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Abstract—Optimization is the selection of a best set of parameters 

from available alternative sets. Global optimization is the task of 

finding the absolutely best set of parameters. In this paper, we 

present an adaptive flower pollination algorithm for solving an 

optimization problem, i.e., minimization of software testing 

redundancy.  In software testing, test engineers often generate a 

set of test cases to validate against the user requirements to avoid 

deficiency of the software. A large number of lines of codes cause 

potential redundancies in software testing. In order to tackle the 

issue of redundancy, global optimization algorithms are used to 

systematically minimize the test suite for software testing. We 

tested the adaptive flower pollination algorithm on a number of 

experiments in software tests. The results were compared with 

existing results of some existing algorithms to demonstrate the 

strength of our algorithm. Comparison shows that our algorithm 

performs slightly better than the existing algorithms and thus, 

the proposed algorithm can potentially be used by researchers 

and test engineers to obtain optimal test suite requiring the 

minimum time for software testing. 

Keywords—Global Optimization; Stochastic method; Software 

Test Suite; Test-cases Redundancy Reduction. 

I.  INTRODUCTION 

Optimization is the process of finding the minimum value 
of a cost function. Global optimization is the task of searching 
the absolute minimum value. The tasks of minimization and 
maximization are trivially related to one another. In practice, 
optimization can mean to accomplish a task in the most 
efficient way or the highest quality or to produce maximum 
yields with given limited resources. For example, a manager 
may need to decide an appropriate investment portfolio 
according to the specific investment objective; or an 
automobile industry wants to build the most fuel-efficient car 
[1].  

In this work, our scope is software testing redundancy 
minimization. In the present era, software and its diffusion into 
many applications are growing and thus complexity is 
increasing, which in turn, causes overlapping in software test 
cases that make unwarranted redundancies. In software test-
cases redundancy, a test to satisfy a specific requirement is 
covered by multiple tests [2-4]. Test-suite size will increase 
with higher redundancy which substantially elevates the overall 
testing time and cost. Thus, minimization of test suite 
redundancy is important in order to obtain a minimum number 
of test cases that suffice for satisfying the test requirements. 

Global  optimization  methods  are  solved  using  the  
several  algorithms  based  on  stochastic  approach  such  as  
Particle  Swarm Optimization  (PSO), Simulated Annealing 
(SA) and Genetic Algorithm (GA). As Softwaretest 
redundancy problem contains many local minima, no single 
strategy e.g., PSO, SA or GA can do well in all scenarios.  
Each method has advantages and disadvantages.  PSO does not 
often perform well to find a global optimal solution when the 
optimizing variables in objective function are of a large 
dimension [5, 6]. SA is preferable for problems in which the 
global optimum with the best solution is less important than an 
local optimum with an acceptable solution in a certain time [7].  
For higher dimensions, complexity of GA exponentially grows 
[8]. To develop an algorithm that has less complexity, but 
provides higher convergence rate is always challenging. 
Although there exist stochastic based global optimization 
algorithms e.g., Particle Swarm Optimization, Ant Colony 
Optimization and Genetic  Algorithm  which  use  the  random  
sequence  permutation  to  achieve  the  global  optimum.  Each 
algorithm has its own advantages and disadvantages over the 
others in terms of convergence and complexity. 

In this work, we scrutinized the convergence and 
complexity issues of an optimization technique - flower 
pollination algorithm and reformulated a new algorithm to 
obtain a better tradeoff between convergence and complexity. 
Our proposed technique is a modified flower pollination 
algorithm (MFPA) that is developed by devising a new strategy 
through updating the parameters (step lengths) at each iteration. 
The step lengths are set to increase if the convergence is 
satisfactory. On the other hand, they are reduced if the 
convergence is weak. This new strategy is aimed at 
accelerating the convergence. Performance and efficiency of 
the proposed algorithm were tested on minimization problems 
of software testing redundancy by comparing the results with 
the results of existing algorithms to demonstrate the strength of 
the proposed algorithm. Thus, implemented code of the 
algorithm will be useful to generate test cases with minimum 
redundancy of system requirements. Researchers and test 
engineers will have a tool to obtain satisfactory test cases 
compared to the existing tools and the generated optimal test 
case will require the minimum time for software testing. 

