
 e-ISSN: 2289-8131 Vol. 10 No. 1-3 21

FPGA Implementation of Simulated Kalman Filter

Optimization Algorithm

Nurul H. Noordin, Z. Ibrahim, M. H. J. Xie, R. Samad, N. Hasan
Faculty of Electrical and Electronic, Universiti Malaysia Pahang

26600 Pekan, Pahang Darul Makmur, Malaysia

hazlina@ump.edu.my

Abstract—Optimization is listed as one of the important

topics in today’s electronic system due to the presence of

many non-linear problems in our daily life. The ability of

these optimisation algorithms to perform in a real-time

environment is crucial. This paper presents a novel FPGA

implementation of the Simulated Kalman Filter

Optimisation Algorithm. This system utilizes a

distributed RAM to update the intermediate variables

and the output of each iteration is stored in the block

RAM. The address of the block RAM is displayed on the

LCD. The hardware performance of the SKF is then

compared to the PSO. Results show that the SKF has

higher processing speed as well as less number of logic

blocks and IO blocks were utilised.

Index Terms— FPGA Design; Simulated Kalman Filter

Optimization Algorithm

I. INTRODUCTION

In solving discrete optimisation problems, algorithms such as

genetic algorithm (GA) has been originally developed to

operate in binary search space [1]. However, not all

optimisation algorithms are originally developed to operate

in a binary search space. An example of these algorithms is

the Simulated Kalman Filter (SKF) optimisation, introduced

by Ibrahim et al. in 2015 [2]. The SKF algorithm has

improved fundamentally [5-7] and has been applied in

solving engineering problems [8-9].

In recent years, Particle Swarm Optimization (PSO)

attracts more attention as one of the most well-known

optimization algorithms and presents its potential talent in

many disciplines. Strong character inspired by the herd

intelligence, PSO, which was introduced by Eberhart and

Kennedy in 1995 [3], understood as a simulation of flocking

animals, learn and share information when a group of insects

or birds find their foods in the search space. A group of bees

that are finding flowers is taken as an example. Bees fly

around in their search space and constantly share individual

information about the space. The sharing action among them

is so-called the nature of the social behaviour. It will share its

information with other bees if either one of the bees can find

a better way or the position closest to the spring, which is then

followed by the other members.

The SKF works quite similar to Particle Swarm

Optimisation Algorithm (PSO), which had been previously

introduced by Kennedy, J. and R. Eberhart [10]. Hardware

implementation of PSO had been previously studied and

improvements from the hardware perspective are

continuously done [10-12]. In the proposed architecture,

there are five modules which are Particle computing block

(PCB), Fitness computing block (FCB), Random number

ROM, RAM and Control unit. The initial velocity and

position are randomly assigned to the particles for the case of

the first iteration in the PCB unit. Velocity and position are

then calculated using Equation (1) and Equation (2). The

velocity and position of a particle are the output of this

module for both cases.

𝑣𝑑
𝑡+1 = 𝑤 ∙ 𝑣𝑑

𝑡 + 𝑐1 ∙ (𝑝𝑑 − 𝑥𝑑
𝑡) + 𝑐2 ∙ (𝑔𝑑 − 𝑥𝑑

𝑡) (1)

𝑥𝑑
𝑡+1 = 𝑘 ∙ 𝑣𝑑

𝑡 + 𝑥𝑑
𝑡 (2)

Fitness computing block (FCB) calculates the fitness value

of each particle. This fitness value specifies to each

application and different from one application to another. For

the position, the first module calculates the distance between

the particles and each sensor using Equation (3), and then the

particle fitness is calculated using Equation (4). After that, 22

pbest and gbest are updated using Equation (5) and Equation

(6).

