
An adaptive flower pollination algorithm for

minimizing software testing redundancy

Muhammad Nomani Kabir
1*

, Jahan Ali
1
, AbdulRahman A. Alsewari

1
, Kamal Z. Zamli

1

1
Faculty of Computer Systems & Software Engineering, University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

*Corresponding author: nomanikabir@ump.edu.my

Abstract—Optimization is the selection of a best set of parameters

from available alternative sets. Global optimization is the task of

finding the absolutely best set of parameters. In this paper, we

present an adaptive flower pollination algorithm for solving an

optimization problem, i.e., minimization of software testing

redundancy. In software testing, test engineers often generate a

set of test cases to validate against the user requirements to avoid

deficiency of the software. A large number of lines of codes cause

potential redundancies in software testing. In order to tackle the

issue of redundancy, global optimization algorithms are used to

systematically minimize the test suite for software testing. We

tested the adaptive flower pollination algorithm on a number of

experiments in software tests. The results were compared with

existing results of some existing algorithms to demonstrate the

strength of our algorithm. Comparison shows that our algorithm

performs slightly better than the existing algorithms and thus,

the proposed algorithm can potentially be used by researchers

and test engineers to obtain optimal test suite requiring the

minimum time for software testing.

Keywords—Global Optimization; Stochastic method; Software

Test Suite; Test-cases Redundancy Reduction.

I. INTRODUCTION

Optimization is the process of finding the minimum value
of a cost function. Global optimization is the task of searching
the absolute minimum value. The tasks of minimization and
maximization are trivially related to one another. In practice,
optimization can mean to accomplish a task in the most
efficient way or the highest quality or to produce maximum
yields with given limited resources. For example, a manager
may need to decide an appropriate investment portfolio
according to the specific investment objective; or an
automobile industry wants to build the most fuel-efficient car
[1].

In this work, our scope is software testing redundancy
minimization. In the present era, software and its diffusion into
many applications are growing and thus complexity is
increasing, which in turn, causes overlapping in software test
cases that make unwarranted redundancies. In software test-
cases redundancy, a test to satisfy a specific requirement is
covered by multiple tests [2-4]. Test-suite size will increase
with higher redundancy which substantially elevates the overall
testing time and cost. Thus, minimization of test suite
redundancy is important in order to obtain a minimum number
of test cases that suffice for satisfying the test requirements.

Global optimization methods are solved using the
several algorithms based on stochastic approach such as
Particle Swarm Optimization (PSO), Simulated Annealing
(SA) and Genetic Algorithm (GA). As Softwaretest
redundancy problem contains many local minima, no single
strategy e.g., PSO, SA or GA can do well in all scenarios.
Each method has advantages and disadvantages. PSO does not
often perform well to find a global optimal solution when the
optimizing variables in objective function are of a large
dimension [5, 6]. SA is preferable for problems in which the
global optimum with the best solution is less important than an
local optimum with an acceptable solution in a certain time [7].
For higher dimensions, complexity of GA exponentially grows
[8]. To develop an algorithm that has less complexity, but
provides higher convergence rate is always challenging.
Although there exist stochastic based global optimization
algorithms e.g., Particle Swarm Optimization, Ant Colony
Optimization and Genetic Algorithm which use the random
sequence permutation to achieve the global optimum. Each
algorithm has its own advantages and disadvantages over the
others in terms of convergence and complexity.

In this work, we scrutinized the convergence and
complexity issues of an optimization technique - flower
pollination algorithm and reformulated a new algorithm to
obtain a better tradeoff between convergence and complexity.
Our proposed technique is a modified flower pollination
algorithm (MFPA) that is developed by devising a new strategy
through updating the parameters (step lengths) at each iteration.
The step lengths are set to increase if the convergence is
satisfactory. On the other hand, they are reduced if the
convergence is weak. This new strategy is aimed at
accelerating the convergence. Performance and efficiency of
the proposed algorithm were tested on minimization problems
of software testing redundancy by comparing the results with
the results of existing algorithms to demonstrate the strength of
the proposed algorithm. Thus, implemented code of the
algorithm will be useful to generate test cases with minimum
redundancy of system requirements. Researchers and test
engineers will have a tool to obtain satisfactory test cases
compared to the existing tools and the generated optimal test
case will require the minimum time for software testing.

