MECHANICAL PROPERTIES OF CONCRETE CONTAINING GROUND PALM OIL FUEL ASH (POFA) AS PARTIAL SAND REPLACEMENT

NURUL ATILA BINTI MOHD SALLEH

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons.) Civil Engineering

(Supervisor's Signature)Full Name: DR KHAIRUNISA MUTHUSAMYPosition: ASSOCIATED PROFESSORDate: 16 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NURUL ATILA BINTI MOHD SALLEH ID Number : AA13090 Date : 16 June 2017

MECHANICAL PROPERTIES OF CONCRETE CONTAINING GROUND PALM OIL FUEL ASH (POFA) AS PARTIAL SAND REPLACEMENT

NURUL ATILA BINTI MOHD SALLEH

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

In the name of ALLAH, the Most Gracious and Most Merciful

Alhamdulillah, praise to ALLAH S.W.T the Most Merciful and Most Gracious, peace and blessing upon the prophet Muhammad S.A.W. Thank you Allah for giving me strength and patience in order to complete this dissertation. Thank you for helping me and let me pass the hard time with ease.

I would also like to express my sincerest thanks and highest appreciations to my supervisor, Dr Khairunisa Muthusamy for her continuous support, valuable advice and guidance throughout my study. I really appreciate her guidance from the initial to the final level that enabled me to develop an understanding of this research thoroughly. Without her advice and assistance it would be a lot tougher to completion. I also sincerely thanks for the time spent proofreading and correcting my mistakes.

I would also like to express my sincere thanks to all the lecturers and laboratory staffs at the Structural and Material Laboratory of Civil Engineering and Earth Resources of Universiti Malaysia Pahang for their guidance, help, encouragement and support throughout my research programme. A word of gratitude is extended to the entire management team of palm oil mill in Ladang Lepar Baru, Gambang, Pahang owned by LKPP Corporation Sdn Bhd for the cooperation and contribution in supply of palm oil fuel ash (POFA).

Finally, I would like to express my heartfelt gratitude to my beloved parents, Mohd Salleh bin Abdul Manan and Juliar binti Nek for their unconditional love and continuous support that help me went through the hard times. For all the blood, sweat and tears that they have sacrificed for me, I would never afford to repay them.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	TRAK	iii
ABS	TRACT	iv
ТАВ	BLE OF CONTENT	v
LIST	Γ OF TABLES	vii
LIST	Γ OF FIGURES	ix
LIST	Γ OF SYMBOLS	xi
LIST	Γ OF ABBREVIATIONS	xii
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	Scope of Studies	2
1.5	Significant of studies	3
1.6	Layout of thesis	3
CHA	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Palm Oil Fuel Ash (POFA)	6
	2.2.1 Origin of palm oil fuel ash (POFA)	6

	2.2.2	Production of palm oil fuel ash (POFA)	8
	2.2.3	Palm Oil Fuel Ash (POFA) And Negative Impact To Environment	11
	2.2.4	Properties of palm oil fuel ash (POFA)	12
		2.2.4.1 Physical Properties of Palm Oil Fuel Ash (POFA)2.2.4.2 Chemical Properties of Palm Oil Fuel Ash (POFA)	12 13
2.3	Fine A	Aggregate In Concrete	14
	2.3.1	Definition	14
	2.3.2	Type of Fine Aggregate Used In Concrete	14
	2.3.3	Characteristics of Fine Aggregate	16
		2.3.3.1 Fineness Modulus2.3.3.2 Bulking of Fine Aggregate	17 17
2.4	Sand C	Consumption In Malaysia	18
	2.4.1	Negative Impact of Sand Mining	18
2.5	Proper	ties of Concrete And Factor Influencing It	21
	2.5.1	Workability	21
	2.5.2	Compressive Strength	21
	2.5.3	Flexural Strength	23
CHAI	PTER 3	METHODOLOGY	25
3.1	Introd	uction	25
3.2	Mater	al Preparation	25
	3.2.1	Ordinary Portland Cement (OPC)	24
	3.2.2	Fine Aggregate	26
	3.2.3	Coarse Aggregate	28
	3.2.4	Water	30
	3.2.5	Palm Oil Fuel Ash (POFA)	30

3.3	Mix P	roportion of POFA Concrete	32
3.4	Prepar	ration of Specimens	32
	3.4.1	Mixing of Concrete	32
	3.4.2	Casting of Concrete	33
	3.4.3	Curing Method	33
3.5	Exper	imental Procedure	34
	3.5.1	Slump test	34
	3.5.2	Compressive Strength Test	35
	3.5.3	Flexural Strength Test	38
			40
CHA	PTER 4	RESULTS AND DISCUSSION	40
4.1	Introd	uction	40
4.2	Slump	o test result	40
4.3	Effect	of Palm Oil Fuel Ash Toward Compressive Strength of Concrete	43
4.4	Effect	of Palm Oil Fuel Ash Toward Flexural Strength of Concrete	46
CHA	PTER 5	5 CONCLUSION	49
5.1	Introd	uction	49
5.2	Concl	usion	49
5.3	Recon	nmendation	50
REFF	ERENC	ES	51
APPE	NDIX	Α	55
APPE	NDIX	В	56

