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Abstract—Optimization is listed as one of the important 

topics in today’s electronic system due to the presence of 

many non-linear problems in our daily life. The ability of 

these optimisation algorithms to perform in a real-time 

environment is crucial. This paper presents a novel FPGA 

implementation of the Simulated Kalman Filter 

Optimisation Algorithm. This system utilizes a 

distributed RAM to update the intermediate variables 

and the output of each iteration is stored in the block 

RAM. The address of the block RAM is displayed on the 

LCD. The hardware performance of the SKF is then 

compared to the PSO. Results show that the SKF has 

higher processing speed as well as less number of logic 

blocks and IO blocks were utilised. 
 

Index Terms— FPGA Design; Simulated Kalman Filter 

Optimization Algorithm   

 

I. INTRODUCTION 

 

In solving discrete optimisation problems, algorithms such as 

genetic algorithm (GA) has been originally developed to 

operate in binary search space [1]. However, not all 

optimisation algorithms are originally developed to operate 

in a binary search space. An example of these algorithms is 

the Simulated Kalman Filter (SKF) optimisation, introduced 

by Ibrahim et al. in 2015 [2]. The SKF algorithm has 

improved fundamentally [5-7] and has been applied in 

solving engineering problems [8-9].  

In recent years, Particle Swarm Optimization (PSO) 

attracts more attention as one of the most well-known 

optimization algorithms and presents its potential talent in 

many disciplines. Strong character inspired by the herd 

intelligence, PSO, which was introduced by Eberhart and 

Kennedy in 1995 [3], understood as a simulation of flocking 

animals, learn and share information when a group of insects 

or birds find their foods in the search space. A group of bees 

that are finding flowers is taken as an example. Bees fly 

around in their search space and constantly share individual 

information about the space. The sharing action among them 

is so-called the nature of the social behaviour. It will share its 

information with other bees if either one of the bees can find 

a better way or the position closest to the spring, which is then 

followed by the other members. 

The SKF works quite similar to Particle Swarm 

Optimisation Algorithm (PSO), which had been previously 

introduced by Kennedy, J. and R. Eberhart [10]. Hardware 

implementation of PSO had been previously studied and 

improvements from the hardware perspective are 

continuously done [10-12]. In the proposed architecture, 

there are five modules which are Particle computing block 

(PCB), Fitness computing block (FCB), Random number 

ROM, RAM and Control unit. The initial velocity and 

position are randomly assigned to the particles for the case of 

the first iteration in the PCB unit. Velocity and position are 

then calculated using Equation (1) and Equation (2). The 

velocity and position of a particle are the output of this 

module for both cases. 

 

𝑣𝑑
𝑡+1 = 𝑤 ∙ 𝑣𝑑

𝑡 + 𝑐1 ∙ (𝑝𝑑 − 𝑥𝑑
𝑡 ) + 𝑐2 ∙ (𝑔𝑑 − 𝑥𝑑

𝑡 ) (1) 

𝑥𝑑
𝑡+1 = 𝑘 ∙ 𝑣𝑑

𝑡 + 𝑥𝑑
𝑡  (2) 

 

Fitness computing block (FCB) calculates the fitness value 

of each particle. This fitness value specifies to each 

application and different from one application to another. For 

the position, the first module calculates the distance between 

the particles and each sensor using Equation (3), and then the 

particle fitness is calculated using Equation (4). After that, 22 

pbest and gbest are updated using Equation (5) and Equation 

(6). 