The rest of the paper is organized as follows. Section II
presents the related works on different stochastic methods for
software test-cases minimization. The next section describes
the methodology of building the proposed algorithm MFPA.

The test results are provided in section IV and finally,
conclusion is made in section V.

II. RELATED WORKS

In software testing, test engineers often generate a set of

test cases to validate against the user requirements to avoid

deficiency of the software. A large number of lines of codes

cause potential redundancies in software testing. In order to

tackle the issue of redundancy, global optimization algorithms

are used to systematically minimize the test suite for software

testing. Since software test case redundancy minimization is an

optimization problem with many minima, Genetic Algorithm

(GA), Particle Swarm Optimization (PSO), Simulated

Annealing (SA) can be used to find the best solution [2-4].

In Genetic algorithm (GA) is an iterative search technique

that mimics the process of natural selection used to find the

solution of global optimization problems. Genetic algorithms

belong to the larger class of evolutionary algorithms (EA)

that solve optimization problems using techniques inspired

by natural evolution, such as inheritance, mutation,

selection, and crossover. Repeated fitness function evaluation

for complex problems is often a bottleneck with GA. With

higher number of elements which are exposed to mutation,

there is often an exponential increase in search space size [8].

GA is used by Fraser and Arcuri [9] for their work on scalable

mutation-based generation of whole software test suites.

Moreover, Matthew [10] used metaheuristic optimization

approach for mutationbased test data generation.

Particle Swarm Optimization is a populationbased

stochastic algorithm which follows the social behavior of

animals e.g., bird flocking and fish schooling. PSO has the

properties of simple computation with rapid convergence rate.

The algorithm requires to adjust a few parameters which is a

main advantage. The algorithm tries to attain the best value

from the interactions among particles. However, if the search

space is high, the convergence rate slows down near the global

optimum. The algorithm performs poor when the optimization

problem consists of a large and complex data set. As

mentioned before, the algorithm fails to attain a global

optimum if the objective function contains a large number of

optimizing variables [6]. Ahmed et al. [11] introduced a

modified version of PSO algorithm called Cuckoo search

algorithm for configuration-aware software test. Jin et al. [12]

combined artificial neural network and quantum particle

swarm optimization. Gosciniak [5] proposed a new approach

to particle swarm optimization algorithm, Jensi [13]

investigated a modified version of PSO using a levy flight

for global optimization. Ouyang [14] presented a hybrid

harmony search technique with PSO with global dimension

selection.

Simulated annealing (SA) is a stochastic algorithm that

imitates the forging process of metal when the metal is rapidly

heated followed by gradual cooling process. SA can often find

a good solution even in the presence of noisy data; However,

the global solution may not be found by this technique. SA

may be preferable to alternatives e.g., bruteforce search or

gradient descent, for finding the solutions of the problems in a

certain time where the precise global optimum is less

important than an acceptable local optimum [7].

Combinatorial techniques are alternatives to solve the

software test redundancy problems. Some of the combinatorial

techniques [15, 16] are tried to minimize software testing

redundancy.

As the problem of software test-cases redundancy

minimization may contain many local minima, no single

strategy can work well for all the problems. In software test-

cases, a test suite can be constructed by a sequence of

permutation of test cases where the test cases can be

formulated in any order. Note that one of the (concatenated)

permutations can minimally satisfy all the requirements using

an exhaustive permutation. Nonetheless, for a large problem,

exhaustive permutation may be expensive and difficult to

manage. Hence, this work proposes a new global optimization

algorithm using stochastic approaches. Specifically, we

develop an adaptive flower pollination algorithm for solving

the problem of software test-cases redundancy minimization.

III. METHODOLOGY

The proposed algorithm modified flower pollination
algorithm (MFPA) is a metaheuristic algorithm which can be
used for solving the problem of software test-cases redundancy
minimization. Flower pollination algorithm was originally
formulated by Yang [17] based on the flower-pollination
process. This algorithm was developed considering four rules:

Rule 1: Global pollination is represented by biotic and
cross-pollination, where a pollinator maintains a Levy flight.

Rule 2: Local pollination is designated by abiotic and self-
pollination.