LIST OF TABLES

Table 2.1	Physical properties of type I Portland cement (OPC) anfd ground	
	POFA	12
Table 2.2	Chemical composition of materials	12
Table 3.1	Concrete mix design	12
Table 3.2	Slump classification	34
Table 4.1	Slump test result	12

LIST OF FIGURES

Figure 2.1	Original of Palm Oil Tree	7
Figure 2.2	World palm oil production	7
Figure 2.3	Palm oil by-product	8
Figure 2.4	The schematic diagram for palm oil processing & POFA production	n 10
Figure 2.5	Palm Oil Residues and Palm Oil Fuel Ash	10
Figure 2.6	Palm oil fuel ash dumped at the factory yard	12
Figure 2.7	Scanning electron microscope of POFA	13
Figure 2.8	Manufactured sand	16
Figure 2.9	Foundry sand	16
Figure 2.10	River pollution caused by sand mining in Bestari Jaya	20
Figure 2.11	Sg Langat is polluted mainly due to sand mining and land clearing	20
Figure 2.12	Effect of moist curing on strength	23
Figure 3.1	Ordinary Portland cement	26
Figure 3.2	River sand	27
Figure 3.3	The river must be oven dried	27
Figure 3.4	Particle size distribution of fine aggregate	28
Figure 3.5	Coarse aggregate	29
Figure 3.6	Particle size distribution of coarse aggregate	29
Figure 3.7	Palm oil fuel ash (POFA)	31
Figure 3.8	Ground POFA	31
Figure 3.9	Water curing	33
Figure 3.10	Slump test	35
Figure 3.11	Compressive strength machine	36
Figure 3.12	The specimen is being weighed and recorded	37
Figure 3.13	The compressive strength testing in progress	37
Figure 3.14	Flexural testing machine	39
Figure 4.1	The effect of POFA content on workability of concrete	42
Figure 4.2	Slump value at 40% of sand replacement.	42
Figure 4.3	Compressive strengths variation with different percentages of POFA	A 44
Figure 4.4	Position of cube specimens in compression machine	45
Figure 4.5	Concrete cube specimens after testing	45
Figure 4.6	Flexural strength of concrete containing different percentages of POFA	47

Figure 4.7	Beam specimen before testing	47
Figure 4.8	Beam specimen after testing	48

LIST OF SYMBOLS

°C	Degree Celcius
0	Degree
%	Percentage
μm	Micro meter
mm	Millimetre
m ³	Cubic metre
g	Gram
kg	Kilogram
kg/m ³	Kilogram per cubic metre
kN	Kilo Newton
MPa	Mega Pascal
f_c	Compressive strength of concrete specimen
Р	Maximum load carried by the specimen during testing
А	Area
R	Modulus of Rupture
l	Distance between the support
b	Net Width
d	Depth

LIST OF ABBREVIATIONS

POFA	Palm Oil Fuel Ash
C-S-H	Calcium Silicate Hydrate
EFB	Empty Fruit Bunches
FFB	Fresh Fruit Bunches
СРО	Crude Palm Oil
OPS	Oil Palm Shell
СР	Coarse POFA
FP	Fine POFA
OPC	Ordinary Portland Cement
ASTM	American Society for Testing and Materials
BS	British Standard
Ca(OH) ₂	Calcium Hydroxide
Ca(OH) ₂ SiO ₂	Calcium Hydroxide Silicon dioxide
× /-	•
SiO ₂	Silicon dioxide
SiO ₂ Al ₂ O ₃	Silicon dioxide Aluminium oxide
SiO_2 Al_2O_3 Fe_2O_3	Silicon dioxide Aluminium oxide Iron oxide
SiO_2 Al_2O_3 Fe_2O_3 CaO	Silicon dioxide Aluminium oxide Iron oxide Calcium oxide
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO MgO	Silicon dioxide Aluminium oxide Iron oxide Calcium oxide Magnesium oxide
SiO_2 Al_2O_3 Fe_2O_3 CaO MgO Na_2O	Silicon dioxide Aluminium oxide Iron oxide Calcium oxide Magnesium oxide Sodium oxide
SiO_2 Al_2O_3 Fe_2O_3 CaO MgO Na_2O K_2O	Silicon dioxide Aluminium oxide Iron oxide Calcium oxide Magnesium oxide Sodium oxide Potassium oxide