as “A set of test inputs, execution, and expected

results developed for a particular objective, such as

to exercise a particular program path or to verify

compliance with a specific requirements”. A test

suite consists of all the test cases that satisfy all the

testing requirements.

In the literature, many strategies have been

addressed to cater these issues. Non-greedy

approaches perform well with existing works. The

technique to cater the problem of selecting a

representative set of test cases that provides the

desired testing coverage focuses into two

categorized as :

 Greedy approach

 Metaheuristic Algorithm

Greedy Approach including GE, GRE, and

HGS. Strategies based on Requirement Cardinality,

Essential, Weighted set covering and 1-to-1

redundant test concept. Formal concept analysis

classifying objects based upon the overlap among

their attributes. Metaheuristic Algorithm based

approach uses Late Acceptance Hill Climbing and

Simulated Annealing that come from Single Based

solution. The objective value to find a minimal set

of test requirements.

mailto:nsasyikins@gmail.com

The rest paper organized as follows section II

contains a review on existing technique. Section III

discusses about greedy approach and metaheuristic

algorithm trends. Finally section IV concluding

remark.

II. RELATED WORKS

Software is tested with test cases. However,

running all of the test cases in a test suite may take

a great deal of effort. The test suite minimization

problem (Zhong, Zhang, & Mei, 2008) can be

formally stated as follows. Given:

i. A test suite T of test cases {t1, t2, t3, .tn}.

ii. A set of testing requirements { r1, r2, r3, ..rn

} that must be satisfied to provide the

desired testing coverage of the program.

iii. Subsets { T1, T2, T3, ..Tn } of T, one

associated with each of the riS, such that

any one of the test cases tjs belonging to Ti

satisfies ri.

Table 2.1 Test cases in a test suite.

Test

Case

r1 r2 r3 r4 r5 r6 r7 r8

t1: X X X

t2: X X X X

t3: X X X

t4: X X X X

t5: X X X X

Problem: find a minimal cardinality subset of T that

is capable of exercising all ris exercised by the

minimized test suite T.

Table 1 is an example that shows the test cases in a

test suite {t1, t2, t3, t4, t5}. The symbol X means

satisfaction of a requirement by a test case. Here

we find that a subset {t1, t2, t4} of test suite is

enough to cover all the requirements {r1, r2, r3, r4,

r5, r6, r7, r8} while test cases t2 and t5 become

redundant since the requirements covered by them

are satisfied by the other three test cases. The

statement shows the basic situation happened in

test redundancy reduction.

 The earliest work on the Greedy Heuristic

strategy is highlighted by Chavatal (Chvatal, 1979).

The greedy heuristic will first select the test case t1,

and throw out the requirements r1, r3 and r6 from

further consideration. Next, either of t2, t3, t4 or t5

could be picked since each of these cover one yet

uncovered requirement. The redundant test case t1

was selected because the decision to select t1 was

made too early. The choice of picking t1 before

picking any of the other test cases seemed a good

decision at the time when t1 was selected; however,

it turned out to be not the best choice for computing

the overall minimal test suite. Consider example in

Table 2.1.

 Complementing Chavatal’s work, Harrold

et al. develops a similar strategy, called HGS

(Harrold, Gupta, & Soffa, 1993; Ho & Su, 2012).

Harrold propose the heuristic algorithm H to reduce

the size of the test cases uses the essentialness and

first group the test requirement then repeatedly

reduces the test cases and finally remove the

redundant test case in the test requirement. HGS

greedily ranks the cardinality of each requirement

with the corresponding test case (from low to high)

as the main basis for reduction. HGS works as

follows. For each requirement that is exercised by

one test case that is cardinality of 1, and HGS adds

the test case into the minimized test suite and

covered the requirements. Let’s consider in Table

2.2 shows the requirements exercised by that test

case table by Tallam (Tallam, 2005). T1={t1,t2}

cardinality one, T2={t1,t3}cardinality two,

T3={t2,t3,t4}cardinality three,

T4={t3,t4,t5}cardinality three,T5= {t2,t6,

t7}cardinality three. There is no Ti of cardinality

one, the HGS considers T1={t1,t2} and selects the

test case t1. Next T3,T4 and T5 are considered. The

tie between T3, is broken arbitrarily say in favour of

selecting the test case t2. Now only T4 in r4is still

remains to be exercised because T4 is still

unmarked. So any T4={t3,t4,t5} can be selected at

this stage. If we select t3, thus the reduced test suite

selected by the HGS heuristic is {t1,t2,t3}. However,

redundant test case still happen in requirements

exercise by t1,t2, and t3. This redundant test case

was selected because the decision to select t1 was

made early.