Rule 3: A reproduction probability that is proportional to
the similarity between two flowers is used to measure the
flower constancy.

Rule 4: Switching between local and global pollinations is
performed with a probability p ∈ [0,1] value. Local pollination
is slightly dominant over global pollination because of the
physical closeness and other factors e.g., wind.

Above four rules can be formulated as equations. First the
local pollination: rule 2 is represented by:

 = + c (−) (1)

where denotes the current pollen (i.e., the current

solution at iteration t; and are the solution vectors

which are the selected pollens from two different flowers of the
same plant-species with c ∈ [0,1] i.e., the value of c obtained
from a uniform distribution in [0, 1]. In our case of software

test-cases redundancy minimization, and are the test

cases that selected randomly in the list.

Rule 1 can be translated as

 = + aL(b)(g*−) (2)

where g* denotes the best solution at iteration t, a>0

represents the step size and L(b) implies Levy flight. For our

problem, g* is best test case in the list. Levy flight imitates

the characteristics of long move of the pollinators. Thus, L is

deduced from a Levy flight as follows:

 , (s >> s0 > 0) (3)

where b is the Levy exponent and Г(b) is the gamma
function. The formula (3) of L is valid for a large step s. The
proposed algorithm MFPA is shown in Algorithm 1. Note that
in the algorithm, we use the value of c ∈ [0.25, 0.75], since if
the value of c is close to 0 or 1, then the next iterate with (1)
will not progress. Furthermore, we modify a in equation (2)
depending on steps.

If s > 1.5R, then

a = max(2*a, 1) and R = max(2*R, Rmax);

If s < 0.5R, then

a = min(a/2, 1.0e-4), and R = max(R/2, Rmin);

 where R is the trust-region radius. Rmax = 1000, Rmin =
1.0e-4 with an initial R = 1;

Algorithm 1: Modified flower pollination algorithm
(MFPA)

Input: Parameters, P and Set of values for each

parameter, V = [v0 ..vj];

Output: Final test suite;

1. Initialize a set of n-candidate tests;

2. Find the best solution g* of n-candidate tests.

3. Generate all possible interactions based on P and V

and set the results in a list T

4. while (T is not empty) do

5. while (t < MaxGeneration) do

6. for i = 1 : n (all n flowers in the population)

7. if rand() < p,

8. Compute L using (3)

9. Compute using (2)

10. else

11. Draw c from a uniform distribution in [0,1]

12. Compute using (1)
13. end if

14. Evaluate new solutions

15. If new solutions are better, update them in the

 population

16. end for

17. Find the current best solution g*

18. end while

19. Add the best test case, g* in final test cases .

20. Remove covered interactions elements from T.

21. End while

IV. TEST RESULTS

The adaptive flower pollination algorithm was
implemented in Java with NetBeans environment under
Windows 7 operating system. The implemented program was
run on intel core i7-2640 CPU with 4GB RAM. We tested the
program through two experiments in software tests. Two
experimental results are presented to demonstrate the efficacy
of our algorithm. Tables 1 and 3 provide the experimental
setups where the problems PB1 to PB5 are defined according
to the t-way of interaction with t = 2 to 6 which are used during
the experiments.

Table 3 lists the test suite size for different problems with
different degree interactions given in Table 1. In the table,
columns 3-7 provide the test suite size from existing
algorithms, i.e., HSS, IPOG, WHITCH, Jenny and TConfig
[18-22]. The result of the proposed algorithm is reported in
column 8. Best of the results obtained from all the algorithms is
given in column 9. It can be noticed that our algorithm
performs slightly better than the other algorithms. This can be
checked by the total values given in the last row of the table.
For the problems PB1, PB3-PB5, our algorithm outperforms
the others. The second best results are achieved by HSS while
WHIPBH even fails to execute on problems PB4-PB5,
performing the worst.