The rest of the paper is organized as follows. Section II 
presents the related works on different stochastic methods for 
software test-cases minimization. The next section describes 
the methodology of building the proposed algorithm MFPA. 



The test results are provided in section IV and finally, 
conclusion is made in section V.  

II. RELATED WORKS 

In software testing, test engineers often generate a set of 

test cases to validate against the user requirements to avoid 

deficiency of the software. A large number of lines of codes 

cause potential redundancies in software testing. In order to 

tackle the issue of redundancy, global optimization algorithms 

are used to systematically minimize the test suite for software 

testing. Since software test case redundancy minimization is an 

optimization problem with many minima, Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Simulated 

Annealing (SA) can be used to find the best solution [2-4].  

In Genetic algorithm (GA) is an iterative search technique 

that mimics the process of natural selection used to find the 

solution of global optimization problems.  Genetic  algorithms  

belong to the larger class of evolutionary  algorithms  (EA) 

that solve optimization  problems  using  techniques  inspired  

by  natural  evolution,  such  as  inheritance,  mutation,  

selection,  and  crossover. Repeated fitness function evaluation 

for complex problems is often a bottleneck with GA. With 

higher number of elements which are exposed to mutation, 

there is often an exponential increase in search space size [8]. 

GA is used by Fraser and Arcuri [9] for their work on scalable 

mutation-based generation of whole software test suites. 

Moreover, Matthew [10] used metaheuristic optimization 

approach for mutationbased test data generation. 

Particle  Swarm  Optimization  is  a  populationbased  

stochastic  algorithm  which follows  the  social  behavior  of  

animals  e.g., bird flocking and fish schooling. PSO has the 

properties of simple computation with rapid convergence rate. 

The algorithm requires to adjust a few parameters which is a 

main advantage. The algorithm tries to attain the best value 

from the interactions among particles. However, if the search 

space is high, the convergence rate slows down near the global 

optimum. The algorithm performs poor when the optimization 

problem consists of a large and complex data set. As 

mentioned before, the algorithm fails to attain a global 

optimum if the objective function contains a large number of 

optimizing variables [6]. Ahmed et al. [11] introduced a 

modified version of PSO algorithm called Cuckoo search 

algorithm for configuration-aware software test. Jin et al. [12] 

combined artificial neural network and quantum particle 

swarm optimization. Gosciniak  [5] proposed a new approach 

to particle swarm optimization  algorithm,  Jensi [13] 

investigated  a modified version of PSO using a levy  flight  

for global  optimization. Ouyang [14] presented a hybrid 

harmony search technique with PSO with global dimension 

selection. 

Simulated annealing (SA) is a stochastic algorithm that 

imitates the forging process of metal when the metal is rapidly 

heated followed by gradual cooling process. SA can often find 

a good solution even in the presence of noisy data; However, 

the global solution may not be found by this technique.  SA 

may be preferable to alternatives e.g., bruteforce search or 

gradient descent, for finding the solutions of the problems in a 

certain time where the precise global  optimum  is less  

important  than an acceptable  local optimum [7]. 

Combinatorial techniques are alternatives to solve the 

software test redundancy problems. Some of the combinatorial 

techniques [15, 16] are tried to minimize software testing 

redundancy.  

As the problem of software test-cases redundancy 

minimization may contain many local minima, no single 

strategy can work well for all the problems. In software test-

cases, a test suite can be constructed by a sequence of 

permutation of test cases where the test cases can be 

formulated in any order. Note that one of the (concatenated) 

permutations can minimally satisfy all the requirements using 

an exhaustive permutation. Nonetheless, for a large problem, 

exhaustive permutation may be expensive and difficult to 

manage. Hence, this work proposes a new global optimization 

algorithm using stochastic approaches. Specifically, we 

develop an adaptive flower pollination algorithm for solving 

the problem of software test-cases redundancy minimization.  

