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ABSTRAK 

Isu perubahan iklim dan kesannya terhadap banyak aspek alam sekitar menjadi lebih 

cabaran kepada masyarakat. Pelepasan dan kepekatan karbon dioksida dan gas rumah 

hijau memberi kesan kepada peningkatan suhu, dan dengan itu membawa kepada 

pemanasan global. Oleh itu, adalah penting dan wajar untuk menganalisis dan 

meramalkan perubahan pembolehubah iklim terutamanya untuk hujan. Kajian ini 

memberi tumpuan kepada analisis ramalan corak hujan Lubuk Paku dan Temerloh di 

negeri Pahang berdasarkan hujan bersejarah. Corak hujan boleh menganggarkan 

perubahan iklim masa depan, model edaran umum (GCMS) digunakan. Oleh itu, Statistik 

penskalaan rendah Model (SDSM) digunakan untuk menukar resolusi spatial kasar 

output GCMS ke dalam resolusi halus. Walau bagaimanapun, terdapat bias dalam hasil 

SDSM dan hasilnya GCMS. Oleh itu, dua kaedah pembetulan bias yang Linear Scaling 

(LS) dan Intensiti Tempatan Penskalaan (lokus) digunakan untuk mengurangkan bias 

sebelah dari model hidrologi dan prestasi mereka yang dibandingkan. 



iv 

ABSTRACT 

The issue of climate change and its effects on many aspects of the environment become 

more challenges for society. The emission and concentration of carbon dioxide and 

greenhouse gases give impact to the increase in temperature, and thus leading to global 

warming. It is important and desirable to analyze and predict the changes of climatic 

variables especially for rainfall. However, the accuracy in the climate simulation is 

becomes significant to ensure the reliability of the projection results. Thus, the bias 

correction (BC) methods were suggested to imply to treat the gaps between observed and 

simulated results.  This study is focus on analysis the prediction patterns of rainfall in 

Lubuk Paku and Temerloh in Pahang state based on the historical rainfall. The rainfall 

pattern can be estimate the future climate change, general circulation models (GCMs) are 

applied. Therefore, Statistical Downscaling Model (SDSM) is applied in order to convert 

the coarse spatial resolution of the GCMs output into a fine resolution. However, there 

are biases in SDSM result and GCMs result. Therefore, two bias correction methods 

which are Linear Scaling (LS) and Local Intensity Scaling (LOCI) are applied to reduce 

the bias of those model and the performance of those methods are being compared.  

 

 



v 

TABLE OF CONTENT 

DECLARATION 

TITLE PAGE  

ACKNOWLEDGEMENTS ii 

ABSTRAK iii 

ABSTRACT iv 

TABLE OF CONTENT v 

LIST OF TABLES ix 

LIST OF FIGURES x 

LIST OF ABBREVIATIONS xi 

CHAPTER 1 INTRODUCTION 1 

1.1 Background of Study 1 

1.2 Problem Statement 2 

1.3 Objective of Study 4 

1.4 Scope of Study 4 

1.5 Significant of Study 4 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Introduction 5 

2.2 Importance of Accuracy in Estimation 6 

2.3 Problem of Calibration and Validation Processes in Modelling 7 

2.4 Comparison of Bias Correction Performances 9 

2.5 Climate Modelling 12 



vi 

2.5.1 Dynamical Downscaling (DD) 13 

2.5.2 Statistical Downscaling (SD) 13 

2.6 Statistical Downscaling Model (SDSM) 14 

2.6.1 Calibration and Validation Processes in the SDSM 14 

CHAPTER 3 METHODOLOGY 16 

3.1 Introduction 16 

3.2 Climate Model 18 

3.2.1 Predictors Selection 19 

3.2.2 Model calibration and validation 22 

3.3 Bias Correction Methods 23 

3.3.1 Linear scaling (LS) of precipitation 23 

3.3.2 Local Intensity Scaling (LOCI) of precipitation 23 

CHAPTER 4 RESULTS AND DISCUSSION 24 

4.1 Climate Trend at Lubuk Paku and Temerloh 24 

4.1.1 Rainfall simulation results 25 

4.1.2 Rainfall trend in the future year 2040 to 2069 30 

4.2 Application of LS 33 

4.3 Application of LOCI 39 

4.4 Generated treatment 47 

4.4.1 Application of LS for future period 2040 to 2069 47 

CHAPTER 5 CONCLUSION 49 

5.1 Conclusion 49 

5.2 Recommendation 50 



vii 

REFERENCES 51 

APPENDIX A 52 

APPENDIX B 53 

APPENDIX C 54 

APPENDIX D 55 

APPENDIX E 56 

APPENDIX F 57 

APPENDIX G 58 

APPENDIX H 59 

APPENDIX 1 60 

APPENDIX J 61 

APPENDIX K 62 

APPENDIX L 63 

APPENDIX M 64 

APPENDIX N 65 

APPENDIX O 66 

APPENDIX P 67 

APPENDIX Q 68 

APPENDIX R 69 

APPENDIX S 70 

APPENDIX T 71 

APPENDIX U 72 



viii 

APPENDIX V 73 

APPENDIX W 74 

 

 



ix 

LIST OF TABLES 

Table 2.1: The Advantages and Disadvantages of the Two Bias Correction  12 

       Methods 

Table 3.1: List of Predictors in the SDSM Analysis     21 

Table 4.1: MAE Results for Monthly Mean Precipitation     28 

Table 4.2: Correlation Value of Precipitation     29 

Table 4.3: Correction Factor of LS for LP      35 

Table 4.4: Correction factor of LS for TEM      37 

Table 4.5: MAE results for LS Treatment      38 

Table 4.6: Correction Factor of LOCI for LP     42 

Table 4.7: Correction Factor of LOCI for TEM     46 

 

 

 



x 

LIST OF FIGURES 

Figure 3.1: Flow Chart of Research Methodology 17 

Figure 3.2: Schematic diagram of SDSM analysis 20 

Figure 4.1: Calibrated results between observed and simulated for LP station 25 

Figure 4.2: Calibrated result between observed and simulated for TEM station 26 

Figure 4.3: Validated result between observed and simulated for LP station 26 

Figure 4.4: Validated result between observed and simulated for TEM station 27 

Figure 4.5: Projection of rainfall trend for 2040-2069 31 

Figure 4.6: Projection of rainfall trend in interval year 2040-2069 31 

Figure 4.7: Projection of rainfall trend for 2040-2069 32 

Figure 4.8: Projection of rainfall trend in interval year 2040-2069 33 

Figure 4.9: Application of LS for calibration (1982-1998) 34 

Figure 4.10: Application of LS for validation (1999-2011) 34 

Figure 4.11: Application of LS for calibration (1982-1998) 36 

Figure 4.13: Simulated results after treated by LOCI for January to December in 

1982 41 

Figure 4.14: Simulated results after treated by LOCI from January to December for 

1975 45 

Figure 4.15: Application of LS for rainfall projection in LP 47 

Figure 4.16: Application of LS for rainfall projection in TEM 48 

 

  



xi 

LIST OF ABBREVIATIONS 

SDSM Statistical Downscaling Model 

DD Dynamical Downscaling 

SD Statistical Downscaling 

BC Bias Correction 

GCM Global Circulation Model 

RCM Regional Circulation Model 

NCEP National Centers for Environmental Prediction 

MMD Metrology Malaysia Department 

DID Department of Irrigation and Drainage 

LP Lubuk Paku 

TEM Temerloh 

LS Linear Scaling 

LOCI Local Intensity Scaling 

MAE Mean Absolute Error 

mlsp mean sea level pressure 

p_f  surface airflow strength 

p_u surface zonal velocity 

p_v surface meridional velocity 

p_z surface vorticity 

p_th surface wind direction 

p_zh surface divergence 

p5_f 500hpa airflow strength 

p5_u 500hpa zonal velocity 

p5_v 500hpa meridional velocity 

p5_z 500hpa vorticity 

p500 500hpa geopotential height 

p5th 500hpa wind direction 

p5zh 500hpa divergence 

p8_f 850hpa airflow strength 

p8_u 850hpa zonal velocity 

p8_v 850hpa meridional velocity 

p8_z 850hpa vorticity 

p850 850hpa geopotential height 



xii 

p8th 850hpa wind direction 

p8zh 850hpa divergence 

r500 relative humidity at 500hpa 

r850 relative humidity at 850hpa 

rhum near surface relative humidity 

shum 

temp 

surface specific humidity 

mean temperature 

 

  

  

  

  

  

 

 

  

  

  

  

  

  



1 

CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study 

 Climate change is the most serious environmental threats of the 21st centuries and 

become a very serious global issue. Extreme or severe climate change can lead to natural 

disaster. Factors such as global factor, national factor and localized factor could be the 

cause and influences climate changes. The emission and concentration of carbon dioxide 

and greenhouse gases give impact to the increase in temperature, and thus leading to 

global warming. Global warming, open burning (haze) are some of the good examples of 

global factor leads from human activities in industrialization and clearing land illegally.  

 Malaysia is one of the countries in the world that experiences a warming trend for 

the past few decades. According to Intergovernmental Panel on Climate Change (IPCC) 

in year 2001, the global land precipitation has raising about 2% since the early of the 20th 

century.  It is also reported in year 2007, the extremely hot temperature, heat waves and 

heavy precipitation events will become more frequent. In the past few years, the 

frequency of long dry period tended to be higher with significant increase in the mean 

and variability of the length of the dry spells. All the indices of wet in these areas show a 

decreasing trend. Increasing temperature with long dry periods would give variable result 

of weather and climate (Deni et al., 2008). 

 Generally, Malaysia is considered as a free zone from climate related disaster. 

However, mild climate-disasters are quite frequent to happen lately. These refer to the 

occurrence of floods and droughts that caused significant socio-economic impacts to the 

nation. Not only that, the occurrence of landslides due to excessive rainfall and strong 

winds happened at the hilly and coastal areas had caused minimal damage. The excessive 
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rainfall causing the floods incidence happened in the southern states of Malaysia, such as 

Negeri Sembilan and Johor.  

 Realizing the importance of reducing the impact of climate change and 

Greenhouse Gas’s emissions, the Malaysia government has taken concerted efforts 

towards this issue by introducing the mitigation programs in the Ninth Malaysian Plan. 

There has been a rapid change in climate in response to human influences caused by local, 

national and global social, economic, industrial, and land use developments. These 

changes continue to have impacts on different aspects of society, including health, 

agriculture, water resources, and energy demand (Raneesh KY, 2013) Therefore, it is 

important to investigate observed changes in the present climate so that future climate 

predictions can be validated and put into context.  

 There are many climatic models were introduces to project the long term climate 

information with considered the estimation of the Greenhouse Gas such as General 

Circulation Models (GCMs) and Regional Climate Models (RCMs). However, the output 

of those models are still afflicted with biases to a degree that precludes its direct use, 

especially in climate change impact studies. To overcome this problem, bias correction 

has now become a significant procedure in climate change impact studies. Hence, it is 

important to know the methodologies of bias correction and their performances and to 

treat reliability result in calibration and validation process. 

1.2 Problem Statement 

 Nowadays, Malaysia experienced extreme climate change which is considered 

quite unusual. This extreme change can be seen by the major flood due to heavy rainfall 

with during monsoon northeast and cold temperature which is 19°C happened in Kelantan 

in the early years. The flood was reported as the warming effect in Siberia worsen with 

poor drainage systems. These occurrence of floods cause displacement of people, 

damaged infrastructures and losses of property. Besides, the occurrence of a tornado often 

occurs at the end of 2014 as well as the El-Nino phenomenon resulting in more floods, 

droughts, and heat waves.  