𝐷𝑑,𝑚 = √(𝑋𝑚 − 𝑥𝑑)2 + (𝑌𝑚 − 𝑦𝑑)2 (3)

𝐹𝑖(𝑡) = ∑ (𝐷𝑖,𝑚 − 𝑅𝑚)
2

3

𝑚=0

 (4)

𝑝𝑏𝑒𝑠𝑡 {
𝑝𝑏𝑒𝑠𝑡 𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑝𝑏𝑒𝑠𝑡])

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑝𝑏𝑒𝑠𝑡])
 (5)

𝑔𝑏𝑒𝑠𝑡 {
𝑔𝑏𝑒𝑠𝑡 𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑔𝑏𝑒𝑠𝑡])

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑔𝑏𝑒𝑠𝑡])
 (6)

The calculation of the equations in the optimization

algorithm may be time-consuming. Therefore, calculations

for a number of random values are being done in the PCB,

pre-stored in the random number ROM and recycled

throughout the whole process. This feature reduces chip

utilisation and time of calculations.

Finally, the control unit act as the brain of the system. The

control unit controls the progress of the whole system by

sending control signals and waiting for the feedback signals.

The five-state state machine has been used in the designing

the control unit in the previous exercise.

Previously, SKF algorithm was only simulated and

evaluated at the software level. As the development of

mailto:hazlina@ump.edu.my

Journal of Telecommunication, Electronic and Computer Engineering

22 e-ISSN: 2289-8131 Vol. 10 No. 1-3

electronics and information industry, the need for real-time

high-speed processing becomes more and more sincere [13].

A particular challenge is the need for higher processing speed

for complex non-linear applications. For example, in a

positioning system, the urgency to calculate the position is

much higher when the object is moving at a high speed. The

software has to update the accurate position each time after

dozens of iterations, in which it may miss the exact position

of the actual current position of the target.

Many real-world nonlinear problems can be translated into

cases of optimisation which are difficult to resolve with

conventional optimisation algorithms that involve complex

calculations. As the nonlinear problems in various fields get

more and more complex, optimisation becomes one of the

most important topics in computer science, engineering,

management, economics, and many other fields.

Optimisation algorithm mainly acts to get the best result

from the solution set by any given circumstances.

Conventional optimisation algorithms perform intolerably

complex calculations when meeting nonlinear optimisation.

When the nonlinear problem is getting more complex, the

requirement of higher processing speed for the complex

nonlinear application becomes higher. The execution of SKF

on software can no longer fulfil the requirements due to its

long processing time. This latency is a challenge especially

in a real-time application such as image processing, signal

processing and positioning system. As an example,

positioning system requires robust computation in order to

catch up with the speed of the objects. Apart from that,

onboard processing that is able to cater deep learning is

required in modern application systems. Thus, this paper

presents a novel FPGA implementation of the SKF algorithm.

The proposed structure is implemented on Xilinx Spartan-3E

and the performance of the proposed SKF FPGA is compared

to the PSO FPGA and evaluated in terms of speed, cost and

the accuracy.

II. SIMULATED KALMAN FILTER ALGORITHM

A novel estimation-based optimisation algorithm called

simulated Kalman filter (SKF) has been introduced due to the

inspiration by the estimation capability of Kalman filter [2].

Every agent in SKF is considered as a Kalman filter. Based

on the Kalman filtering mechanisms and the measurement

process, every agent estimates the global minimum or

maximum. Measurement, which is required in the Kalman

filter, is mathematically simulated and modelled. The

positions of each agent during the search process are updated.

The SKF process and its algorithm state machine are

illustrated in Figure-1 and Figure-2, respectively.

III. RESULTS AND DISCUSSIONS

The proposed FPGA structures, for SKF and PSO, are

evaluated with the following parameters; Fitness Function of

(x-a), error covariance (P) of 1000, process noise (Q) of 0.5

and measurement noise (R) of 0.5. The fitness function set for

both the SKF and PSO is 𝑓(𝑥) = (𝑥 − 25)(𝑥 = 32). The

algorithm is simulated in Xilinx ISE 13 and the performance

is then evaluated.