𝐷𝑑,𝑚 = √(𝑋𝑚 − 𝑥𝑑)2 + (𝑌𝑚 − 𝑦𝑑)2 (3) 

𝐹𝑖(𝑡) = ∑ (𝐷𝑖,𝑚 − 𝑅𝑚)
2

3

𝑚=0

 (4) 

𝑝𝑏𝑒𝑠𝑡 {
𝑝𝑏𝑒𝑠𝑡        𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑝𝑏𝑒𝑠𝑡])

𝑐𝑢𝑟𝑟𝑒𝑛𝑡   𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑝𝑏𝑒𝑠𝑡])
 (5) 

𝑔𝑏𝑒𝑠𝑡 {
𝑔𝑏𝑒𝑠𝑡        𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑔𝑏𝑒𝑠𝑡])

𝑐𝑢𝑟𝑟𝑒𝑛𝑡   𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑔𝑏𝑒𝑠𝑡])
 (6) 

The calculation of the equations in the optimization 

algorithm may be time-consuming. Therefore, calculations 

for a number of random values are being done in the PCB, 

pre-stored in the random number ROM and recycled 

throughout the whole process. This feature reduces chip 

utilisation and time of calculations.  

Finally, the control unit act as the brain of the system. The 

control unit controls the progress of the whole system by 

sending control signals and waiting for the feedback signals. 

The five-state state machine has been used in the designing 

the control unit in the previous exercise. 

Previously, SKF algorithm was only simulated and 

evaluated at the software level. As the development of 
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electronics and information industry, the need for real-time 

high-speed processing becomes more and more sincere [13]. 

A particular challenge is the need for higher processing speed 

for complex non-linear applications. For example, in a 

positioning system, the urgency to calculate the position is 

much higher when the object is moving at a high speed. The 

software has to update the accurate position each time after 

dozens of iterations, in which it may miss the exact position 

of the actual current position of the target.  

Many real-world nonlinear problems can be translated into 

cases of optimisation which are difficult to resolve with 

conventional optimisation algorithms that involve complex 

calculations. As the nonlinear problems in various fields get 

more and more complex, optimisation becomes one of the 

most important topics in computer science, engineering, 

management, economics, and many other fields.  

Optimisation algorithm mainly acts to get the best result 

from the solution set by any given circumstances. 

Conventional optimisation algorithms perform intolerably 

complex calculations when meeting nonlinear optimisation. 

When the nonlinear problem is getting more complex, the 

requirement of higher processing speed for the complex 

nonlinear application becomes higher. The execution of SKF 

on software can no longer fulfil the requirements due to its 

long processing time. This latency is a challenge especially 

in a real-time application such as image processing, signal 

processing and positioning system. As an example, 

positioning system requires robust computation in order to 

catch up with the speed of the objects. Apart from that, 

onboard processing that is able to cater deep learning is 

required in modern application systems. Thus, this paper 

presents a novel FPGA implementation of the SKF algorithm. 

The proposed structure is implemented on Xilinx Spartan-3E 

and the performance of the proposed SKF FPGA is compared 

to the PSO FPGA and evaluated in terms of speed, cost and 

the accuracy.  

 

II. SIMULATED KALMAN FILTER ALGORITHM  

 

A novel estimation-based optimisation algorithm called 

simulated Kalman filter (SKF) has been introduced due to the 

inspiration by the estimation capability of Kalman filter [2]. 

Every agent in SKF is considered as a Kalman filter. Based 

on the Kalman filtering mechanisms and the measurement 

process, every agent estimates the global minimum or 

maximum. Measurement, which is required in the Kalman 

filter, is mathematically simulated and modelled. The 

positions of each agent during the search process are updated. 

The SKF process and its algorithm state machine are 

illustrated in Figure-1 and Figure-2, respectively. 

 

III. RESULTS AND DISCUSSIONS 

 

The proposed FPGA structures, for SKF and PSO, are 

evaluated with the following parameters; Fitness Function of 

(x-a), error covariance (P) of 1000, process noise (Q) of 0.5 

and measurement noise (R) of 0.5. The fitness function set for 

both the SKF and PSO is 𝑓(𝑥)  =  (𝑥 − 25)(𝑥 = 32). The 

algorithm is simulated in Xilinx ISE 13 and the performance 

is then evaluated.  

 

 
Figure 1: The Simulated Kalman Filter (SKF) flowchart. 