 Extreme climate is referred to the unexpected and unusual weather trend such as 

drought, flood, tornadoes and hurricane. Drought event associated with reducing of water 

resources supply. The drought normally occurred when happening rain decrement to a 
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period where well off sources of water under normal level. Based on historical drought 

event in Malaysia, extreme drought were recorded happened in year 1991 at Malacca that 

resulting Durian Tunggal dam dropped until critical level and water rationing at most of 

the state. In year 1998, El Nino that caused extensive impact to environment. Selangor, 

Sarawak and Sabah most exposed with the effect of this phenomena due to wild forest 

fire happened during dry weather condition. That situation had resulted months of hazy 

atmosphere and are threatened the citizen’s health. 

 As climate change give significant impact to human and earth, it is very important 

to predict future climate change information as it can provides information that helps all 

public people and policy makers to develop an innovative idea in storage and productivity 

in response to climate change risks and make decisions accordingly. Many of climate 

model were introduces to project the long term climate information with considered the 

estimation of the Greenhouse Gases (GhGs) in the future. General Circulation Model 

(GCMs) is a complex mathematical model that attempts to provide information about the 

global climate. GCMs usually include equations that describe the energy changes that 

occur when regions of different temperature, pressure, chemical composition, velocities, 

and accelerations interact with each other. However, GCMs’ outputs cannot be directly 

used to force hydrological models for assessing the hydrological impacts of climate 

change (Sharma et al., 2007), because GCMs do not provide reliable information. 

Therefore, dynamical and statistical downscaling were introduced to transfer the climate 

information from GCMs into the finer scales. 

 Even though, these climatic model are still subjected to consider the biases 

treatment to ensure the accuracy and reliability of the result. For example, most Regional 

Climate Models (RCMs) which is also a climatic model tend to overestimate the 

frequency of precipitation and the occurrence of light precipitation, while they 

underestimate the heavy precipitation (Murphy, 1999; Fowler et al., 2007). To overcome 

this problem, post-processing of the climatic output by correcting with and towards 

observations has become a standard procedure in climate change impact studies. This BC 

procedure significantly alters the model output and therefore influences all CCIS relying 

on bias corrected data. (Ehret, 2012). 
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1.3 Objective of Study  

The objective of this study is: 

i. To evaluate the performances of two different methods of the bias corrections 

which are Linear Scaling and Local Intensity Scaling. 

ii.  To determine the reliability of the climate projection results using bias 

corrections.  

 

1.4 Scope of Study 

 The study focused on the methods of bias correction available and widely used in 

climate model. The historical daily rainfall and temperature were provided by Malaysia 

Meteorological Department (MMD and Drainage Malaysia (DID) respectively. Bias 

correction methods were compared based on their performances in treating the biases. 

The methods used are linear scaling (LS) and local intensity scaling (LOCI). The study 

treat the biases projected result at two stations in Pahang state there are Lubuk Paku and 

Temerloh. 

1.5 Significant of Study 

 The study is very important to enhance the accuracy and the reliability of the 

future climatic trend result and can be used as very important information in preparing 

and managing the long term water resources for Pahang state. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

 Climate change is defined as any significant change in the measures of climate 

for long lasting period of time. This climate change includes major changes in 

temperature, precipitation and wind pattern among other effect that occur over several 

decades or longer. Climate change gives a significant effect on Malaysia’s climate such 

as increasing flooding risks and leading to large droughts.  

 As located near the equator, Malaysia's climate is categorized as being hot and 

humid throughout the year. Malaysia is exposed to the El Nino effect, which reduces 

rainfall in the dry season. Malaysia faces two monsoon winds seasons, the Southwest 

Monsoon (SWM) from late May to September, and the Northeast Monsoon (NEM) from 

October to March. The NEM which originating from China and the north Pacific brings 

more rainfall while the SWM originates from the deserts of Australia. During the NEM, 

the exposed areas on the eastern part of the Peninsula to receive heavier rainfall than other 

months. On the other hand, the areas which are sheltered by the mountain ranges (the 

Titiwangsa Range) are more or less free from its influence. The period of the SWM is a 

drier period for the whole country, particularly for  

 One of the greatest challenge in the facing modern society is the management of 

risk due to climate change such as extremes event of floods and droughts. (Vorosmarty 

et al., 2000; Oki and Kanae, 2006). Risk is a concept representing in the statistical terms, 

hence, proper risk management must consider the climatic forecasting to prepare an 

effective long term plan. Ordinarily, output fields from climate models, regional or 

global, are used to force future hydrological simulations. It is well known that some form 

of pre-processing is necessary to remove biases present in the simulated climate output 

https://en.wikipedia.org/wiki/Climate_change
https://en.wikipedia.org/wiki/El_Ni%C3%B1o
https://en.wikipedia.org/wiki/Monsoon
https://en.wikipedia.org/wiki/Australia
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fields before they can be used for this purpose (Sharma et al., 2007; Hansen et al., 2006; 

Christensen et al., 2008) 

 Most of the global climate models have good production for the predicted 

temperature trend but not in precipitation. The difficulty arises due to the high degree of 

complexity and non-linearity of the microphysical and 5 thermodynamic response of the 

climate system, which drives the hydrological cycles, to changes in the boundary 

conditions such as atmospheric greenhouse gas loading. For example, under conditions 

of constant relative humidity but warmer temperatures, the atmosphere should be able to 

hold more moisture and consequently produce more extreme precipitation events 

(Trenberth et al., 2003; Emori and Brown, 2005; Lenderink and Meijgaard, 2008; Berg 

et al., 2009). The effects that causes from the boundary forcings the precipitation are 

under debate. Radiative balance arguments have been made in favor of a slowing-down 

of the hydrological cycle (Held and Soden, 2006; Allen and Ingram, 2002). This could 

explain a weaker increase of mean precipitation with temperature than the rate given by 

the Clausius-Clapeyron equation for 15 saturation specific humidity.  

 In the simplest formulations of bias correction which is linear scaling (LS), only 

the changes in a specific statistical aspect of the simulated fields is used. The change is 

applied directly to present day observations to obtain a field which is then used to force 

the hydrological models. Often the change in mean value or the variance is employed. 

More advanced bias correction methodologies correct for more than one explicitly chosen 

statistical aspect (Leander and Buishand, 2007 Hurkmans et al., 2010). Hydrological 

processes depend on the entire distribution function of the precipitation intensity and 

temperature. Hence, the reliability result can be made when adjusting the entire 

probability density function (pdf) of the simulated fields to that of the observations. 

2.2 Importance of Accuracy in Estimation 

 Accuracy is only one of the dimensions in the broader context of quality that has 

been articulated in recent years. Yet it remains as critical importance. Inaccuracy in 

estimation and forecasting will causes by error in sampling measurement and processing. 

It is important to estimate accurately from the beginning of the procedure of any process. 

Estimate accurately can avoid from any errors in any process. Researchers have to know 
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the importance of accurate estimation especially for the long term climate prediction. 

However, the biases are still exist due to the weaknesses of the climate model.  

 The General Circulation Models (GCMs) outputs could not be directly used for 

assessing the hydrological impacts of climate change (Sharma et al., 2007)]. It is because 

GCMs do not provide reliable information on scales below 200 km for most hydrological-

relevant variables (Maraun et al., 2010). Therefore, downscaling techniques are needed 

to transfer the information from GCMs to finer scales by applying a higher-resolution 

regional climate model (RCM) over a limited area with initial and boundary conditions.  

2.3 Problem of Calibration and Validation Processes in Modelling 

 Calibration is the activity of checking the accuracy of a measuring instrument of 

any type. It may also include adjustment of the instrument to bring it into alignment with 

the standard. While validation is assessing the degree to which instrument accurately 

measures what it purpose to measure or a statistical technique or test that predicts a value 

accurately. Validation is an extension from the calibration process. Its purpose is to assure 

that the calibrated model properly assesses all the variables and conditions which can 

affect model results, and demonstrate the ability to predict field observations for 

periods/conditions separate from the calibration effect. 

 According to International Atomic Energy Agency (1982) defines a validation as 

one of the process to provide a good representation of the actual process occurring in a 

real system. Vogel and Sankarasubramanian (2003) stated that model hypothesis testing 

(validation) should be performed prior to and independent of parameter estimation 

(calibration). Thus without validation, calibration is worthless and so is uncertainty 

estimation. Klemes (1986) stated a hierarchical scheme for the validation of hydrologic 

models to tests model ability to make predictions based on the calibration period (split-

sample), on different basins (proxy-basin), and under different climate regimes 

(differential split-sample). Verification is the first step that only deal with numerical 

resolution of the equation in the model. It is not deal with the agreement between model 

and reality but deal with no coding errors and accurate numerical method to solve model 

equations. There are different methods are available to achieve this goal of verification. 

One of them which is the standard one is to compare the numerical solution with the 
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analytical one for highly idealized test cases for which an exact solution is available. It is 

also possible to formally state that some parts of the code are correct. 

 The next step which is the validation process, which the process to evaluate the 

performances of the calibrated result. Validation must be first performed on the 

representation of individual physical processes. Therefore, model results have to be 

compared with observations obtained in the same conditions. The boundary conditions 

and forcings must be correctly specified to represent the observed situation. This is 

generally achieved for particular locations, during field campaigns specifically designed 

to study this process. On a larger scale, the different components of the model have to be 

tested independently, ensuring that the boundary conditions at the interface with the other 

components are well defined. Finally, the results of the whole coupled model have to be 

compared with observations. All those steps are necessary because there are always exist 

possibility after the different elements are coupled together, due to non-linear interactions 

between the components. Several problems might cause by the formulation of the 

boundary conditions when components are run individually. However, having a coupled 

model providing reasonable results is not enough. In order to test whether the results 

occur for the correct reason, it is necessary to check that all the elements of the model are 

doing a good job, and that the satisfactory overall behaviour of the model is not due to 

several errors in its various elements cancelling each other. 

 The verification and validation should be considered as processes that never lead 

to a final product. The model should be continuously retested as new data or experimental 

results become available. The building of a model could then be viewed in the same way 

as a scientific theory. Hypotheses are formulated and a first version of the model 

developed. The results of the model are then compared to observations. If the model 

results are in good agreement with the data, the model could be said as to be confirmed 

for those conditions, so increasing its credibility. However, this does not mean that the 

model is validated for all possible cases. If the model results do not compare well with 

observations, the model should be improved. Model developers and users also may 

decide if the model could not reproduce the observations in some special cases, this 

indicates that it is not valid for such conditions, although it can still be used in other 

situations where the tests indicate better behavior. 

http://www.climate.be/textbook/glossary_v.html#validation
http://www.climate.be/textbook/glossary_v.html#validation
http://www.climate.be/textbook/glossary_v.html#verification
http://www.climate.be/textbook/glossary_v.html#validation
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 A disagreement between model and observations can be related to an inadequate 

selection of the value of some parameters that are not precisely known. This is the 

meaning of calibrate of model which is adjusting those parameters. The calibration of 

physical parameters is generally required and is justified as there is no a prior reason to 

select one particular value in the observed range of the parameters. To obtain the most 

accurate numerical solution of the equations, it is valid to calibrate the numerical 

parameters. However, care has to be taken to ensure that the calibration is not a way of s 

masking some deficiencies in the model. If this does occur, there is a high probability 

that the selected parameters will not provide satisfactory results for other conditions (e.g. 

the climate at the end of the 21st century). Performing many tests for widely different 

situations and for various elements of the model should limit the risk, but the number of 

observations is often too small to ensure that the problem has been completely avoided. 

An additional problem with the constant improvement of the model and of its calibration 

as soon as new data becomes available is the absence of independent data to really test 

the performance of the model. Ideally, some of the available information should be used 

for the model development and calibration, and some should be kept to assess its 

accuracy. Another good model practice is to choose or design models components for 

which the selection of one particular value of the parameters has only a small impact on 

model results, so reducing importance of the calibration. 

 

2.4 Comparison of Bias Correction Performances 

 Climate change is widely used as the most pressing global issue facing society 

(Mitchell and Jones, 2005). Climate change has attracted attention its effects on 

biological, physical, and socioeconomic processes cannot be avoided. Thus, global 

climate models (GCMs) become a primary tool for understanding and modelling physical 

processes underlying climate system for climate change research. GCMs can simulate the 

present-day climate and project future climate conditions under different scenarios (Miao 

et al., 2013).  