Figure 1: The Simulated Kalman Filter (SKF) flowchart.

Figure 2: The Algorithmic State Machine of the Simulated Kalman Filter.

FPGA Implementation of Simulated Kalman Filter Optimization Algorithm

 e-ISSN: 2289-8131 Vol. 10 No. 1-3 23

Both hardware and software implementation of SKF

optimisation algorithm accurately solves the fitness function

set earlier in the experiment. The duration of each clock cycle

is 2 ns and the frequency used is 500 MHz. SKF converged

with less number of iterations compared to PSO, as shown in

Figure 3.

Figure 3: Convergence rate comparison between PSO and SKF.

To solve the fitness, the shortest run taken in PSO is 48 ns

for 12 iterations, and the longest run took 701 iterations (2804

ns). The hardware implementation of SKF requires shorter

processing time compared to the hardware PSO. For example,

the PSO hardware requires nearly twice the processing time

compared to the SKF hardware.

By comparing the reliability of all three approaches, the

hardware implementation of PSO achieved better reliability

with 95%, which is very reliable compared to both the

software and hardware implementations. For hardware

implemented SKF, only 65 runs among the 100 runs obtained

the accurate result. Meanwhile, the hardware implemented

PSO has 95 runs among 100 runs which converge to the

accurate result. In terms of discrepancy, though the hardware

implementation of SKF has lower reliability compared to

PSO, the final output has only slight discrepant, which is

0.0990% from the accurate result as shown in Table 1. The

software implementation of SKF can hardly be calculated

because the maximum and minimum limits are uncertain.

Table 1

Time Stamp, Reliability and Discrepancies Comparison Between SKF and
PSO

Name
Fastest run

(ns)

Slowest

run (ns)

Reliability

(%)

Discrepancy

(%)

SKF 32 48 65 0.0990

PSO 1220 2804 75 0.0072

The average convergence speed of hardware implemented

SKF is much faster compared to the other three approaches

as shown in Table 2. It is significant that hardware

implemented approaches have higher speed compared to the

software implemented approach.

Table 2

 Comparison of Average Convergence Speed for All Approaches

Platform
Hardware Software

SKF PSO SKF PSO

Time 296.74 ns 1047.58 ns 8962.85 us
96908.02

us

IV. FPGA PERFORMANCES

The proposed structure is implemented on Xilinx Spartan

3E and evaluated in term of its performance on the FPGA.

Table3

 Comparison SKF and PSO on FPGA

Properties SKF PSO

Shortest period 77.41 ns 63.98 ns
Max Frequency 12.92 MHz 15.63 MHz

Min input arrival 4.76 ns 4.76 ns

Max output required 4.06 ns 4.06 ns
Slices 3192 (68%) 4335 (93%)

Slice Flip Flops 710 (7%) 1270 (13%)

4 input LUTs 5870 (63%) 8106 (87%)
Used logic 5864 8097

Used Shift registers 6 9

Number of IOs 20 20
Number of bonded

IOBs 20 (8%) 20 (8%)

IOB Flip Flops 3 3
Number of BRAMs 3 3

Power consumption 90.3 m 83.3 mW

SKF utilizes fewer logic devices as compared to PSO. The

numbers of logic used are 5846 and 8097, respectively.

However, from the perspective of power consumption, SKF

consume slightly higher power compared to PSO. This is

mainly due to the requirement for logic and signals in SKF

FPGA implementation.

V. CONCLUSIONS

The hardware performance of the SKF algorithm has been

evaluated and discussed in this paper. In the implemented

structure, built-in distributed RAM, built-in block RAM and

LCD were used. The processing speed of the SKF hardware

is higher compared to its software implementation. Also, the

hardware SKF requires lesser time to converge as compared

to the hardware PSO. However, in return, hardware SKP

consumes more power and achieves less reliability as

compared to the hardware PSO. From the perspective of

hardware, SKF requires less logic and IO blocks compared to

the PSO hardware. Moving forward, the implementation of

pipeline approach may result in better performance.