Table 2.2 HGS study case

Test

Case

r1 r2 r3 r4 r5

t1: X X

t2: X X X

t3: X X X

t4: X X

t5: X

t6: X

t7: X

Although, the main strength of HGS is the fact that

it creates a subtle (and stable) prioritization of test

cases during its selection process (i.e. based on

cardinality). Here, hard to cover requirement with

low cardinality are considered first and followed by

other requirements in order of increasing

cardinality. The main limitation of this approach is

the fact that, in real testing endeavour,

prioritization is not solely a function of cardinality.

In fact, prioritization can also be a function of

likelihood of faults as well as their impacts.

Lau and Chen introduce another variant of

greedy strategy, called GE (T. Chen & Lau, 1995).

GE proposed a concept of essential for greedy

selection. GE works based on essential and the best

test cases that cover the most requirements. Firstly,

identify the essential test cases. From the Table 2.3

we can see that r6 is tessential that uncovered by any

test case. Keep track on the uncovered

requirements. Secondly, pick the best test cases that

cover the most requirements. Only t2 and t4 that

cover r5 and t1,t2 and t4 cover r1. The best choice

between t2 and t4 where is, the test cases cover r1

and r5. Based on second step, pick the best test

case. The best test case is t2, because t2 cover = 3

reqs and t4 only cover = 2 reqs. Iterate the step until

all requirements covered. The reduced test suite

selected by the GE heuristic is {t2, t3}.

Table 2.3 GE study case

Test

Case

r1 r2 r3 r4 r5 r6

t1: X X X

t2: X X X

t3: X X X X

t4: X X

Implementation wise, GE is straight forward to

implement as compared to HGS. Furthermore,

as GE considers tessential before greedily selecting

candidate test case, the test suite size offered by GE

is at least the same of better than that of Chavatal.

The same argument cannot be applicable when

comparing HGS and GE. On the negative note, GE

does not address prioritization issue.

 As enhancement of GE, Chen and Lau

later introduce the GRE strategy (T. Y. Chen &

Lau, 1998). GRE exploits the idea of redundant test

case. It’s based on three strategies; the essential

strategy (the strategy of selecting all essential test

cases), redundancy strategy (the strategy of

removing 1-to-1 redundant test cases) , and greedy

strategy (the strategy of selecting test cases that

meet a maximum number of requirements that are

not yet satisfied). In this case, if a test case

satisfies only a subset of test -case requirements

satisfied by another test case, then that particular

test case is redundant. GRE starts by first removing

redundant test cases from the test suite. In the

process, GRE reduces the test suite and may make

some test cases essential. Then, GRE applies the

same algorithm as GE in order to choose the test

cases that cover all the requirements. GRE inherit

many advantages of GE. In fact, in the absence

of redundant test case, GRE behaves much like

GE. Interestingly, due to NP completeness of

the test redundancy reduction problem, the

performance of GE can still be better than GRE or

even HGS in terms of test reduction. Similar to

GE, GRE does not address the prioritization issue.

 Shengwei adopts a strategy similar to GE

(Xu, Miao, & Gao, 2012). Unlike GE, they exploits

weighted set covering (for requirements) in order to

eliminate test redundancy and prioritize the test

suite according to cost order. The general

performance of the algorithm appear the same to

that of GE. On the negative note, although

important, prioritization need not be considered

merely on cost but on how effective of the

tests being prioritized. As highlighted earlier,

prioritization can also be a function of likelihood of

faults as well as their impacts.

 Galeebathullah and Indumathi develop a

strategy that combines the set theory and

Greedy heuristics (B.Galeebathullah &

C.P.Indumathi, 2010) . Initially, the strategy finds

the intersection of each requirement with other

requirements. If exist any intersection exist, the test

cases are greedily combined and added to the final

test suite. The process is repeated until all

requirements are covered by the test case. In the

work, prioritization issues are not reported.

Additionally, no benchmarking result against other

existing strategies is published.