 However, there are bias in regarding the GCMs output due to their representation 

of the intensity and frequency of meteorological variables. The bias is caused by limited 

computational resources, incomplete understanding of the way the climate reacts, 

simplified assumptions in model construction and uncertainties in model 

http://www.climate.be/textbook/glossary_c.xml#calibration
http://www.climate.be/textbook/glossary_c.xml#calibration
http://www.climate.be/textbook/glossary_c.xml#calibration
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0034
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0030
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parameterization. Moreover, current GCMs have insufficient spatial resolution to resolve 

many important processes or provide the spatial details required for impact studies (White 

and Toumi, 2013). Researchers generally employ a downscaling technique to generate a 

representation of climatic variables at a finer spatial scale (Shrestha et al., 2014) but both 

statistical and dynamic downscaling techniques exhibit considerable bias, as shown by 

comparing the simulated climate for a reference period with observations from the same 

period (Miao et al., 2015). 

 Highlight the above limitations, a number of statistical methodologies have been 

proposed to correct GCM outputs and their application to downscaling so that the results 

can be used for impact studies (Giorgi and Mearns, 1991). The underlying idea is the 

identification of possible biases between observed and GCM-simulated variables, which 

form the basis for correcting both current and future GCM simulations (Mehrotra and 

Sharma, 2015). Some commonly used correction techniques are based on the 

equalization of statistical characteristics between modeled and observed variables, such 

as the mean and the variance(Ho et al., 2011). 

 Scientists were using these methodologies to treat bias all over the world. Piani et 

al. (2010) validated a bias correction method (distribution mapping based on the gamma 

distribution) for correcting RCM-simulated daily precipitation over Europe. The results 

showed that this method performed reasonably well, not only at the mean but also at other 

moments (drought index and heavy precipitation) of intensity distribution. Terink et al. 

(2009) corrected RCM-simulated precipitation by fitting the mean and coefficient of 

variation of the observation, and corrected RCM-simulated temperature by fitting the 

mean and standard deviation of the observation. This bias correction process led to 

satisfactory results as precipitation and temperature differences between RCM data and 

observations decrease significantly.  

 Bennett et al. (2011) tested the performance of a quantile mapping bias correction 

method (based on an empirical distribution) for use in hydroclimatological projections in 

Australia. The bias correction improved the spatial correlation between modelled and 

observed seasonal and annual rainfall. This method can effectively couple RCM outputs 

to a hydrological model for assessing the hydrological impact in a changing climate. 

Lafon et al. (2012) compared the performance of four bias correction methods (linear, 

nonlinear, gamma, and empirical distribution-based quantile mapping) in the reduction 

http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0048
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0039
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0032
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0012
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0028
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0018
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of biases in RCM-simulated precipitation for seven catchments spread across Great 

Britain. The results showed that the mean and standard deviation of daily precipitation 

can be corrected robustly while the correction of skewness and kurtosis of daily 

precipitation are much more sensitive to the choice of a bias correction method and the 

selection of a particular calibration period. If both precipitation data sets (modelled and 

observed) can be approximated by a gamma distribution, the gamma-based quantile 

mapping method offers the best combination of accuracy and robustness. Otherwise, the 

nonlinear method is more effective at reducing the bias.   

 Gudmundsson et al. (2012) compared the performance of distribution-derived 

transformations, parametric transformations, and nonparametric transformations at 

downscaling precipitation for 83 stations in Norway. Nonparametric transformations 

gave the best performance in the reduction of systematical biases in RCM-simulated 

precipitation. The above mentioned comparisons were only conducted on the 

construction of climate projection, which is the first step for impact studies. Themel et al. 

[2010] compared an ensemble of seven statistical and bias correction approaches in 

downscaling RCM daily precipitation over the historical period in the Alps region. The 

results showed that bias correction approaches such as quantile mapping and local 

intensity (LOCI) scaling displayed significant advantages compared to the traditional 

multiple linear regression methods.  

 There are another methods to correct the bias of GCMs output and their 

application to downscaling so that the results can be used for impact studies. Some 

commonly used correction techniques are based on the equalization of statistical 

characteristics between modeled and observed variables, such as the mean and the 

variance (Ho et al., 2011; Li et al., 2012; Fang et al., 2015). The methods are linear 

scaling (LS) and Local Intensity Scaling (LOCI).    

 

 

 

http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0018
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0026
http://onlinelibrary.wiley.com/doi/10.1002/2015JD024159/full#jgrd53027-bib-0007
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Table 2.1: The Advantages and Disadvantages of the Two Bias Correction Methods 

Method Classification       Advantages      Disadvantages 

    

Linear scaling 

(LS) 

Mean Based • A mean monthly 

correction factor 

is applied to the 

RCM-simulated 

daily 

precipitation in 

a month. It is the 

simplest bias 

correction 

method in a 

month. It is the 

simplest bias 

correction 

method 

• The daily precipitation 

sequence is the same 

as that of the RCM -

simulated data (usually 

too many wet days 

compared to the 

observation). 

• It does not account for 

the changes in the 

frequency distribution 

of precipitation.  

• No adjustment is made 

to the temporal 

structure of daily 

precipitation 

occurrence. 

Local intensity 

scaling (LOCI) 

Mean-based 

 

• The wet-day 

frequency is 

corrected. A 

mean monthly 

correction factor 

is applied to the 

RCM-simulated 

daily 

precipitation in 

a month. 

• It does not account for 

the different changes 

in the frequency 

distribution of 

precipitation. 

• No adjustment is made 

to the temporal 

structure of daily 

precipitation 

occurrence. 

 

2.5 Climate Modelling 

 Climate models are computer programs that simulate how the climate has 

changed in past and how it will change in the future. In general terms, a climate model 

could be defined as a mathematical representation of the climate system based on 

physical, biological and chemical principles. The equations derived from these laws are 

so complex that they must be solved numerically. As a consequence, climate models 

provide a solution which is discrete in space and time, meaning that the results obtained 

represent averages over regions, whose size depends on model resolution, and for specific 

http://www.climate.be/textbook/glossary_r.html#resolution
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times. For instance, some models provide only globally while others have a numerical 

grid whose spatial resolution could be less than 100 km. The time step could be between 

minutes and several years, depending on the process studied. Statistical downscaling 

(SD) and dynamical downscaling (DD) are used for downscaling outputs of a GCM. SD 

methods are much simpler than DD methods to downscale the outputs of a GCM. Using 

SD methods, global-scale climate variables such as mean sea level pressure, zonal wind, 

temperature, geo-potential height are linked with local-scale variables such as observed 

temperature, precipitation and humidity. This is done by producing some 

statistical/empirical relationships (Wetterhall et al. 2008). To date, many statistical 

models have been developed and are available. 

2.5.1 Dynamical Downscaling (DD) 

 In dynamical downscaling, a high-resolution numerical model, or Regional 

Climate Model (RCM), with a resolution of about 5 to 50 km (Chu et al. 2010) is coupled 

with the GCM. The RCM drives the lateral and large-scale boundary condition from the 

GCM and provides detailed information or high-resolution outputs at the regional level. 

The GCM responds to large-scale forces such as greenhouse gases, atmospheric 

circulation, and oceanic circulation etc. On the other hand, the RCM simulates small-

scale climatic variables such as extreme climate events, orographic precipitation, and 

regional-scale anomalies. Since the RCM is dependent on the GCM’s boundary 

conditions, it is exposable to any systematic errors which belong to the GCM’s driving 

fields. The skill of the RCM is strongly dependent on both, the GCM’s driving forces and 

information about regional-scale forcing. Regional-scale forcing such as land use data 

and land sea. There must be a strong co-ordination between the global and regional 

climate modeling groups to ensure that the appropriate data is available. The RCMs are 

computationally intensive, depending upon the resolution and domain size (Wilby and 

Wigley 1997; Hay and Clark 2003; Fowler et al. 2007). 

2.5.2 Statistical Downscaling (SD) 

 SD methods are much simpler than DD methods to downscale the outputs of a 

GCM. Using SD methods, global-scale climate variables such as mean sea level pressure, 

zonal wind, temperature, geo-potential height, etc. are linked with local-scale variables 

(regional-scale variables) such as observed temperature and precipitation, and this is done 

http://www.climate.be/textbook/glossary_r.html#resolution
http://link.springer.com/article/10.1007/s00704-012-0765-0#CR7
http://link.springer.com/article/10.1007/s00704-012-0765-0#CR51
http://link.springer.com/article/10.1007/s00704-012-0765-0#CR20
http://link.springer.com/article/10.1007/s00704-012-0765-0#CR12
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by producing some statistical/empirical relationships (Wetterhall et al. 2006). SD is not 

only useful in numerical weather prediction and synoptic climatology, but is also applied 

for a wide range of climate applications. The main advantage of SD is that it provides 

local-scale information, which is very useful in climate change impact assessment studies 

(Giorgi et al. 2001). On the downside, the main disadvantage of this approach is that it 

requires long historical meteorological weather station data to construct an appropriate 

link with large-scale variables. The main assumption of SD is that the empirical 

relationship between larger and small scales is temporally stationary (Hay and 

Clark 2003). DD is a good alternative for SD in the case of basins which have no 

historical data (Benestad et al. 2008). 

2.6 Statistical Downscaling Model (SDSM) 

 The main tools to predict the variability and changes in climate variables such as 

temperature, rainfall and humidity on global and continental levels, are Global Climate 

Models that are also called General Circulation Models (GCMs). However, as the output 

of this model are based on large grid scale (250 to 600km), the output cannot be used 

successfully to investigate the environmental and hydrological impacts of climate 

change. In practice, the choice of downscaling method not only hinges on the time, data 

and technical resources available, but also the intended application (Wilby et al. 2010). 

The Statistical Downscaling Model (SDSM) has been identified as one of the leading 

statistical downscaling techniques and was recommended as an appropriate downscaling 

model by the Canadian Climate Impacts and Scenarios project (CCIS, 2006). The SDSM 

is a useful downscaling technique and able in reproducing observed climatic variability 

compared with other statistical downscaling methods as demonstrated by (Khan et al., 

2006; Dibike and Coulibaly, 2005). Numerous studies have also assessed the SDSM for 

downscaling GCM output to be used in many hydrological applications (Khan et al., 

2006; Gagnon et al., 2005; Diaz-Nieto and Wilby, 2005). 

2.6.1 Calibration and Validation Processes in the SDSM  

 SDSM is being used widely throughout the world to downscale the important 

climate variables such as temperature, precipitation, and evaporation for assessing 

hydrologic responses in climate change scenarios. This SDSM model is developed 

through a combination of multiple linear regression and the stochastic weather. SDSM 

http://link.springer.com/article/10.1007/s00704-012-0765-0#CR49
http://link.springer.com/article/10.1007/s00704-012-0765-0#CR17
http://link.springer.com/article/10.1007/s00704-012-0765-0#CR20
http://link.springer.com/article/10.1007/s00704-012-0765-0#CR6
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developed by Wilby et al. is a hybrid of multiple linear regression (MLR) and the 

stochastic weather generator (SWG). SDSM involved steps of screening, calibrate and 

validate. Screening process is crucial for the creation of credible downscaling scenarios. 

SDSM provides quantitative tools to assist in choosing a realistic set of predictors. 

Monthly percentages of explained variance show the capability of a given predictor to 

explain local climate variability. 

 The calibration and validation process are become important during 

forecasting/predicting procedure. The calibration step involves the establishment of 

statistical relationships between the selected predictors and the surface predictands 

(Gagnon, 2005). Furthermore, the SDSM is capable of modelling both conditional 

processes, such as precipitation, and unconditional processes using the regression 

relationships. The term of calibration refers to build relationship among local data 

(predictands) and selected regional atmospheric variables (predictors) based on multiple 

linear regression equations (Wilby and Dawson, 2007). The calibration results formulated 

by using specific period is used to estimate another combination of predictor variable 

values in validation process. The goal is to identify the fundamental rules and the 

predictand-predictors relationships. In the SDSM analysis, the calibrate model used to 

build predictand-predictors relationship and proceed to the weather generator to produce 

an ensembles of synthetic daily weather series at that region.  