III. METHODOLOGY 

The proposed algorithm modified flower pollination 
algorithm (MFPA) is a metaheuristic algorithm which can be 
used for solving the problem of software test-cases redundancy 
minimization. Flower pollination algorithm was originally 
formulated by Yang [17] based on the flower-pollination 
process. This algorithm was developed considering four rules: 

Rule 1: Global pollination is represented by biotic and 
cross-pollination, where a pollinator maintains a Levy flight. 

Rule 2: Local pollination is designated by abiotic and self-
pollination. 

Rule 3: A reproduction probability that is proportional to 
the similarity between two flowers is used to measure the 
flower constancy. 

Rule 4: Switching between local and global pollinations is 
performed with a probability p ∈ [0,1] value. Local pollination 
is slightly dominant over global pollination because of the 
physical closeness and other factors e.g., wind. 

Above four rules can be formulated as equations. First the 
local pollination: rule 2 is represented by: 

                        = + c ( − )                                 (1) 

where   denotes the current pollen (i.e., the current 

solution at iteration t; and  are the solution vectors 

which are the selected pollens from two different flowers of the 
same plant-species with  c ∈ [0,1] i.e., the value of c obtained 
from a uniform distribution in [0, 1]. In our case of software 

test-cases redundancy minimization,  and  are the test 

cases that selected randomly in the list.  

Rule 1 can be translated as 

                         = + aL(b)(g*− )                           (2) 

   



where g* denotes the best solution at iteration t, a>0 

represents the step size and L(b) implies Levy flight. For our 

problem, g* is best test case in the list.  Levy flight imitates 

the characteristics of long move of the pollinators. Thus, L is 

deduced from a Levy flight as follows: 

 

 ,    (s >> s0 > 0)                        (3) 

 

where b is the Levy exponent and Г(b) is the gamma 
function. The formula (3) of  L is valid for a large step s.  The 
proposed algorithm MFPA is shown in Algorithm 1. Note that 
in the algorithm, we use the value of c ∈ [0.25, 0.75], since if 
the value of c is close to 0 or 1, then the next iterate with (1) 
will not progress. Furthermore, we modify a in equation (2) 
depending on steps.  

If s > 1.5R, then  

a = max(2*a, 1) and R = max(2*R, Rmax); 

If s < 0.5R,  then  

a = min(a/2, 1.0e-4), and R = max(R/2, Rmin); 

 where R is the trust-region radius. Rmax = 1000, Rmin = 
1.0e-4 with an initial R = 1;  

 

Algorithm 1: Modified flower pollination algorithm 
(MFPA) 

Input: Parameters, P and Set of values for each 

parameter, V = [v0 ..vj];   

Output:  Final test suite;   

1. Initialize a set of n-candidate tests;   

2. Find the best solution g* of n-candidate tests. 

3. Generate all possible interactions based on P and V 

and set the results in a list T  

4. while (T is not empty) do    

5.   while (t < MaxGeneration) do  

6.     for i = 1 : n (all n flowers in the population)  

7.       if rand() < p,  

8.         Compute L using (3) 

9.         Compute    using (2) 

10.       else  

11.         Draw c from a uniform distribution in [0,1]  

12.         Compute  using (1)  
13.       end if  

14.       Evaluate new solutions  

15.       If new solutions are better, update them in the    

      population  

16.     end for  

17.     Find the current best solution g*  

18.   end while  

19.   Add the best test case, g* in final test cases .   

20.   Remove covered interactions elements from T.  

21. End while  
 

IV. TEST RESULTS 

The adaptive flower pollination algorithm was 
implemented in Java with NetBeans environment under 
Windows 7 operating system. The implemented program was 
run on intel core i7-2640 CPU with 4GB RAM. We tested the 
program through two experiments in software tests. Two 
experimental results are presented to demonstrate the efficacy 
of our algorithm.  Tables 1 and 3 provide the experimental 
setups where the problems PB1 to PB5 are defined according 
to the t-way of interaction with t = 2 to 6 which are used during 
the experiments.  