 Apart from the greedy heuristic

approach, a number of researchers (Tallam,

2005)have started to adopt the Formal Concept

Analysis (FCA). Basically, FCA is a technique

for classifying objects based upon the overlap

among their attributes. For reduction, test cases

are considered as objects and requirements as

attributes. Relationship between objects and

attributes corresponds to the coverage information

of test case. Using concept analysis, maximum

grouping of objects and attributes can be deduced

(termed context) in a table. Here, facilitated by

graphical concept lattice and based on the object

and attribute reduction rules, objects (i.e. Test

cases) can be systematically reduced. Although

helpful, FCA suffers from the problem of scale

when the formal objects and their attributes grew,

it is almost impossible to construct and

manipulate the concept lattice graphically. Hence,

the applications of FCA for large scale test

reduction (and prioritization) can be problematic

and difficult.

Many existing works on variants of Greedy

approach and some based on Formal Concept

Analysis, but it’s not necessarily the best. The next

strategies adopt sequence permutation and

optimization algorithm based on SA with

systematic merging technique (K. Z. Zamli, Mohd

Hassin, Al-Kazemi, & Naseer, 2014a) and also

based on Late Acceptance Hill Climbing (LAHC)

(Kamal Zuhairi Zamli, 2014). Both of them based

on single-based solution algorithms. Late

Acceptamce Hill Climbing useful in terms of

systematically sampling of the appropriate test

case, existing strategies have not sufficiently dealt

with test prioritization. Addressing that issues, this

work a novel approach od adopting Late

Acceptance Hill Climbing based Strategy for test

redundancy reduction and prioritization. When

dealing with large line of codes (LOCs), there are

potentially issues of redundancies, Simulated

Annealing based strategy are build for counter that

issues. This works adopts the random sequence

permutation and merging rules technique based on

single based solution metaheuristic called

Simulated Annealing. Simulated Annealing is an

optimization algorithm motivated by the metal

annealing process. The metal heated slowly cooled

into the uniform structure. It’s start with an initial

configuration obtained by random search and the

annealing makes a sequence of small random

perturbation. All the possible improve solution is

always accepted.

In our work, we proposed a strategy by used

sequence permutation with hybridization between

single-based solution and population-based

metaheuristic algorithm.

III. GREEDY APPROACH AND

METAHEURISTIC ALGORITHM:

TRENDS

One system of about 20,000 line of code

requires seven weeks to run all its test cases

(Rothermel, Untch, Chu, & Harrold, 2001). Tester

engineers are under pressure to test more and more

codes. The highest percentage of test cases can

save cost, time, and resources. Most related works

on Greedy Heuristic, Formal Concept approach and

Table 3. 1 shows the different ship with existing

work including non-greedy approaches.

Although many technique have been addressed

in the literature based on greedy and non-greedy

approach, As the test redundancy problem has been

regarded as NP complete problem (Yoo & Harman,

2012), no single strategies can do well in all

scenarios considered.

i. Greedy approach more based on the

earlier selection of test cases

ii. Sequence Permutation and Merging

Rules with Metaheuristic Algorithm

provide a new diversified solution in

test redundancy reduction area.

As part of our research, we try to enhance

work from Zamli 2014 (K. Z. Zamli, Mohd Hassin,

Al-Kazemi, & Naseer, 2014b) with is we use

Metaheuristic Algorithm based on hybridization

between single based and population based solution

to see the variation of diversified solution for test

redundancy reduction.

 According to Talbi 2013, the best result found

for many real life of classical optimization problem

are obtained by hybrid algorithm (Talbi, 2013).

Hybrid actually combinations of algorithm such as

metaheuristic, mathematical programming,

constraint programming and machine learning

technique that provides a powerful search

algorithm. Two competing goals govern the design

of a metaheuristic there is exploitation and

exploration. The proposed technique will work to

find the optimal value among these local optima by

switching between exploration and exploitation.

Single based solution is powerful in the

exploitation of the solution found and weak in the

exploration of the search space.

Table 3.1 Quick Review

Name of

Strategies

Greedy

Heuristic

(Chvatal,

1979)

HGS

(Harrold

et al.,

1993)

GE

(T.