 Once the SDSM has been calibrated, model calibrations must be verified through 

synthesizing daily time series using predictand and predictor variables. However, there 

is still have an error in estimating the mean and the variance. Hence, the user’s choice of 

reanalysis product for calibration of the SDSM affects the downscaled data produced. 

Therefore, users need to be aware that the National Centers for Environmental Prediction 

(NCEP) reanalysis used throughout the literature to calibrate the SDSM. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

 The main purpose of this study is to develop two bias correction methods from 

the climatic model output for two hydrological stations. The methodology was 

constructed to achieve the objectives of the study. Rainfall data were used to develop the 

future rainfall pattern in two respective stations. At the beginning of analysis, climate 

model will be used to project the current and future climate trend at site study. The 

function of climate model is to analyse the pattern of local climate (rainfall, temperature, 

period of dry and wet spell) which affected by the transition of greenhouse emission in 

the atmosphere during future years. In this study, SDSM 4.2.9 was applied to downscale 

the raw atmospheric resolutions turn to smaller climatic information scale that focus on 

the local station by using regression analysis. Then, the projection of local climate trend 

will be used to simulate and generate the monthly inflow time series via Global Climate 

model. Two bias correction method which are Linear Scaling (LS) and Local Intensity 

Scaling (LOCI) are applied to correct bias of the climate models’ output. This research 

focus on two stations in Pahang state LP and TEM to determine climate change scenarios 

on a daily, monthly and yearly. The certain period times and under the climate change 

scenario projections using rainfall and output from selected Global Climate Models 

selected (GCMs). Figure 3.1 shows a methodological project which involved with 2 

stages in achieving the objectives of study.  
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Figure 3.1: Flow Chart of Research Methodology  
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 This study has two stages. Climate models which is Global Climate Model is 

applied to investigate the nature of distribution of rainfall in the future for LP and TEM. 

Hence, rainfall data for Pahang state is obtained from particular agencies that responsible 

in preparing the original and reliable data. The MMD and DID is responsible for agency 

review, store information and data about the distribution of rainfall.  

 In order to have more precise and accurate data, checking had be done to the data 

received from MMD and DID. This is done by checking for any defect in filtering and 

analyzing process. Besides, there also have some missing data for certain period of times 

for some stations.  Hence, a method named arithmetic mean method is applied to find 

missing data for upcoming steps. Data that has been refined to be used as input to ensure 

that each model is able to process weather data with accurately and efficiently. All those 

checking and finding missing data are important as any input into the model must be 

correct to ensure that the results obtained in range. Besides, to prevent unreliable results 

as well as to ensure that results obtained can minimize disability.  

 In order to get result/output in line with this study, the data that has been processed 

is analyzed. This is to ensure that the results obtained can be presented in a more simple 

and convenient. In addition, this analysis process is important to ensure that the results to 

achieve the goal of the research objective of the study. The results should be in line with 

the study. After get satisfactory results, these data will be compiled in a more organized 

and structured. The discussions should be achieved with the results. The report in full 

should be updated to reference by the authorities and can be useful for benefits in the 

future. 

3.2 Climate Model 

 In this study, the Statistical Downscaling Model (SDSM) version 4.2 (Wilby et. 

al. 2007) was used and applied to downscale the GCM output to a regional scale as well 

as to project the rainfall 2040-2069. The variables of GCMs are represents the physical 

process of atmosphere, ocean, cryosphere, and land surface in the numerical model with 

considering the greenhouse gasses in the future (IPCC, 2011). Unquestionably, these 

model have credibility in projecting climate simulation (Ghosh and Mujumdar, 2007; 

Anandhi et. al. 2008). However, the spatial resolution presented are coarse (250km - 600 

km). Besides, the GCMs’ ability may be suspicious because some critical climatic 
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conditions like rain well correlated with atmospheric conditions in a particular sub-grid 

scale (Wilby and Wigley, 2000).  

 SDSM model had implies the statistical relationships between large-scale 

resolutions of GCMs (predictors) with local climate variables (predictands) based on 

multiple linear regression techniques. Different types of data is allowed to be converted 

into standard predictor variables before being downscaled down and calibrated to produce 

non-linear regression models. To generate the most ideal downscaled model, SDSM can 

reduce the standard error of estimate and increase the number of explained variance using 

bias correction and variance inflation techniques (Wilby et al. 2002; Paulin et al., 2005) 

made SDSM a reliable tool for climate downscaling (Samadi et al., 2013; Muluye, 2012).  

 There are two types of data required in SDSM downscaling process which are 

predictand and predictor. In the present study, historical rainfall (1982-2011) and (1975-

2004) are recorded at LP and TEM accordingly. Besides, the National Center for 

Environmental Prediction (NCEP) reanalysis data of the study area for the time period of 

1948-2015 were used as the predictor for this study. 

3.2.1 Predictors Selection  

 To obtain the good statistic relationship between predictors and predictands, the 

SDSM proposed screening process in the Screen Variables stage to measure the 

performance level of selected predictors with the single-site of predictand. The simulation 

performances are presenting in seasonal and partial correlation analysis in range 0 to 1 in 

positive or negative relationship; as guidance to the decision makers in identifying the 

behavior of each variable while reacting to local climatic variables. 
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Figure 3.2: Schematic diagram of SDSM analysis 
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Table 3.1: List of predictors in the SDSM analysis 

No Predictors variable Predictors description 

1 mlsp mean see level pressure 

2 p_f surface airflow strength 

3 p_u surface zonal velocity 

4 p_v surface meridional velocity 

5 p_z surface vorticity 

6 p_th surface wind direction 

7 p_zh  surface divergence 

8 p5_f 500hpa airflow strength 

9 p5_u 500hpa zonal velocity 

10 p5_v 500hpa meridional velocity 

11 p5_z 500hpa vorticity 

12 p500  500hpa geopotential height 

13 p5th  500hpa wind direction 

14 p5zh  500hpa divergence 

15 p8_f  850hpa airflow strength 

16 p8_u  850hpa zonal velocity 

17 p8_v  850hpa meridional velocity 

18 p8_z  850hpa vorticity 

19 p850  850hpa geopotential height 

20 p8th 850hpa wind direction 

21 p8zh  850hpa divergence 

22 r500  relative humidity at 500hpa 

23 r850  relative humidity at 850hpa 

24 rhum  near surface relative humidity 

25 shum  surface specific humidity 

26 temp  mean temperature 

 

 

However, the difficulty happened in finding the best set of predictors representing for 

multi-site of predictands. The analysis may take longer time and complicated procedure 

to screen the predictors-predictands relationship because SDSM tool could be done by 

single-site predictand.  

 The generated correlation value shows the percentage of variance that can be 

explained in the form of multi dependent variable, by using the multi independent 

variable and also giving the criterion variables (product innovation variables) for each of 

them. The formula for the correlation matrix rxy is 
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 Cov(xy) =  
1

𝑁
∑(xiyi – xy) 

 rxy = 
Cov(xy) 

√𝑠2𝑥+𝑠2𝑦
 

where xi and yi refer to the predictands and predictors data, is mean value of both 

variables, while and refer to their standard deviation. Basically, the capability among 

variables will be interpreted as values between -1 to 1 which shows the positive/negative 

association relation. 

3.2.2 Model calibration and validation  

 The calibration and validation process are become necessity during 

forecasting/predicting procedure. In the mathematic interpretation, “calibration is a 

measurement process that assigns values to the property of an artifact or to the response 

of an instrument relative to reference standards or to designated measurement process” 

(Croarkin and Tobias, 2012). The term of calibration refers to build/design relationship 

among local data (predictands) and selected regional atmospheric variables (predictors) 

based on multiple linear regression equations (Wilby and Dawson, 2007). The calibration 

results formulated by using specific period are as foundation to estimate another 

combination of predictor variable values in validation process. The goal is to identify the 

fundamental rules and the predictand-predictors relationships are able to adequate as 

original data. 

 In the SDSM analysis, the calibrate model used to build predictand-predictors 

relationship and proceed to the weather generator to produce an ensembles of synthetic 

daily weather series at that region. Therefore, the local rainfall stations were calibrated 

for the time period of 1961-1975 and validated for the period of 1976-1990. The 

temperature was calibrated for the time period of 1972-1999 and validated for the period 

of 2000-2008. By using the same GCMs predictors’ variables in model calibration, the 

ensembles of synthetic daily weather series during year 2010 to 2099 were generated in 

the scenario generation process. 
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3.3 Bias Correction Methods 

 Climate models subjected to systematic errors in their output. These errors cause 

by limited spatial resolution (horizontal and vertical), simplified physics and 

thermodynamic processes, numerical schemes and incomplete knowledge of climate 

system processes. Such errors can and generally should be corrected for, before using 

climate model data in impact studies. The main assumptions of bias correction methods 

are quality of the observations database limits the quality of the correction, it is assumed 

that the bias behaviour of the model does not change with time and for limitation is 

temporal errors of major circulation systems could not be corrected. To correct these 

biases, several methods exist, such as delta change approach, multiple linear regression, 

analogue methods, linear scaling, local intensity scaling and quantile mapping. In this 

study, two bias correction methods were used for precipitation. These bias correction 

methods were conducted on a monthly basis from 1982 to 2011 for LP and 1975 to 2004 

for TEM. 

3.3.1 Linear scaling (LS) of precipitation 

 The LS method aims to perfectly match the monthly mean of corrected values 

with that of observed ones (Lenderink et al., 2007). It operates with monthly correction 

values based on the differences between observed and raw data (raw RCM simulated data 

in this case). Precipitation is typically corrected with a multiplier. 

3.3.2 Local Intensity Scaling (LOCI) of precipitation 

 The LOCI method (Schmidli et al., 2006) corrects the wet-day frequencies and 

intensities and can effectively improve the raw data which have too many drizzle days 

(days with little precipitation). It normally involves two steps: firstly, a wet-day threshold 

for the mth month Pthres,m is determined from the raw precipitation series to ensure that 

the threshold exceedance matches the wet-day frequency of the observation; secondly, a 

scaling factor is calculated and used to ensure that the mean of the corrected precipitation 

is equal to that of the observed precipitation

https://climate4impact.eu/impactportal/help/faq.jsp?q=EUPORIAS-Glossary#Climate
https://climate4impact.eu/impactportal/help/faq.jsp?q=EUPORIAS-Glossary#Bias
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Climate Trend at Lubuk Paku and Temerloh 

 The IPCC in the special report of The Regional Impacts of Climate Change stated 

three of hydrological variables get involves indirectly due to the climate impact there are 

soil moisture, ground water recharge and runoff. The prediction of climate trend at site 

study for the historical year (1982-2011) and (1975-2004) for respectively two stations 

and future year (2040-2069) are produced by the simulated of mathematical relationship 

between the local climate pattern and information of the atmospheric circulation at 

specific sub-grid. The climate is predicted in synthetic daily and monthly precipitation at 

2 of rainfall station at LP and TEM station by using multi-regression techniques in the 

SDSM model. 

 In the SDSM model, the climate simulation is started with the screening of 

variables performance which has better association to the local rainfall stations 

(predictand). This analysis is only prefer to the rainfall station due to the two reasons; 1) 

The selection of rainfall station that been used in this analysis is more than 1 and 2) The 

rainfall predictand is more sensitive and complicated to the atmospheric parameters rather 

than the temperature. Since the screening involve 26 of NCEP predictors and 2 of local 

predictands, therefore the multi-correlation matrix (M-CM) been used to analyze many-

to-many relationships resulted in the form of correlation matrix. The purpose of this 

analysis is to screen all the predictand-predictors performance. Based on the results, 3 of 

predictors were selected to simulate with local climate characteristics at LP and 5 

predictors for TEM. Then, each local predictand calibrated (1982-1996) and validated 

(1997-2011) and predictands calibrated (1975-1989) and validated (1990-2004) for 

respective stations to these predictors set from NCEP data to evaluate the performance of 



25 

the simulated result compared to the observed data. The GCM-derived predictors were 

then used to generate the daily weather series based on re-analysis predictor variables for 

the future year.  