 

 
Figure 2: The Algorithmic State Machine of the Simulated Kalman Filter. 
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Both hardware and software implementation of SKF 

optimisation algorithm accurately solves the fitness function 

set earlier in the experiment. The duration of each clock cycle 

is 2 ns and the frequency used is 500 MHz. SKF converged 

with less number of iterations compared to PSO, as shown in 

Figure 3. 

 

 
 

Figure 3: Convergence rate comparison between PSO and SKF. 

To solve the fitness, the shortest run taken in PSO is 48 ns 

for 12 iterations, and the longest run took 701 iterations (2804 

ns). The hardware implementation of SKF requires shorter 

processing time compared to the hardware PSO. For example, 

the PSO hardware requires nearly twice the processing time 

compared to the SKF hardware. 

By comparing the reliability of all three approaches, the 

hardware implementation of PSO achieved better reliability 

with 95%, which is very reliable compared to both the 

software and hardware implementations. For hardware 

implemented SKF, only 65 runs among the 100 runs obtained 

the accurate result. Meanwhile, the hardware implemented 

PSO has 95 runs among 100 runs which converge to the 

accurate result. In terms of discrepancy, though the hardware 

implementation of SKF has lower reliability compared to 

PSO, the final output has only slight discrepant, which is 

0.0990% from the accurate result as shown in Table 1. The 

software implementation of SKF can hardly be calculated 

because the maximum and minimum limits are uncertain. 

 
Table 1 

Time Stamp, Reliability and Discrepancies Comparison Between SKF and 
PSO 

 

Name 
Fastest run 

(ns) 

Slowest 

run (ns) 

Reliability 

(%) 

Discrepancy 

(%) 

SKF 32 48 65 0.0990 

PSO 1220 2804 75 0.0072 

 

The average convergence speed of hardware implemented 

SKF is much faster compared to the other three approaches 

as shown in Table 2. It is significant that hardware 

implemented approaches have higher speed compared to the 

software implemented approach. 

 
Table 2  

 Comparison of Average Convergence Speed for All Approaches 

 

Platform 
Hardware Software 

SKF PSO SKF PSO 

Time 296.74 ns 1047.58 ns 8962.85 us 
96908.02 

us 

 

IV. FPGA PERFORMANCES 

  

The proposed structure is implemented on Xilinx Spartan 

3E and evaluated in term of its performance on the FPGA. 

 
Table3 

 Comparison SKF and PSO on FPGA 

 

Properties SKF PSO 

Shortest period 77.41 ns 63.98 ns 
Max Frequency 12.92 MHz 15.63 MHz 

Min input arrival  4.76 ns 4.76 ns 

Max output required  4.06 ns 4.06 ns 
Slices 3192 (68%) 4335 (93%) 

Slice Flip Flops 710 (7%) 1270 (13%) 

4 input LUTs 5870 (63%) 8106 (87%) 
Used logic 5864 8097 

Used Shift registers 6 9 

Number of IOs 20 20 
Number of bonded 

IOBs 20 (8%) 20 (8%) 

IOB Flip Flops 3 3 
Number of BRAMs 3 3 

Power consumption 90.3 m  83.3 mW 

 

SKF utilizes fewer logic devices as compared to PSO. The 

numbers of logic used are 5846 and 8097, respectively. 

However, from the perspective of power consumption, SKF 

consume slightly higher power compared to PSO. This is 

mainly due to the requirement for logic and signals in SKF 

FPGA implementation. 

 

V. CONCLUSIONS  

 

The hardware performance of the SKF algorithm has been 

evaluated and discussed in this paper. In the implemented 

structure, built-in distributed RAM, built-in block RAM and 

LCD were used. The processing speed of the SKF hardware 

is higher compared to its software implementation. Also, the 

hardware SKF requires lesser time to converge as compared 

to the hardware PSO. However, in return, hardware SKP 

consumes more power and achieves less reliability as 

compared to the hardware PSO. From the perspective of 

hardware, SKF requires less logic and IO blocks compared to 

the PSO hardware. Moving forward, the implementation of 

pipeline approach may result in better performance. 
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