Table 1: Experimental setup for Experiment 1

Problem

No.
t INPUT SPECIFICATIONS

PB1 2 7 3-valued parameters

PB2 3 7 3-valued parameters

PB3 4 7 3-valued parameters

PB4 5 7 3-valued parameters

PB5 6 7 3-valued parameters

Table 2: Test suite Size for different t-way interaction for

experiment 1: seven input parameters with three possible

values for each parameter

Problem No. t

H
S

S

IP
O

G

W
H

IP
B

H

J
en

n
y

P
C

o
n

fig

M
F

P
A

BEST

PB1 2 14 17 15 16 15 14 14

PB2 3 50 57 45 51 55 50 45

PB3 4 157 185 216 169 166 150 150

PB4 5 437 561 NA 458 477 425 425

PB5 6 916 1281 NA 1087 921 905 905

Total 1574 2101 1781 1634 1544 1539

Table 3: Experimental setup for Experiment 2

Problem

No.
t INPUT SPECIFICATIONS

PB1 2 10 2-valued parameters

PB2 3 10 2-valued parameters

PB3 4 10 2-valued parameters

PB4 5 10 2-valued parameters

PB5 6 10 2-valued parameters

Table 4: Test suite Size for different t-way interaction for

experiment 2: ten input parameters with two possible values

for each parameter

Problem No. t

H
S

S

IP
O

G

W
H

IP
B

H

J
en

n
y

P
B

o
n

fig

M
F

P
A

BEST

PB1 2 8 10 6 10 9 7 6

PB2 3 16 19 18 18 20 17 16

PB3 4 37 49 58 39 45 38 37

PB4 5 81 128 NA 87 95 78 78

PB5 6 158 352 NA 169 183 155 155

Total 300 558 323 352 295 292

Table 4 provides the results from experiment 2, of which

setups are given in Table 3. Similar to Table 2, Table 4 shows
the test suite size for some existing algorithms along with our
algorithm MFPA. The total value of suite size for MFPA is
slightly better than its nearest competitor HSS. Again,
WHIPBH makes the worst performance, failing to execute
problems PB4-PB5.

Evaluating the experimental results, one can summarize
that MFPA performs better than other algorithms and thus
MFPA is a good candidate for using in reduction of test cases
redundancy.

V. CONCLUSION

In this paper, we proposed an optimization technique MFPA

by modifying the original flower pollination algorithm.

MFPA provides an optimal test suite for software testing with

the minimum redundancy. This proposed algorithm has faster

convergence rate than the original algorithm. The test results

of our algorithm were compared with existing results of some

existing algorithms to demonstrate the strength of our

algorithm. Comparison shows that our algorithm performs

slightly better than the existing algorithms and thus, the

proposed algorithm can potentially be used by researchers and

test engineers to obtain optimal test suite requiring the

minimum time for software testing. However, more efficient

optimization algorithm is needed to solve the large problem

with massive computational cost and to meet the requirements

of accuracy and convergence. Therefore, new ideas, strategies

and algorithms are necessary to improve the current

stateoftheart research in the area of global optimization.

ACKNOWLEDGMENT

This work was supported by Fundamental Research Grant
Scheme (FRGS) No. RDU160102 from Ministry of Higher
Education, Malaysia.