4.1.1 Rainfall simulation results 

4.1.1.1 The calibrated and validated performance 

 Using the selected predictors set, LP station was calibrated (1983-1998) and 

validated (1999-2011) with the NCEP data. For TEM station was calibrated (1975-1989) 

and validated (1990-2004). Figure 4.1 and figure 4.2 shows the calibration results 

between observed and simulated data for LP and TEM rainfall stations meanwhile Figure 

4.3 and 4.4 present the validation result for LP and TEM respectively. 

 

 

 

 

 

 

Figure 4.1: Calibrated results between observed and simulated for LP station 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

Jan Feb March April May June July Aug Sept Oct Nov Dec

Observed Simulated

R
ai

n
fa

ll
 m

m
/m

o
n
th



26 

 

 

 

 

 

Figure 4.2: Calibrated result between observed and simulated for TEM station 

 

 

 

 

 

 

 

Figure 4.3: Validated result between observed and simulated for LP station 

 

0

50

100

150

200

250

300

350

Jan Feb March April May June July Aug Sept Oct Nov Dec

Observed Simulated

0

50

100

150

200

250

Jan Feb March April May June July Aug Sept Oct Nov Dec

Observed Simulated

R
ai

n
fa

ll
m

m
/m

o
n

th
R

ai
n
fa

ll
 m

m
/m

o
n
th

 



27 

 

Figure 4.4: Validated result between observed and simulated for TEM station 
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Table 4.1: MAE results for monthly mean precipitation  

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on MAE result, prediction is expected well simulated throughout the year for both 

stations. Although the error for TEM in August is quite big, but it is still well simulated 

 

 

 

 MAE (%) 

Month LP TEM 

Jan 5.8 

 

5.9 

 

Feb 5.7 7.8 

Mar 4.5 4.2 

Apr 3.9 4.7 

May 3.2 8.2 

June 3.7 5.5 

July 6.5 6.1 

Aug 2.5 11.5 

Sept 3.4 4.7 

Oct 6.7 2.4 

Nov 1.8 2.5 

Dec 6.5 5.2 
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Table 4.2: Correlation value for precipitation 

 CORRELATION (%) 

Month LP TEM 

Jan 1.0 0.3 

Feb 1.0 0.6 

Mar 1.0 0.1 

Apr 1.0 0.2 

May 1.0 0.2 

June 1.0 0.7 

July 1.0 0.3 

Aug 1.0 0.7 

Sep 1.0 0.7 

Oct 0.6 1.0 

Nov 1.0 0.7 

Dec 0.6 0.6 

 

From the correlation value, it can be said that there are well relationship between the 

predictands and predictors for both hydrological stations. 
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4.1.2 Rainfall trend in the future year 2040 to 2069  

 The rainfall trend in the future year at the site study was projected using the GCMs 

model that is representing the physical atmospheric in the form of numerical number. The 

future trending was generated at every 2 rainfall stations using the same predictors 

selected. The future year was in year period 2040-2069. 

 Figure 4.5 and figure 4.6 show the projection of rainfall trend in interval year 

2040-2069 in LP for monthly and annually respectively. Generally, the pattern and 

intensity of rainfall in average is expected to be not much different from the historical 

data. 

 The annually rainfall graph showed that the rainfall pattern expected is fluctuated 

and constant throughout the 30 years. The error between projection and observation is 

small for every year except for 2056, the observation rainfall seems to be higher than 

projection one in average      

 The monthly rainfall graph in LP showed the rainfall intensity is expected highest 

in month November with 300mm/month compared to observation data which December 

is estimated to be the highest rainfall with 325mm/month. However, the decrement is 

predicted to occur on June, July and August compared to the observation record. While 

an increment is predicted to occur in May compared to observation record. For the rest 

month which are January, February, March, April, September and October, the predicted 

rainfall are same as the observation record. As overall, the pattern and intensity of rainfall 

in average is expected to be not much different from the observation record for monthly 

prediction. 

 

 

 

 

 

 



31 

 

 

 

 

 

 

Figure 4.5: Projection of rainfall trend for 2040-2069 

 

  

Figure 4.6: Projection of rainfall trend in interval year 2040-2069 
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Figure 4.7 and figure 4.8 show the projection of rainfall trend in interval year 2040-2069 

in TEM for monthly and annually respectively. Generally, the pattern and intensity of 

rainfall in average is expected to be not much different from the historical data. 

 The annually rainfall graph showed that the rainfall pattern expected is fluctuated 

and constant throughout the 30 years. The error between projection and observation is 

large for every year, the projection rainfall seems to be higher than observation one in 

average. It can be said that the unsuitable predictors selected for GCM affect the result 

and give much error. 

 The monthly rainfall graph in TEM showed the rainfall intensity is expected 

highest in month June with 300mm/month compared to observation data which 

November is estimated to be the highest rainfall with 200mm/month. Not suitable 

predictors selected in GCM affect the result and cause noticeable error. 

 

 

Figure 4.7: Projection of rainfall trend for 2040-2069  
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Figure 4.8: Projection of rainfall trend in interval year 2040-2069  

 

4.2 Application of LS  

 LS is applied to correct the bias in calibrate, validate and project for two 

hydrological stations. As LS is responsible in correcting the bias in precipitation, result 

showed a very good for all the processes for corresponding stations.  

Figure 4.9 and figure 4.10 showed how LS treated the bias for calibrate and 

followed by validate for LP. As there is bias between the raw data and the simulated data 

during calibrate, it can be seen that LS correct the bias successfully and make it closer.  

Same goes to validate, during validation process in SDSM, there is an error for September 

and October. LS correct the bias between those months and make the error become 

smaller. However, a small error between the raw data and the corrected one still exist on 

December with 6.1 % during calibration. While for validation, there is a small error of 

5.9% between raw data and the corrected one during October.  

Table 4.3 showed the correction factor for observation and raw data. This 

correction factor is used for the corrected purposes. It can be seen that all the correction 

factors for all months is less than 1.0. 

 

0

50

100

150

200

250

300

350

Jan Feb March April May June July Aug Sept Oct Nov Dec

Projection Observation

R
ai

n
fa

ll
 m

m
/m

o
n
th

 



34 

 

 

 

 

 

Figure 4.9: Application of LS for calibration (1982-1998) 

 

 

 

 

 

 

 

 

 

Figure 4.10: Application of LS for validation (1999-2011) 
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Table 4.3: Correction factor of LS for LP 

 

 

 

 

Month Observe Raw Corrected 

January 4.330 4.908 0.882 

February 2.734 2.726 1.003 

March 

 

April 

 

May 

 

June 

 

July 

 

August 

 

September 

 

October 

 

November 

 

December 

 

4.748 

 

5.475 

 

4.788 

 

4.526 

 

3.867 

 

5.145 

 

6.635 

 

7.210 

 

8.875 

 

9.630 

4.828 

 

5.751 

 

4.955 

 

4.806 

 

3.980 

 

5.195 

 

6.763 

 

7.686 

 

8.616 

 

10.873 

0.983 

 

0.952 

 

0.966 

 

0.942 

 

0.972 

 

0.990 

 

0.981 

 

0.938 

 

1.030 

 

0.886 
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Figure 4.11 and figure 4.12 showed how LS treated the bias for calibrate and followed 

by validate for TEM. As there is bias between the raw data and the simulated data during 

calibrate, it can be seen that LS correct the bias successfully and make it closer.  Same 

goes to validate, during validation process in SDSM, there is an error for September and 

October. LS correct the bias between those months and make the error become smaller. 

However, a small error between the raw data and the corrected one still exist on August 

with 3.4 during calibration. Table 4.4 showed the correction factor for observation and 

raw data. This correction factor is used for the corrected purposes. It can be seen that all 

the correction factors for all months is less than 1.0. Table 4.5 showed the error between 

raw data and corrected data that has been treated.  

 

 

 

 

 

Figure 4.11: Application of LS for calibration (1982-1998) 

 

 

 

 

 

 

Figure 4.12: Application of LS for validation (1999-2011) 
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Table 4.4: Correction factor of LS for TEM 

 

 

 

 

Month Observe Raw Corrected 

January 3.007 3.192 0.942 

February 3.268 3.522 0.928 

March 

 

 

April 

 

 

May 

 

 

June 

 

 

July 

 

 

August 

 

 

September 

 

 

October 

 

 

November 

 

 

December 

4.063 

 

 

4.510 

 

 

3.688 

 

 

3.034 

 

 

2.836 

 

 

3.438 

 

 

4.582 

 

 

5.329 

 

 

6.393 

 

 

5.288 

 

 

4.233 

 

 

4.723 

 

 

3.990 

 

 

3.203 

 

 

3.008 

 

 

3.835 

 

 

4.796 

 

 

5.460 

 

 

6.563 

 

 

5.562 

 

0.960 

 

 

0.955 

 

 

0.924 

 

 

0.947 

 

 

0.943 

 

 

0.896 

 

 

0.955 

 

 

0.976 

 

 

0.974 

 

 

0.951 
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Table 4.5: MAE results for LS treatment  

 MAE (%) 

Month LP TEM 

 Calibrated  Validated Calibrated Validated 

Jan 5.8 5.8 5.6 5.6 

Feb 

 

5.7 5.7 7.3 7.3 

March 

 

4.2 4.2 4.0 4.0 

Apr 3.9 3.9 4.5 4.5 

May 3.2 3.2 7.6 7.6 

June 3.7 3.7 5.3 5.3 

July 6.5 6.5 5.7 5.7 

Aug 2.5 2.5 10.4 10.4 

Sept 3.4 3.4 4.5 4.5 

Oct 6.7 6.7 2.4 2.4 

Nov 1.8 1.8 2.6 2.6 

Dec 6.5 6.5 4.9 4.9 
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4.3 Application of LOCI 

 LOCI is applied to correct the calibration, validation and projection precipitation 

for LP and TEM. However, the ability of LOCI to correct monthly precipitation is not 

satisfying and the result is not logical. Thus, LOCI only has the performance towards 

daily precipitation.   

 Figure 4.13 shows the result of application of LOCI in daily precipitation for LP 

from January to June in 1982. From the result, it can be seen that LOCI perform in correct 

the bias between raw and observed data. However, there still error exist between those 

particular data especially in February and June.  

 Table 4.6 showed the correction factor of LOCI for LP station. 
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Figure 4.13: Simulated results after treated by LOCI for January to December in 1982 
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Table 4.6: Correction factor of LOCI for LP 

 

 

 

Month Observe Raw Corrected 

January 9.779 6.691 3,273 

February 8.232 5.010 4.477 

March 

 

April 

 

May 

 

June 

 

July 

 

August 

 

September 

 

October 

 

November 

 

December 

 

 

11.599 

 

12.626 

 

10.959 

 

12.964 

 

11.154 

 

11.658 

 

13.521 

 

12.587 

 

13.097 

 

15.524 

7.390 

 

7.764 

 

6.872 

 

7.009 

 

6.365 

 

7.394 

 

9.017 

 

9.353 

 

10.573 

 

12.614 

5.122 

 

5.218 

 

5.330 

 

6.387 

 

5.264 

 

5.124 

 

4.992 

 

4.109 

 

3.454 

 

2.455 
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 Figure 4.14 shows the result of application of LOCI in daily precipitation for TEM 

from January to June in 1975. From the result, it can be seen that LOCI perform in correct 

the bias between raw and observed data. Besides, LOCI had correct all the biases between 

these months in daily basis.  