Chen &

Lau,

1995)

GRE

(Selvakum

ar, Dinesh,

Dhineshku

mar, &

Ramaraj,

2010)

Set Theory

and Greedy

(Galeebathullah

& Indumathi,

2010)

WSC

(Xu et

al.,

2012)

FCA

(Tallam,

2005)

tReductL

AHC

(Kamal

Zuhairi

Zamli, 2014)

tReductS

A

(K. Z. Zamli,

Mohd

Hassin, Al-

Kazemi, &

Naseer,

2014a)

The strategies

work

Greedy Approach

Greedy

selection

Requirement

Cardinality

Essential

Weighted set

covering

(priority)

1-to-1

redundant

test concept

Intersection

of the one

requirements

to another

requirements

 Formal

Concept

Analysis

Classifying

objects

based upon

the overlap

among their

attributes

 Metaheuristic

Algorithm

Sequence

Permutation

Merging

Rules

Single-based

solution

IV. CONCLUDING REMARK

This paper presents the brief summary of

techniques that has been proposed in literature for

test redundancy reduction. Most of the studies in

the literature review are based on Greedy, Formal

Concept Analysis and Metaheuristic Algorithm.

Many of them generate significant reduction and

each technique has strength to another in some

aspect, but it is harder to tell which one performs

the best. Metaheuristic Algorithm produced more

diversified solutions. It’s applied the concepts of

single based solution and sequence permutation

with merging rule technique. Evolution area of

metaheuristic show the hybridization produce

better results in optimal ways. Hybridization

techniques in metaheuristic algorithm were shown

in this paper to enhance the performance of

metaheuristic algorithms in test redundancy

reduction area.

REFERENCES

B.Galeebathullah, & C.P.Indumathi. (2010). A Novel
Approach for Controlling a Size of a Test Suite
with Simple Technique. IJCSE) International
Journal on Computer Science and Engineering

Vol. 02, No. 03, 2010, 614-618.
Chen, T., & Lau, M. (1995). Heuristics towards the

optimization of the size of a test suite. Paper
presented at the Proceedings of the 3rd
international conference on software quality
management.

Chen, T. Y., & Lau, M. F. (1998). A new heuristic for test
suite reduction. Information and Software
Technology, 40(5), 347-354.

Chvatal, V. (1979). A greedy heuristic for the set-
covering problem. Mathematics of operations
research, 4(3), 233-235.

Harrold, M. J., Gupta, R., & Soffa, M. L. (1993). A
methodology for controlling the size of a test
suite. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2(3),
270-285.

Ho, Y. C., & Su, C. C. (2012). A 0.1-0.3 V 40-123 fJ/bit/ch
On-Chip Data Link With ISI-Suppressed
Bootstrapped Repeaters. Ieee Journal of Solid-
State Circuits, 47(5), 1242-1251. doi:
10.1109/Jssc.2012.2186722

Talbi, E.-G. (2013). Combining metaheuristics with
mathematical programming, constraint
programming and machine learning. 4OR,
11(2), 101-150.

Tallam, S., Gupta, N.:. (2005). A Concept Analysis
Inspired Greedy Algorithm for Test Suite
Minimization. 6th ACM SIGPLAN-SINGSOFT
Workshop on Program Analysis for Software
Tools and Engineering, Lisbon, pORTUGAL
(2005), ACM1-59593-239-9/05/0009.

Xu, S., Miao, H., & Gao, H. (2012). Test Suite Reduction
Using Weighted Set Covering Techniques. 307-
312. doi: 10.1109/snpd.2012.87

Yoo, S., & Harman, M. (2012). Regression testing
minimization, selection and prioritization: a
survey. Software Testing, Verification and
Reliability, 22(2), 67-120.

Zamli, K. Z. (2014). Late Acceptance Hill Climbing Based
Strategy for Test Redundancy Reduction and
Prioritization. Paper presented at the Malaysia
University Conference Engineering
Technology.

Zamli, K. Z., Mohd Hassin, M. H., Al-Kazemi, B., &
Naseer, A. (2014a). Simulated Annealing Based
Strategy for Test Redundancy Reduction. In H.
Fujita, A. Selamat, & H. Haron (Eds.), New
Trends in Software Methodologies, Tools and
Techniques (Vol. 265, pp. 818-832).

Zamli, K. Z., Mohd Hassin, M. H., Al-Kazemi, B., &
Naseer, A. (2014b). Simulated Annealing Based
Strategy for Test Redundancy Reduction. New
Trends in Software Methodologies, Tools and
Techniques, 265, 818-832. doi: 10.3233/978-1-
61499-434-3-818

Zhong, H., Zhang, L., & Mei, H. (2008). An experimental
study of four typical test suite reduction
techniques. Information and Software
Technology, 50(6), 534-546. doi:
10.1016/j.infsof.2007.06.003