REFERENCES

1 Kabir, M.N., Issa-Salwe, A., and Ahmed, M.:

‘Simplified model of combustion process in a diesel engine for

real-time operation’, International Journal of Vehicle Systems

Modelling and Testing, 2010, 5, (4), pp. 347-357

2 Alsewari, A.R.A., and Zamli, K.Z.: ‘Design and

implementation of a harmony-search-based variable-strength

t-way testing strategy with constraints support’, Information

and Software Technology, 2012, 54, (6), pp. 553-568

3 Hervieu, A., Marijan, D., Gotlieb, A., and Baudry, B.:

‘Practical minimization of pairwise-covering test

configurations using constraint programming’, Information

and Software Technology, 2016, 71, pp. 129-146

4 Zamli, K.Z., Alkazemi, B.Y., and Kendall, G.: ‘A Tabu

Search hyper-heuristic strategy for t-way test suite generation’,

Applied Soft Computing, 2016, 44, pp. 57-74

5 Gosciniak, I.: ‘A new approach to particle swarm

optimization algorithm’, Expert Systems with Applications,

2015, 42, (2), pp. 844-854

6 Mahmoud, T., and Ahmed, B.S.: ‘An efficient strategy

for covering array construction with fuzzy logic-based

adaptive swarm optimization for software testing use’, Expert

Systems with Applications, 2015, 42, (22), pp. 8753-8765

7 Yoo, S., and Harman, M.: ‘Regression testing

minimization, selection and prioritization: a survey’, Software

Testing, Verification and Reliability, 2012, 22, (2), pp. 67-120

8 Galeebathullah, B., and Indumathi, C.: ‘A novel

approach for controlling a size of a test suite with simple

technique’, Int. J. Comput. Sci. Eng, 2010, 2, pp. 614-618

9 Fraser, G., and Arcuri, A.: ‘Achieving scalable mutation-

based generation of whole test suites’, Empirical Software

Engineering, 2015, 20, (3), pp. 783-812

10 Patrick, M.: ‘Metaheuristic Optimisation and Mutation-

Driven Test Data Generation’: ‘Computational Intelligence

and Quantitative Software Engineering’ (Springer, 2016), pp.

89-115

11 Ahmed, B.S., Abdulsamad, T.S., and Potrus, M.Y.:

‘Achievement of minimized combinatorial test suite for

configuration-aware software functional testing using the

Cuckoo Search algorithm’, Information and Software

Technology, 2015, 66, pp. 13-29

9
1

12 Jin, C., and Jin, S.-W.: ‘Prediction approach of software

fault-proneness based on hybrid artificial neural network and

quantum particle swarm optimization’, Applied Soft

Computing, 2015, 35, pp. 717-725

13 Jensi, R., and Jiji, G.W.: ‘An enhanced particle swarm

optimization with levy flight for global optimization’, Applied

Soft Computing, 2016, 43, pp. 248-261

14 Ouyang, H.-b., Gao, L.-q., Kong, X.-y., Li, S., and Zou,

D.-x.: ‘Hybrid harmony search particle swarm optimization

with global dimension selection’, Information Sciences, 2016,

346, pp. 318-337

15 Yu, L., Lei, Y., Nourozborazjany, M., Kacker, R.N., and

Kuhn, D.R.: ‘An efficient algorithm for constraint handling in

combinatorial test generation’, in Editor (Ed.)^(Eds.): ‘Book

An efficient algorithm for constraint handling in combinatorial

test generation’ (IEEE, 2013, edn.), pp. 242-251

16 Zhang, Z., Yan, J., Zhao, Y., and Zhang, J.: ‘Generating

combinatorial test suite using combinatorial optimization’,

Journal of Systems and Software, 2014, 98, pp. 191-207

17 Yang, X.-S.: ‘Flower Pollination Algorithm for Global

Optimization’: ‘Unconventional computation and natural

computation’ (Springer, 2012), pp. 240-249

18 Ahmed, B.S., and Zamli, K.Z.: ‘PSTG: A T-Way

Strategy Adopting Particle Swarm Optimization’, in Editor

(Ed.)^(Eds.): ‘Book PSTG: A T-Way Strategy Adopting

Particle Swarm Optimization’ (IEEE Computer Society, 2010,

edn.), pp. 1-5

19 Ahmed, B.S., and Zamli, K.Z.: ‘T-Way Test Data

Generation Strategy Based on Particle Swarm Optimization’,

in Editor (Ed.)^(Eds.): ‘Book T-Way Test Data Generation

Strategy Based on Particle Swarm Optimization’ (IEEE

Computer Society, 2010, edn.), pp. 93-97

20 Ahmed, B.S., Zamli, K.Z., and Lim, C.P.: ‘Constructing

a T-Way Interaction Test Suite Using the Particle Swarm

Optimization Approach’, International Journal of Innovative

Computing, Information and Control, 2012, 8, (1), pp. 431-

452

21 Shiba, T., Tsuchiya, T., and Kikuno, T.: ‘Using Artificial

Life Techniques to Generate Test Cases for Combinatorial

Testing’, in Editor (Ed.)^(Eds.): ‘Book Using Artificial Life

Techniques to Generate Test Cases for Combinatorial Testing’

(IEEE Computer Society, 2004, edn.), pp. 72-77

22 Alsewari, A.A., and Zamli, K.Z.: ‘Interaction Test Data

Generation Using Harmony Search Algorithm’, in Editor

(Ed.)^(Eds.): ‘Book Interaction Test Data Generation Using

Harmony Search Algorithm’ (IEEE Computer Society, 2011,

edn.), pp.