 Table 4.7 showed the correction factor of LOCI for TEM station.  
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Figure 4.14: Simulated results after treated by LOCI from January to December for 

1975 
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Table 4.7: Correction factor of LOCI for TEM 

 

Month Observe Raw Corrected 

 

January 

 

 

8.977 

 

3.016 

 

0.000 

February 

 

10.641 5.622 6.370 

March 

 

April 

 

May 

 

June 

 

July 

 

August 

 

September 

 

October 

 

November 

 

December 

14.191 

 

14.161 

 

11.699 

 

11.667 

 

11.081 

 

12.746 

 

12.170 

 

13.634 

 

13.816 

 

10.828 

7.230 

 

7.783 

 

6.113 

 

5.937 

 

5.273 

 

6.229 

 

7.134 

 

7.769 

 

8.601 

 

7.346 

6.550 

 

5.578 

 

6.150 

 

5.772 

 

7.083 

 

6.693 

 

5.319 

 

5.647 

 

5.458 

 

4.349 
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4.4 Generated treatment 

4.4.1 Application of LS for future period 2040 to 2069 

 LS is applied to treat the bias between the simulation rainfall data and the 

generated data from GCM. It is because, only LS can treat monthly precipitation for 

historical data. The accurateness of LS treatment make the projection of future rainfall 

trend is reliable. As compared the result between simulation data (1982-2011) for LP 

and GCM projection data, it can be seen that there is bias and error occurred. Same goes 

to TEM which the bias between simulation data (1975-2004) and GCM projection data 

produce too much error. LS give a good performance in correcting those biases. Figure 

4.15 and figure 4.16 showed how LS treat the projection of rainfall trend for both LP 

and TEM.  

 

Figure 4.15: Application of LS for rainfall projection in LP  
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Figure 4.16: Application of LS for rainfall projection in TEM  

 

 From the graph above, it is clearly seen that the bias between those data from 

simulation and GCM had been corrected by using LS. LS correct the bias until no error 

need to be calculated. 

 In the last decade, several bias correction methods have been proposed to 

downscale climate model outputs (usually precipitation and temperature), and ultimately, 

for use in assessing climate change impacts. This study evaluates and compares the 

performance of two bias correction methods for two hydrological stations which are LP 

and TEM. The performance is based on the ability to reproduce precipitation with the use 

of a hydrology model. The performance for precipitation simulation depends on the 

choice of a bias correction method. LS is the simplest bias correction method, which 

adjusts monthly mean precipitation. It can be clearly seen that LS perform very well in 

correcting the bias of calibration and validation rainfall from SDSM analysis. It is 

obvious that LS reduce the error form those historical data and simulation data as well as 

GCM data.  
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Conclusion 

 This study evaluated the performance of two bias correction methods in 

reproducing precipitation in two hydrological stations which are LP and TEM. The 

performance of these bias correction methods was assessed via their correction of SDSM 

simulated precipitation driven by NCEP reanalysis data. The following conclusions can 

be drawn: 

 SDSM simulated daily precipitation is always biased which precludes its direct 

use with hydrological models. The direct use of SDSM data with a specific calibration of 

the hydrological model somewhat improves the hydrological simulation, indicating bias 

can be overcome by the hydrological model. 

 LS bias correction methods are able to improve the SDSM simulated 

precipitation. Performance depends on the choice of a correction method. Bias correction 

methods will be invalid if the temporal structure of precipitation is not well-reproduced 

by the climate models, especially at the daily scale. This is more likely to happen when 

less forcing is exerted on the climate model, in flatter regions or away from the model 

computational boundaries. This problem should be less severe in snow-dominated 

regions because the winter hydrology is less sensitive to the precipitation occurrence and 

mostly conditioned on temperature, which is much better simulated by climate models 

than precipitation (Shicklomanov, and E. Stakhiv, 2001). While for LOCI, the ability of 

this bias correction method is only for predict daily rainfall/precipitation not for monthly 

basis. The performance of LOCI in correcting the daily precipitation is quite satisfying. 

 Bias correction methods should be validated over the “recent past” prior to any 

climate change impact study. If such a validation is not possible, impact studies should 

rely on simpler methods that correct the observed time series. Finally, this study further 

emphasizes the importance of using several climate models and bias correction methods 
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to include the overall uncertainty for hydrological impact studies. In particular, for 

climate change impact studies, the use of only one model or method could give 

misleading results. 

5.2 Recommendation 

 This study showed and evaluated the performances of two bias correction method 

to correct precipitation of hydrological stations. Both bias correction methods which are 

LS and LOCI has its own advantages and disadvantages.  However, they help in treating 

the bias comes from the hydrological model. But it really recommended for further 

studies to evaluate the other bias correction method available in hydrological field to get 

most reliable result in predicting the climate.  Other bias correction methods that available 

to correct the bias are daily translation, daily bias correction and quantile mapping based 

on empirical distribution. 
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APPENDIX A 

Calibrate rainfall for LP 

Month ob-82 lubuk paku.TXT : 

Mean 

mo-82 lubuk paku.TXT : 

Mean 

MAE (%) 

Jan 135.050 137.938 2.1 

Feb 72.691 77.297 6.3 

March 136.633 143.947 5.4 

April 171.139 166.106 2.9 

May 152.372 149.794 1.7 

June 141.382 141.480 0.1 

July 108.853 117.096 7.6 

Aug 153.706 157.986 2.8 

Sept 191.018 198.552 3.9 

Oct 219.292 222.239 1.3 

Nov 279.235 256.475 8.2 

Dec 314.754 284.816 9.5 

 

Validate rainfall for LP 

Month ob-99 lubuk paku.TXT : 

Mean 

mo-99 lubuk paku.TXT : 

Mean 

MAE (%) 

Jan 174.50 150.43 13.8 

Feb 82.58 66.41 19.6 

March 166.69 142.76 14.4 

April 174.36 165.36 5.2 

May 155.22 147.25 5.1 

June 147.85 135.43 8.4 

July 142.35 112.94 20.7 

Aug 170.65 155.91 8.6 

Sept 218.42 192.52 11.9 

Oct 263.10 222.65 15.4 

Nov 231.31 250.51 8.3 

Dec 366.25 354.99 3.1 
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APPENDIX B 

Calibrate rainfall for TEM 

Month ob-75 temerloh.TXT : Mean mo-75 temerloh.TXT : Mean MAE (%) 

Jan 71.067 89.264 25.6 

Feb 96.467 95.674 0.8 

March 137.467 130.565 5.0 

April 162.533 143.687 11.6 

May 130.867 111.982 14.4 

June 80.067 86.124 7.6 

July 109.800 91.584 16.6 

Aug 112.867 104.484 7.4 

Sept 143.000 146.977 2.8 

Oct 174.933 164.955 5.7 

Nov 182.200 192.094 5.4 

Dec 138.600 156.335 12.8 

 

Validate rainfall for TEM 

Month ob-90 temerloh.TXT : Mean mo-90 temerloh.TXT : Mean MAE (%) 

Jan 126.400 97.147 23.1 

Feb 102.667 89.063 13.3 

March 125.000 121.361 2.9 

April 120.867 126.938 5.0 

May 116.533 116.650 0.1 

June 112.133 95.905 14.5 

July 76.667 84.237 9.9 

Aug 124.933 108.701 13.0 

Sept 144.733 127.923 11.6 

Oct 163.600 165.695 1.3 

Nov 211.600 192.210 9.2 

Dec 206.267 171.545 16.8 
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APPENDIX C 

Simulated and projection result for LP 

Month Observation Projection 

Jan 143.352 147.345 

Feb 72.580 58.267 

March 143.435 143.585 

April 165.783 159.925 

May 148.691 170.134 

June 138.857 121.352 

July 115.295 97.539 

Aug 157.088 138.989 

Sept 195.938 190.212 

Oct 222.417 215.801 

Nov 253.889 291.503 

Dec 315.224 277.810 

 

 

 

 

 

 

 

 

Simulated and projection result for TEM 

Month Observation Projection 

Jan 93.205 280.829 

Feb 92.369 187.238 

March 125.963 238.908 

April 135.313 139.392 

May 114.316 146.325 

June 91.014 302.189 

July 87.910 94.675 

Aug 106.592 164.919 

Sept 137.450 166.645 

Oct 165.325 157.015 

Nov 192.152 263.925 

Dec 163.940 196.017 
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APPENDIX D 

 

 

Corrected result for calibrated period for LP 

Month Raw Corrected Obs MAE (%) 

Jan 135.05 127.2447 137.9379 5.779595 

Feb 72.69118 68.54035 77.29738 5.710224 

March 136.6329 130.9506 143.9469 4.158851 

April 171.1394 164.4411 166.1064 3.913964 

May 152.3724 147.4961 149.7937 3.200251 

June 141.3824 136.1599 141.4797 3.693834 

July 108.8529 101.7306 117.0961 6.543082 

Aug 153.7059 149.9243 157.9863 2.460277 

Sept 191.0176 184.469 198.5525 3.428316 

Oct 219.2918 204.698 222.2392 6.654953 

Nov 279.2353 274.2894 256.4745 1.771228 

Dec 314.7535 294.3548 284.8164 6.480856 

 

 

Corrected result for calibrated period for LP using LS 

Month Raw Corrected Obs MAE (%) 

Jan 135.05 127.2447 137.9379 5.779595 

Feb 72.69118 68.54035 77.29738 5.710224 

March 136.6329 130.9506 143.9469 4.158851 

April 171.1394 164.4411 166.1064 3.913964 

May 152.3724 147.4961 149.7937 3.200251 

June 141.3824 136.1599 141.4797 3.693834 

July 108.8529 101.7306 117.0961 6.543082 

Aug 153.7059 149.9243 157.9863 2.460277 

Sept 191.0176 184.469 198.5525 3.428316 

Oct 219.2918 204.698 222.2392 6.654953 

Nov 279.2353 274.2894 256.4745 1.771228 

Dec 314.7535 294.3548 284.8164 6.480856 
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Corrected result for validated period for LP using LS 

Month Raw Corrected Obs MAE (%) 

Jan 174.5 164.4146 150.4311 5.779595 

Feb 82.57692 77.8616 66.41009 5.710224 

March 166.6923 159.7598 142.7646 4.158851 

April 174.3615 167.5371 165.3593 3.913964 

May 155.22 150.2526 147.248 3.200251 

June 147.8462 142.385 135.4283 3.693834 

July 142.3462 133.0323 112.9389 6.543082 

Aug 170.6538 166.4553 155.9127 2.460277 

Sept 218.4231 210.9348 192.5179 3.428316 

Oct 263.0962 245.5872 222.6487 6.654953 

Nov 231.3077 227.2107 250.5071 1.771228 

Dec 366.25 342.5139 354.9871 6.480856 

 

 

 

Corrected result for calibrated period for TEM using LS 

Month Raw Corrected Obs MAE (%) 

Jan 71.07 67.09 89.26 5.598785 

Feb 96.47 89.49 95.67 7.229494 

March 137.47 131.95 130.56 4.016053 

April 162.53 155.21 143.69 4.507622 

May 130.87 120.94 111.98 7.586203 

June 80.07 75.83 86.12 5.292334 

July 109.80 103.53 91.58 5.709367 

Aug 112.87 101.18 104.48 10.35144 

Sept 143.00 136.62 146.98 4.460287 

Oct 174.93 170.72 164.96 2.409118 

Nov 182.20 177.47 192.09 2.596174 

Dec 138.60 131.77 156.33 4.925672 
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Corrected result for validated period for TEM using LS 

Month Raw Corrected Obs MAE (%) 

Jan 126.4 119.323136 97.14653 5.598785 

Feb 102.6667 95.2443857 89.06307 7.229494 

March 125 119.979934 121.3612 4.016053 

April 120.8667 115.418455 126.9382 4.507622 

May 116.5333 107.692878 116.65 7.586203 

June 112.1333 106.198862 95.90453 5.292334 

July 76.66667 72.2894852 84.23673 5.709367 

Aug 124.9333 112.00093 108.7006 10.35144 

Sept 144.7333 138.277811 127.9227 4.460287 

Oct 163.6 159.658683 165.6952 2.409118 

Nov 211.6 206.106496 192.2096 2.596174 

Dec 206.2667 196.106648 171.545 4.925672 
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APPENDIX G 