Table 3 lists the test suite size for different problems with 
different degree interactions given in Table 1. In the table, 
columns 3-7 provide the test suite size from existing 
algorithms, i.e., HSS, IPOG, WHITCH, Jenny and TConfig 
[18-22].  The result of the proposed algorithm is reported in 
column 8. Best of the results obtained from all the algorithms is 
given in column 9. It can be noticed that our algorithm 
performs slightly better than the other algorithms. This can be 
checked by the total values given in the last row of the table. 
For the problems PB1, PB3-PB5, our algorithm outperforms 
the others. The second best results are achieved by HSS while 
WHIPBH even fails to execute on problems PB4-PB5, 
performing the worst.  

Table 1:  Experimental setup for Experiment 1 

 

Problem 

No. 
t INPUT  SPECIFICATIONS 

PB1 2 7 3-valued parameters 

PB2 3 7 3-valued parameters 

PB3 4 7 3-valued parameters 

PB4 5 7 3-valued parameters 

PB5 6 7 3-valued parameters 

 
 

Table 2:  Test suite Size for different t-way interaction for 

experiment 1: seven input parameters with three possible 

values for each parameter 
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BEST 

PB1 2 14 17 15 16 15 14 14 

PB2 3 50 57 45 51 55 50 45 

PB3 4 157 185 216 169 166 150 150 

PB4 5 437 561 NA 458 477 425 425 

PB5 6 916 1281 NA 1087 921 905 905 



Total 1574 2101  1781 1634 1544 1539 

 

 

 

Table 3:  Experimental setup for Experiment 2 

 

Problem 

No. 
t INPUT  SPECIFICATIONS 

PB1 2 10 2-valued parameters 

PB2 3 10 2-valued parameters 

PB3 4 10 2-valued parameters 

PB4 5 10 2-valued parameters 

PB5 6 10 2-valued parameters 

 

 

Table 4:  Test suite Size for different t-way interaction for 

experiment 2: ten input parameters with two possible values 

for each parameter 

 

Problem No. t 

 

H
S

S
 

 

IP
O

G
 

W
H

IP
B

H
 

J
en

n
y
 

P
B

o
n

fig
 

M
F

P
A

 

BEST 

PB1 2 8 10 6 10 9 7 6 

PB2 3 16 19 18 18 20 17 16 

PB3 4 37 49 58 39 45 38 37 

PB4 5 81 128 NA 87 95 78 78 

PB5 6 158 352 NA 169 183 155 155 

Total 300 558  323 352 295 292 

 
Table 4 provides the results from experiment 2, of which 

setups are given in Table 3.  Similar to Table 2, Table 4 shows 
the test suite size for some existing algorithms along with our 
algorithm MFPA. The total value of suite size for MFPA is 
slightly better than its nearest competitor HSS. Again, 
WHIPBH makes the worst performance, failing to execute 
problems PB4-PB5.  

Evaluating the experimental results, one can summarize 
that MFPA performs better than other algorithms and thus 
MFPA is a good candidate for using in reduction of test cases 
redundancy.   

V. CONCLUSION 

In this paper, we proposed an optimization technique MFPA 

by modifying the original flower pollination algorithm.  

MFPA provides an optimal test suite for software testing with 

the minimum redundancy. This proposed algorithm has faster 

convergence rate than the original algorithm. The test results 

of our algorithm were compared with existing results of some 

existing algorithms to demonstrate the strength of our 

algorithm. Comparison shows that our algorithm performs 

slightly better than the existing algorithms and thus, the 

proposed algorithm can potentially be used by researchers and 

test engineers to obtain optimal test suite requiring the 

minimum time for software testing. However, more efficient 

optimization algorithm is needed to solve the large problem 

with massive computational cost and to meet the requirements 

of accuracy and convergence. Therefore, new ideas, strategies 

and algorithms are necessary to improve the current 

stateoftheart research in the area of global optimization. 
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