ACKNOWLEDGEMENT

The authors gratefully acknowledge use of the services and

facilities of the Faculty of Electrical and Electronics

Engineering at the Universiti Malaysia Pahang, funded by

UMP Research Grant RDU 1703222.

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning: Addison-Wesley Longman Publishing Co., Inc.,
1989.

[2] Z. Ibrahim, N. H. A. Aziz, N. A. A. Aziz, S. Razali1, M. I. S. A. Razak,

S. W. Nawawi, and M. S. Mohamad, "A Kalman filter approach for
solving unimodal optimization problems," ICIC Express Letters, vol.

9, p. 7, 2010.

[3] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural
Networks, 1995. Proceedings., IEEE International Conference on,

1995, pp. 1942-1948 vol.4.

[4] Z. Ibrahim, N. H. Abdul Aziz., N. A. Ab. Aziz, and S. Razali, M. S.
Mohamad, “Simulated Kalman filter: A novel estimation-based

metaheuristic optimization algorithm,” Adv. Sci. Lett., vol. 22, p. 2941–

2946, 2016.

0

100

200

300

400

500

600

700

800

0 50 100

G
B

es
t

Number of Iteration

PSO

SKF

Journal of Telecommunication, Electronic and Computer Engineering

24 e-ISSN: 2289-8131 Vol. 10 No. 1-3

[5] B. Muhammad, Z. Ibrahim, K. H. Ghazali, K. Z. Mohd Azmi, N. A.
Ab Aziz, N. H. Abd Aziz, and M. S. Mohamad, “A new hybrid

simulated Kalman filter and particle swarm optimization for

continuous numerical optimization problems,” ARPN J. Eng. Appl.
Sci., vol. 10, no. 22, p. 17171–17176, 2015.

[6] Z. Md Yusof, I. Ibrahim, S. N. Satiman, Z. Ibrahim, N. H. Abd Aziz,

and N. A. Ab Aziz, “BSKF: Binary simulated Kalman filter,” Third Int.
Conf. Artif. Intell. Model. Simul., p. 77–81, 2015.

[7] N. H. Abdul Aziz, Z. Ibrahim, N. A. Ab Aziz, and S. Razali,

“Parameter-less simulated Kalman filter,” International Journal of
Software Engineering and Computer Systems, vol. 3, pp. 129-137,

2017.

[8] K. Lazarus, N. H. Noordin, Z. Ibrahim, and K. H. Abas, “Adaptive
beamforming algorithm based on simulated Kalman filter,” Asia Multi

Conference on Modelling and Simulation, p. 19-23, 2016.

[9] K. Lazarus, N. H. Noordin, Z. Ibrahim, M. F. Mat Jusof, A. A. Mohd
Faudzi, N. Subari, and K. Z. Mohd Azmi, “An opposition-based

simulated Kalman filter algorithm for adaptive beamforming,” IEEE
Int. Conf. Appl. Syst. Inov., pp. 91–94, 2017.

[10] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," in 1998

IEEE International Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computational Intelligence

(Cat. No.98TH8360), 1998, pp. 69-73.

[11] X. Cai, S. Ngah, H. Zhu, Y. Tanabe, and T. Baba, "Pipeline
Architecture of Particle Swarm Optimization," in 2010 IEEE/ACIS 9th

International Conference on Computer and Information Science, 2010,

pp. 3-8.
[12] L. Shih-An, W. Ching-Chang, Y. Chia-Jun, and H. Chen-Chien,

"Hardware/software co-design for particle swarm optimization

algorithm," in 2010 IEEE International Conference on Systems, Man
and Cybernetics, 2010, pp. 3762-3767.

[13] M. Jia, "Hardware implementation of particle swarm optimization and

its application for adaptive signal processing," 2013.