Corrected result using LOCI from January to December for LP 

 

 

 

 

 

 

 

Feb 

Day Raw Corrected Obs 

1 0 0 2.52795 

2 0 0 4.93285 

3 0 0 2.5574 

4 0 0 1.30245 

5 0 0 2.4459 

6 0 0 0 

7 0 0 0.02505 

8 0 0 1.8633 

9 0 0 2.6721 

10 0 0 1.60675 

11 0 0 2.8303 

12 0 0 1.1734 

13 0 0 0.82265 

14 0 0 0.2672 

15 0 0 2.65065 

16 0 0 0.3093 

17 0 0 0.31285 

18 5 1.18286779 1.8222 

19 0 0 1.6253 

20 0 0 3.5769 

21 0 0 4.2988 

22 0 0 1.19495 

23 0 0 0.9301 

24 0 0 6.35075 

25 0 0 1.8429 

26 8.5 2.01087524 0.6255 

27 0 0 2.86885 

28 0 0 6.1046 

Jan 

Day Raw Corrected Obs 

1 0 0 2.7094 

2 0 0 3.3769 

3 25.5 9.31 1.7579 

4 0 0.00 2.7293 

5 0 0.00 1.1774 

6 0 0.00 2.0753 

7 0 0.00 1.41095 

8 16 5.84 1.92705 

9 0 0.00 0 

10 0 0.00 0.2468 

11 0 0.00 1.5359 

12 0 0.00 0.86725 

13 0 0.00 0.3976 

14 36.5 13.32 2.3121 

15 0 0.00 0.50655 

16 0 0.00 0.48385 

17 0 0.00 0.54375 

18 0 0.00 4.161 

19 0 0.00 0.44485 

20 0 0.00 1.35535 

21 0 0.00 0.8118 

22 0 0.00 3.64225 

23 0 0.00 0.91585 

24 0 0.00 5.33355 

25 0 0.00 1.5727 

26 0 0.00 2.5989 

27 0 0.00 3.81815 

28 11.5 4.20 3.4545 

29 6.7 2.45 2.91215 

30 6.7 2.45 2.48285 

31 6.7 2.45 2.4614 
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April 

Day Raw Corrected Obs 

1 0 0 4.2892 

2 38.5 11.7090251 2.03795 

3 0 0 5.3253 

4 34 10.3404378 8.96735 

5 0 0 4.74775 

6 16.5 5.01815362 7.9413 

7 0 0 3.9758 

8 0 0 4.77195 

9 12.5 3.80163153 7.27915 

10 0 0 8.9297 

11 0 0 7.9768 

12 0 0 4.1241 

13 0 0 2.14215 

14 14.5 4.40989257 3.51425 

15 0 0 7.5756 

16 10 3.04130522 3.2054 

17 0 0 6.16415 

18 0 0 6.50165 

19 13.5 4.10576205 13.5715 

20 0 0 2.5243 

21 0 0 4.0619 

22 0 0 4.58425 

23 0 0 4.1182 

24 0 0 4.99235 

25 0 0 5.03355 

26 38.5 11.7090251 5.7458 

27 4.4 0 9.0055 

28 4.4 0 5.85365 

29 4.4 0 3.66915 

30 4.4 0 11.06795 

March 

Day Raw Corrected Obs 

1 0 0 4.94185 

2 0 0 3.8465 

3 0 0 3.0884 

4 0 0 3.22015 

5 0 0 3.7431 

6 0 0 1.05795 

7 0 0 3.2788 

8 0 0 5.8879 

9 0 0 6.6194 

10 0 0 14.8169 

11 0 0 5.46065 

12 18.5 5.25156479 5.16595 

13 0 0 5.0479 

14 0 0 4.4634 

15 0 0 3.26985 

16 0 0 3.64795 

17 0 0 5.08495 

18 0 0 7.1739 

19 0 0 2.34135 

20 0 0 6.9079 

21 0 0 1.78285 

22 5 0 1.99085 

23 0 0 2.4644 

24 0 0 0.5111 

25 0 0 3.3448 

26 0 0 3.1777 

27 0 0 3.7371 

28 10 2.83868367 2.3376 

29 0 0 7.27425 

30 0 0 1.0798 

31 0 0 4.18045 
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May 

Day Raw Corrected Obs 

1 0 0 0.89875 

2 0 0 0.9775 

3 25 8.52660483 1.9535 

4 0 0 5.8584 

5 0 0 2.9001 

6 20 6.82128386 5.23335 

7 0 0 6.5364 

8 0 0 4.91135 

9 35.5 12.1077789 9.55285 

10 0 0 5.55765 

11 0 0 5.0665 

12 15.5 5.28649499 7.32895 

13 0 0 4.84205 

14 0 0 4.31805 

15 0 0 4.47545 

16 0 0 7.57265 

17 0 0 1.93345 

18 0 0 4.4033 

19 0 0 3.94455 

20 0 0 2.3588 

21 0 0 5.23735 

22 11 3.75170612 4.58715 

23 0 0 4.93605 

24 0 0 12.9614 

25 0 0 5.1163 

26 0 0 4.1129 

27 0 0 3.9573 

28 0 0 4.4515 

29 0 0 6.6992 

30 0 0 6.2402 

31 0 0 3.60685 

June 

Day Raw Corrected Obs 

1 0 0 2.76685 

2 0 0 3.4365 

3 0 0 1.5289 

4 0 0 3.59995 

5 0 0 5.49275 

6 0 0 4.4298 

7 0 0 7.94355 

8 0 0 2.86885 

9 23.5 6.30993047 7.1033 

10 0 0 8.13105 

11 0 0 3.8174 

12 0 0 6.0503 

13 0 0 5.0705 

14 0 0 3.1788 

15 0 0 3.38125 

16 0 0 8.5851 

17 0 0 1.85605 

18 0 0 4.87915 

19 0 0 10.876 

20 0 0 4.5811 

21 0 0 5.70055 

22 0 0 1.56585 

23 0 0 3.9402 

24 0 0 3.0026 

25 0 0 5.62395 

26 11.5 3.08783832 6.38725 

27 0 0 1.73515 

28 0 0 4.28355 

29 0 0 5.13245 

30 0 0 3.3296 
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July 

Day Raw Corrected Obs 

1 0 0 5.96425 

2 0 0 4.205 

3 0 0 7.7869 

4 0 0 0.4515 

5 0 0 1.22305 

6 0 0 3.1897 

7 27.5 6.871304 5.48335 

8 0 0 3.18235 

9 0 0 3.3552 

10 0 0 3.0538 

11 0 0 1.04055 

12 0 0 4.71835 

13 0 0 3.69245 

14 0 0 0.6309 

15 0 0 1.56915 

16 0 0 2.8683 

17 11 2.748522 0.153 

18 0 0 2.70315 

19 0 0 4.06485 

20 0 0 2.82015 

21 0 0 3.45665 

22 0 0 0.8385 

23 0 0 6.33645 

24 0 0 6.38295 

25 0 0 2.06525 

26 0 0 3.1477 

27 0 0 1.99165 

28 0 0 1.0577 

29 0 0 2.2077 

30 0 0 1.0153 

31 0 0 2.98865 

Aug 

Day Raw Corrected Obs 

1 0 0 5.96665 

2 12.5 4.002286 6.3693 

3 0 0 2.7845 

4 0 0 4.9625 

5 16.5 5.283017 3.3224 

6 0 0 1.95355 

7 0 0 7.741 

8 0 0 8.46695 

9 0 0 0.18155 

10 34 10.88622 4.63275 

11 0 0 1.58685 

12 0 0 6.9301 

13 0 0 4.16795 

14 0 0 6.09475 

15 0 0 9.4724 

16 0 0 4.049 

17 42 13.44768 8.29025 

18 0 0 8.21565 

19 0 0 5.9597 

20 0 0 4.3685 

21 0 0 2.70625 

22 0 0 6.0746 

23 0 0 5.1141 

24 36.5 11.68667 2.24075 

25 0 0 1.52965 

26 0 0 2.16535 

27 0 0 5.4943 

28 0 0 1.84555 

29 22.5 7.204114 2.22555 

30 0 0 7.14545 

31 0 0 4.4295 
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Sept 

Day Raw Corrected Obs 

1 0 0 3.76225 

2 0 0 13.115 

3 0 0 4.03035 

4 0 0 5.10105 

5 0 0 6.6968 

6 35.5 12.28831 5.59245 

7 0 0 8.25855 

8 0 0 4.6997 

9 42 14.53828 11.59755 

10 0 0 5.8222 

11 0 0 5.8561 

12 0 0 2.28965 

13 0 0 6.0041 

14 0 0 15.18815 

15 0 0 3.21925 

16 0 0 2.52415 

17 0 0 9.1575 

18 0 0 6.96745 

19 0 0 6.5285 

20 0 0 12.0397 

21 0 0 5.13715 

22 23.5 8.134515 12.6571 

23 0 0 5.7594 

24 0 0 7.3981 

25 0 0 7.02635 

26 14.5 5.019169 10.34765 

27 4.1 0 3.67855 

28 4.1 0 5.19615 

29 4.1 0 8.995 

30 4.1 0 9.724 

Oct 

Day Raw Corrected Obs 

1 0 0 11.43405 

2 0 0 2.59465 

3 20 8.190333 7.1743 

4 0 0 7.02035 

5 11.5 4.709441 12.1701 

6 0 0 15.2216 

7 17.5 7.166541 5.638 

8 0 0 3.48005 

9 0 0 6.56275 

10 0 0 11.75565 

11 0 0 7.89745 

12 0 0 5.64235 

13 0 0 7.63225 

14 22.5 9.214124 7.05245 

15 0 0 8.24395 

16 0 0 4.2249 

17 0 0 10.342 

18 36 14.7426 9.9072 

19 0 0 4.35575 

20 0 0 6.42785 

21 20.5 8.395091 9.8996 

22 0 0 12.32495 

23 0 0 7.6891 

24 0 0 8.45025 

25 0 0 5.8128 

26 0 0 7.49135 

27 0 0 5.29635 

28 38.5 15.76639 6.97415 

29 0 0 3.78415 

30 0 0 4.84645 

31 0 0 4.424 
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Nov 

Day Raw Corrected Obs 

1 12.5 6.041825 7.2224 

2 0 0 7.67265 

3 16 7.733537 8.2235 

4 0 0 7.6543 

5 0 0 12.77275 

6 34.5 16.67544 7.4832 

7 0 0 5.54695 

8 0 0 10.97265 

9 42.5 20.54221 7.0356 

10 0 0 16.6572 

11 0 0 11.0922 

12 36 17.40046 6.0513 

13 0 0 9.06535 

14 0 0 1.73275 

15 0 0 7.04945 

16 18.5 8.941902 6.3194 

17 0 0 5.6247 

18 0 0 5.5401 

19 0 0 7.55425 

20 20 9.666921 10.59035 

21 0 0 8.9818 

22 0 0 10.49435 

23 0 0 5.5616 

24 0 0 6.70335 

25 0 0 14.08495 

26 0 0 5.0378 

27 0 0 7.6163 

28 45.5 21.99224 11.74505 

29 15 7.250191 6.9161 

30 15 7.250191 7.5329 

Dec 

Day Raw Corrected Obs 

1 0 0 10.40805 

2 0 0 13.11745 

3 0 0 9.25695 

4 16.5 7.4834 5.78275 

5 0 0 14.3003 

6 11.5 5.215703 8.13545 

7 0 0 15.24505 

8 0 0 11.7864 

9 17.5 7.936939 8.70205 

10 0 0 14.55325 

11 0 0 12.79865 

12 12.5 5.669242 15.2975 

13 0 0 15.5981 

14 0 0 7.92025 

15 0 0 10.27575 

16 0 0 13.7011 

17 36 16.32742 15.80505 

18 0 0 10.20925 

19 0 0 9.6953 

20 0 0 10.6791 

21 0 0 7.26465 

22 0 0 8.1467 

23 0 0 14.44695 

24 18.5 8.390479 13.15575 

25 0 0 5.0168 

26 0 0 6.3555 

27 0 0 9.55885 

28 20.5 9.297557 7.46895 

29 0 0 7.4899 

30 11.5 5.215703 9.4591 

31 0 0 5.46785 
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Corrected result using LOCI from January to December for TEM 

    

 

 

 

 

 

 

Jan 

Day Raw Corrected Obs 

1 0 0 4.41 

2 10 2.787641 4.304 

3 0 0 6.174 

4 32 8.920452 7.122 

5 7 1.951349 3.474 

6 0 0 6.073 

7 0 0 1.702 

8 37 10.31427 2.457 

9 1 0 2.174 

10 0 0 2.759 

11 36 10.03551 4.352 

12 0 0 1.662 

13 0 0 2.408 

14 2 0 5.587 

15 0 0 1.947 

16 24 6.690339 2.412 

17 0 0 3.997 

18 0 0 2.105 

19 0 0 3.065 

20 1 0 1.501 

21 1 0 2.44 

22 1 0 2.671 

23 1 0 2.55 

24 0 0 0.934 

25 0 0 2.15 

26 0 0 3.456 

27 0 0 2.198 

28 0 0 1.264 

29 0 0 0.2 

30 0 0 1.084 

31 1 0 5.024 

Feb 

Day Raw Corrected Obs 

1 1 0 2.63 

2 11 3.049203 7.928 

3 0 0 3.209 

4 1 0 3.752 

5 16 4.435205 1.922 

6 0 0 3.861 

7 1 0 2.98 

8 1 0 5.682 

9 0 0 7.693 

10 29 8.038808 4.603 

11 1 0 2.761 

12 0 0 0.552 

13 0 0 5.211 

14 0 0 0.709 

15 19 5.266805 6.002 

16 0 0 3.926 

17 0 0 4.773 

18 0 0 4.667 

19 0 0 2.343 

20 0 0 2.037 

21 0 0 2.279 

22 10 2.772003 2.441 

23 47 13.02841 3.358 

24 13 3.603604 4.304 

25 6 1.663202 3.217 

26 21 5.821206 0.582 

27 0 0 6.065 

28 1 0 5.684 
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March 

Day Raw Corrected Obs 

1 0 0 3.804 

2 7 1.417579 2.927 

3 5 0 3.925 

4 5 0 1.16 

5 0 0 1.49 

6 0 0 3.815 

7 22 4.455247 0.982 

8 12 2.430135 3.017 

9 9 1.822601 3.756 

10 0 0 2.768 

11 0 0 3.823 

12 0 0 5.329 

13 0 0 0.986 

14 0 0 4.732 

15 0 0 5.609 

16 0 0 1.938 

17 2 0 4.438 

18 1 0 10.613 

19 0 0 6.184 

20 161 32.60431 1.655 

21 33 6.682871 2.994 

22 27 5.467804 5.936 

23 0 0 8.743 

24 0 0 5.194 

25 3 0 2.439 

26 31 6.277848 4.45 

27 0 0 6.089 

28 0 0 9.778 

29 0 0 4.467 

30 0 0 5.894 

31 1 0 6.823 
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April 

Day Raw Corrected Obs 

1 0 0 17.346 

2 0 0 4.903 

3 5 0 5.644 

4 16 3.53238 9.295 

5 0 0 7.72 

6 47 10.37637 7.446 

7 54 11.92178 10.968 

8 0 0 7.482 

9 0 0 2.562 

10 0 0 2.302 

11 0 0 6.27 

12 0 0 4.945 

13 15 3.311606 6.062 

14 5 0 5.245 

15 10 2.207737 5.199 

16 29 6.402438 3.769 

17 4 0 6.678 

18 2 0 17.782 

19 8 1.76619 1.705 

20 0 0 4.604 

21 2 0 10.304 

22 0 0 7.639 

23 0 0 1.803 

24 1 0 1.502 

25 7 1.545416 3.076 

26 32 7.06476 0.502 

27 0 0 0.857 

28 0 0 6.005 

29 0 0 8.452 

30 1 0 0.65 
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May 

Day Raw Corrected Obs 

1 13 2.929248 1.635 

2 1 0 1.974 

3 0 0 4.924 

4 0 0 6.332 

5 0 0 4.549 

6 7 1.577287 2.197 

7 0 0 1.669 

8 1 0 2 

9 2 0 4.715 

10 1 0 1.452 

11 4 0 4.276 

12 0 0 0.67 

13 0 0 3.832 

14 16 3.605228 4.064 

15 5 1.126634 3.718 

16 0 0 5.997 

17 11 2.478595 3.584 

18 0 0 4.674 

19 0 0 2.863 

20 4 0 3.371 

21 4 0 3.389 

22 0 0 3.475 

23 0 0 3.189 

24 0 0 2.041 

25 0 0 3.261 

26 41 9.238398 1.542 

27 0 0 5.803 

28 0 0 10.224 

29 0 0 3.698 

30 0 0 1.553 

31 1 0 1.968 
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June 

Day Raw Corrected Obs 

1 6 1.307476 1.482 

2 0 0 0.649 

3 2 0 3.258 

4 0 0 1.25 

5 0 0 2.603 

6 12 2.614952 1.148 

7 0 0 0.787 

8 0 0 3.486 

9 19 4.140341 1.503 

10 2 0 3.433 

11 0 0 1.976 

12 1 0 1.207 

13 0 0 2.595 

14 0 0 3.962 

15 0 0 2.564 

16 5 1.089563 2.073 

17 0 0 0.569 

18 0 0 0.799 

19 0 0 0.431 

20 4 0 6.53 

21 0 0 1.9 

22 0 0 2.795 

23 0 0 0.213 

24 0 0 0.061 

25 0 0 0.341 

26 0 0 5.389 

27 0 0 1.541 

28 0 0 0.478 

29 17 3.704516 1.961 

30 0 0 0.399 
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July 

Day Raw Corrected Obs 

1 0 0 1.143 

2 0.000 0.000 4.559 

3 0.000 0.000 0.474 

4 1.000 0.000 4.018 

5 0.000 0.000 3.723 

6 1.000 0.000 2.533 

7 2.000 0.000 2.875 

8 0.000 0.000 2.378 

9 18.000 3.447 3.044 

10 0.000 0.000 2.144 

11 0.000 0.000 5.188 

12 1.000 0.000 3.526 

13 9.000 1.724 3.087 

14 0 0 4.11 

15 0 0 1.255 

16 0 0 4.9 

17 4 0.7660121 2.383 

18 0 0 2.821 

19 20 3.8300605 3.697 

20 2 0 0.611 

21 0 0 1.286 

22 7 1.3405212 3.461 

23 0 0 2.695 

24 0 0 2.528 

25 7 1.3405212 1.521 

26 1 0 4.176 

27 27 5.1705817 5.475 

28 0 0 0.913 

29 11 2.1065333 3.074 

30 0 0 6.154 

31 0 0 1.511 
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Aug 

Day Raw Corrected Obs 

1 0 0 1.247 

2 0 0 3.643 

3 0 0 3.134 

4 0 0 3.15 

5 0 0 3.068 

6 0 0 2.042 

7 4 0 4.031 

8 0 0 3.998 

9 0 0 11.477 

10 0 0 0.151 

11 2 0 3.58 

12 0 0 1.689 

13 75 14.663568 2.98 

14 1 0 4.859 

15 0 0 0.774 

16 0 0 6.101 

17 2 0 3.744 

18 2 0 1.998 

19 0 0 6.803 

20 0 0 2.111 

21 0 0 1.1 

22 0 0 3.595 

23 28 5.4743988 1.111 

24 0 0 2.128 

25 0 0 2.202 

26 0 0 2.149 

27 1 0 3.554 

28 15 2.9327137 3.717 

29 0 0 6.055 

30 0 0 13.34 

31 8 1.564114 5.608 
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APPENDIX T 

Sept 

Day Raw Corrected Obs 

1 0 0 3.084 

2 0 0 3.606 

3 0 0 7.218 

4 0 0 3.534 

5 2 0 1.649 

6 0 0 3.778 

7 0 0 8.888 

8 18 5.1163434 7.437 

9 28 7.9587564 8.895 

10 3 0 4.673 

11 22 6.2533086 4.062 

12 1 0 7.6 

13 0 0 5.56 

14 11 3.1266543 4.764 

15 0 0 9.629 

16 3 0 8.997 

17 0 0 6.619 

18 6 1.7054478 4.958 

19 3 0 1.863 

20 0 0 9.85 

21 0 0 1.784 

22 0 0 2.124 

23 0 0 1.428 

24 3 0 3.178 

25 23 6.5375499 3.886 

26 0 0 5.79 

27 0 0 2.337 

28 0 0 9.192 

29 0 0 3.198 

30 0 0 7.007 
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APPENDIX U 

Oct 

Day Raw Corrected Obs 

1 0 0 5.979 

2 3 0 9.445 

3 0 0 8.618 

4 0 0 5.411 

5 0 0 1.864 

6 0 0 2.983 

7 8 2.5564625 2.548 

8 67 21.410373 5.107 

9 1 0 9.934 

10 0 0 12.392 

11 0 0 2.695 

12 0 0 4.916 

13 0 0 4.596 

14 0 0 3.871 

15 7 2.2369046 5.925 

16 0 0 8.639 

17 1 0 6.886 

18 24 7.6693874 4.161 

19 10 3.1955781 0.368 

20 0 0 6.615 

21 9 2.8760203 7.856 

22 1 0 4.368 

23 16 5.1129249 4.728 

24 0 0 4.014 

25 0 0 5.237 

26 1 0 4.774 

27 0 0 4.064 

28 0 0 3.591 

29 67 21.410373 6.608 

30 0 0 8.25 

31 0 0 10.385 
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APPENDIX V 

Nov 

Day Raw Corrected Obs 

1 0 0 5.381 

2 0 0 9.663 

3 3 0 6.033 

4 0 0 5.97 

5 0 0 5.199 

6 0 0 2.262 

7 0 0 9.144 

8 0 0 10.112 

9 3 0 6.834 

10 20 7.1501614 10.318 

11 5 0 8.204 

12 0 0 8.589 

13 0 0 8.227 

14 1 0 5.553 

15 3 0 7.231 

16 0 0 6.073 

17 1 0 4.473 

18 0 0 9.201 

19 29 10.367734 7.034 

20 3 0 5.447 

21 31 11.08275 2.961 

22 0 0 4.287 

23 0 0 11.325 

24 0 0 7.268 

25 0 0 3.678 

26 0 0 5.889 

27 0 0 4.027 

28 4 0 5.191 

29 15 5.3626211 5.869 

30 4 0 8.457 
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APPENDIX W 

Dec 

Day Raw Corrected Obs 

1 0 0 5.173 

2 0 0 7.666 

3 0 0 12.188 

4 0 0 3.678 

5 0 0 3.106 

6 0 0 2.801 

7 1 0 4.873 

8 0 0 2.85 

9 0 0 4.158 

10 7 2.9153065 8.253 

11 1 0 7.299 

12 0 0 4.865 

13 3 0 8.2 

14 0 0 6.256 

15 3 0 4.915 

16 3 0 6.978 

17 0 0 4.328 

18 0 0 3.17 

19 0 0 3.33 

20 26 10.828281 2.369 

21 0 0 9.389 

22 0 0 1.377 

23 0 0 1.751 

24 21 8.7459196 2.324 

25 1 0 5.526 

26 0 0 2.739 

27 11 4.581196 1.567 

28 0 0 4.485 

29 0 0 0.498 

30 2 0 1.623 

31 0 0 2.698 

 

 


